Beispiel #1
0
def plot_data_gen(locs, cats, dens, pms):
    infix = "experiment/plot/sameseed/"
    outfix = "experiment/plot/sameseed/figures/"

    for num_cxg in cxgs:
        cxg_folder = "cxg_" + str(num_cxg) + "/"
        outfile = "cxg_" + str(num_cxg)

        for cat in cats:

            labels = ["Density=" + str(den) for den in dens]
            x = np.arange(len(labels))  # the label locations
            width = 0.17  # the width of the bars

            fig, ax = plt.subplots()
            rects = []
            pos = -width * 1.5

            for pm in pms:
                pm_txt = "ITM" if pm == "itm" else "Hybrid"

                for loc in locs:
                    loc_txt = "Virginia Beach" if loc == "vb" else "San Diego"

                    data = []

                    for den in dens:
                        infile = loc + "_" + str(den) + "_" + cat + "_" + pm

                        # Inter-CxG Interference
                        app3_ixic = eval.load_content(infix + cxg_folder +
                                                      infile + ".ixcovval")
                        data.append(
                            app3_ixic.get("signal_coverage").get(target_cxg) /
                            100.0)

                    rects.append(
                        ax.bar(x + pos,
                               data,
                               width,
                               label=loc_txt + " - " + pm_txt,
                               color=colors[locs.index(loc)],
                               edgecolor='white',
                               hatch=hatches[pms.index(pm)]))

                    pos += width

            ax.set_ylabel("CRC of " + str(target_cxg) + " (%)")
            ax.set_xticks(x)
            ax.set_xticklabels(labels)
            ax.legend(loc="lower right")

            plt.ylim((0, 110))

            fig.tight_layout()

            # plt.show()
            plt.savefig(outfix + "coverage/" + outfile + "_coverage.png")

        print outfile, "ready!"
Beispiel #2
0
def plot_data(filename):
    cxgs = ["cxg_4/"]
    for cxg_select in cxgs:
        infix = "sameseed/repeat/plot/app3/" + cxg_select
        outfix = infix
        # infix = "simpseed/plot/" + cxg_select
        infile = filename + "_app3.noise"

        content = eval.load_content(infix + infile)

        cxgs = content.get("coverage").keys()
        coverage = content.get("coverage")
        noises = content.get("noise")
        grids = content.get("grid")

        cov = {x for val in coverage.values() for x in val}
        # print "Coverage all CBSDS:", len(cov)

        ix_value_by_et = {}
        ix_coverage_by_et = {}

        signal_coverage = {target_cxg : len(coverage.get(target_cxg)) for target_cxg in cxgs}

        for et in ets:

            ix_value_by_cxg = {}
            ix_coverage_by_cxg = {}
            for target_cxg in cxgs:
                target_cxg_coverage = len(coverage.get(target_cxg))

                target_cxg_noises_map = {key: val.get(str(et)).get("all")
                                         for key, val in noises.get(target_cxg).items()
                                         if noises.get(target_cxg).get(key).get(str(et)) is not None}
                interfered_grids = len(target_cxg_noises_map) if target_cxg_noises_map is not None else 0
                avg_noise_level = eval.get_per_unit_dbm(target_cxg_noises_map.values(), interfered_grids * 1.0)

                ix_coverage_by_cxg[target_cxg] = interfered_grids * 100.0 / target_cxg_coverage
                ix_value_by_cxg[target_cxg] = avg_noise_level

            ix_coverage_by_et[str(et)] = ix_coverage_by_cxg
            ix_value_by_et[str(et)] = ix_value_by_cxg

        eval.save_content(
            {"signal_coverage": signal_coverage, "ix_coverage": ix_coverage_by_et, "noise": ix_value_by_et},
            outfix + filename + ".ixcovval")
Beispiel #3
0
                    outfile = loc + "_" + str(den) + "_" + cat + "_" + pm

                    text_cdf_ix_worst = {"title": "Channel with Worst Interference",
                                         "xlabel": "AIPA (dBm)",
                                         "ylabel": "Probability",
                                         "xlim": (-140, 0),
                                         "ylim": (0, 110),
                                         }

                    legends = []
                    data_ix_cdf_worst = []
                    styles = []

                    for i in range(50):

                        infile = loc + "_" + str(den) + "_" + cat + "_" + pm + "_" + str(i)
                        legends.append("data:" + str(i))
                        styles.append((lines[i % 4], (i / 4)%10))

                        data_bw = eval.load_content(prefix + infile + ".bwcdf")
                        data_ix = eval.load_content(prefix + infile + ".ixcdf")

                        # data_bw_cdf.append(data_bw.get("cdf_bw_actual"))
                        data_ix_cdf_worst.append(data_ix.get("max_noises"))
                        # data_ix_cdf_best.append(data_ix.get("min_noises"))

                    # eval.plot_cdf(data_bw_cdf, legends_info, text=text_cdf_bw, outfile=outfix + outfile + "_bwcdf.png")
                    eval.plot_cdf(data_ix_cdf_worst, legends, styles, text=text_cdf_ix_worst, outfile=outfix + outfile + "_ixcdf_w.png")

Beispiel #4
0
def plot_data(filename):
    cxgs = ["cxg_4/"]
    for cxg_select in cxgs:
        infix = "experiment/plot/sameseed/" + cxg_select
        infile = filename + "_app3.noise"

        start = time.time()

        content = eval.load_content(infix + infile)

        mysas = SAS()
        mysas.import_states(infix + filename)

        cxgs = content.get("coverage").keys()
        coverage = content.get("coverage")
        noises = content.get("noise")
        grids = content.get("grid")

        cov = {x for val in coverage.values() for x in val}
        # print "Coverage all CBSDS:", len(cov)

        #
        # ix_value_by_et = {}
        # ix_coverage_by_et = {}

        # signal_coverage = {target_cxg : len(coverage.get(target_cxg)) for target_cxg in cxgs}

        for et in ets:

            # print "ET=", et, ":"

            ix_value_by_cxg = {}
            ix_coverage_by_cxg = {}
            # for target_cxg in cxgs:
            target_cxg_coverage = len(coverage.get(target_cxg))

            # target_cxg_noises_map = {key: val.get(str(et)).get("all")
            #                          for key, val in noises.get(target_cxg).items()
            #                          if noises.get(target_cxg).get(key).get(str(et)) is not None}

            in_cbsds_id = {cbsd.id for cbsd in mysas.CBSDs if cbsd.CxG == 0}
            effew = {
                key: val
                for key, val in mysas.ew_table.items()
                if len(in_cbsds_id.intersection(key)) == 1 and et -
                0.1 < val <= et
            }

            target_pairs = {
                key: len(val.get(str(et))) - 1
                for key, val in noises.get(target_cxg).items()
                if noises.get(target_cxg).get(key).get(str(et)) is not None
            }

            # print "\tGrids: ", len(target_pairs.keys())
            # print "\tCBSD-Grid Ix: ", sum(target_pairs.values())
            # print "\tCBSDs/Grid", sum(target_pairs.values())*1.0/len(target_pairs.keys())
            print "\t", len(effew)

            #
            # interfered_grids = len(target_cxg_noises_map) if target_cxg_noises_map is not None else 0
            # avg_noise_level = eval.get_per_unit_dbm(target_cxg_noises_map.values(), interfered_grids * 1.0)
            #
            #     ix_coverage_by_cxg[target_cxg] = interfered_grids * 100.0 / target_cxg_coverage
            #     ix_value_by_cxg[target_cxg] = avg_noise_level
            #
            # ix_coverage_by_et[str(et)] = ix_coverage_by_cxg
            # ix_value_by_et[str(et)] = ix_value_by_cxg

        # eval.save_content(
        #     {"signal_coverage": signal_coverage, "ix_coverage": ix_coverage_by_et, "noise": ix_value_by_et},
        #     outfix + filename + ".ixcovval")
        stop = time.time()

        print infile, cxg_select, "ready! in", "{0:.4f}".format(
            stop - start), "seconds"
Beispiel #5
0
def plot_data_gen(locs, cats, dens, pms):
    infix = "experiment/plot/sameseed/"
    outfix = "experiment/plot/sameseed/figures/"

    cxgs = [3, 4]
    for num_cxg in cxgs:
        cxg_folder = "cxg_" + str(num_cxg) + "/"
        outfile = "cxg_" + str(num_cxg)

        for cat in cats:

            bwset = []
            ixset = []

            for pm in pms:
                pm_txt = "ITM" if pm == "itm" else "Hybrid"

                bwrow = []
                ixrow = []

                for loc in locs:
                    loc_txt = "Virginia Beach" if loc == "vb" else "San Diego"

                    bwcdf_data = []
                    bwcdf_legend = []
                    bwcdf_style = []

                    ixiccdf_data = []
                    ixiccdf_legend = []
                    ixiccdf_style = []

                    for den in dens:
                        infile = loc + "_" + str(den) + "_" + cat + "_" + pm
                        color = colors[dens.index(den)]

                        ets = [0.1, 0.5, 0.9]
                        for et in ets:
                            ls = ets.index(et)
                            app3_bw = eval.load_content(infix + cxg_folder +
                                                        infile + "_app3_" +
                                                        str(et) + ".bw")
                            # keys for .get()
                            # "et": et,
                            #  "cdf_bw_max": cdf for Max_BW
                            #  "avg_bw_max": one value for Avg. Max_BW per CBSD
                            bw_percentages = {}
                            bw_raw = [
                                str("{:.1f}".format(x))
                                for x in app3_bw.get("cdf_bw_max")
                            ]
                            for bw_val in stacks:
                                bw_percentages[bw_val] = bw_raw.count(
                                    bw_val) * 1.0 / len(bw_raw)
                            print bw_percentages
                            bwcdf_data.append(bw_percentages)
                            bwcdf_legend.append("Density=" + str(den) +
                                                ", ET=" +
                                                str(app3_bw.get("et")))
                            bwcdf_style.append((ls, color))

                            app3_ixic = eval.load_content(infix + cxg_folder +
                                                          infile + "_app3_" +
                                                          str(et) + ".ixic")
                            # keys for .get()
                            # "et": et,
                            # "cdf_ix":     cdf for inter-CxG ix
                            # "avg_ix_max": one value for Avg. inter-CxG ix per CBSD
                            ixiccdf_data.append(app3_ixic.get("cdf_ix"))
                            ixiccdf_legend.append("Density=" + str(den) +
                                                  ", ET=" +
                                                  str(app3_bw.get("et")))
                            ixiccdf_style.append((lines[ls], color))

                    bwrow.append((bwcdf_data, bwcdf_legend, bwcdf_style,
                                  loc_txt + ", " + pm_txt))
                    ixrow.append((ixiccdf_data, ixiccdf_legend, ixiccdf_style,
                                  loc_txt + ", " + pm_txt))

                bwset.append(bwrow)
                ixset.append(ixrow)

            text_bar_bw = {
                "xlabel": "Configurations",
                "ylabel": "Percentage of CBSDs (in %)"
            }

            text_cdf_ix = {
                "title": "CDF of Potential Interference",
                "xlabel": "dbm",
                "ylabel": "Probability (in %)",
                "xlim": (-150, -20),
                "ylim": (0, 110),
            }

            eval.plot_group_histo(
                bwset, stacks, text_bar_bw,
                outfix + "bandwidth_34/" + outfile + "_compare_bw.png")

            eval.plot_group_cdf(
                ixset, text_cdf_ix,
                outfix + "interference_34/" + outfile + "_compare_ix.png")

            print outfile, "ready!"
Beispiel #6
0
                text_bar_bw = {
                    "xlabel": "Configurations",
                    "ylabel": "Percentage of CBSDs (in %)"
                }

                legends_info = []
                data_bw_bars = []
                data_bw_histos = []

                for den in densities:
                    for cxg in cxgs:
                        cxg_txt = "w/ CxG" if cxgs.index(
                            cxg) == 0 else "w/o CxG"
                        infile = loc + "_" + str(den) + "_" + cat + "_" + pm

                        legends_info.append("Density-" + str(den) + " " +
                                            cxg_txt)

                        data_bw = eval.load_content(prefix + cxg + "/" +
                                                    infile + ".bwcdf")

                        data_bw_bars.append(data_bw.get("bw_cbsd_actual"))
                        # data_bw_histos.append(data_bw.get("cdf_bw_actual"))

                # eval.plot_bar(data_bw_bars, legends_info, stacks=stacks, text=text_bar_bw, outfile=outfix + outfile + "_bwcdf_bar.png")
                eval.plot_histo(data_bw_bars,
                                legends_info,
                                stacks=stacks,
                                text=text_bar_bw,
                                outfile=outfix + outfile + "_bwcdf_hist.png")
Beispiel #7
0
def plot_data(locs, cats, dens, pms):

    infix = "experiment/plot/sameseed/"
    outfix = "experiment/plot/sameseed/figures/"


    for cat in cats:
        for pm in pms:
            for loc in locs:

                start = time.time()

                bwcdf_data = []
                bwcdf_legend = []
                bwcdf_style = []

                ixiccdf_data = []
                ixiccdf_legend = []
                ixiccdf_style = []

                bwix_data = []
                bwix_legend = []
                bwix_style = []

                for den in dens:
                    infile = loc + "_" + str(den) + "_" + cat + "_" + pm
                    color = colors[dens.index(den)]

                    cxgs = [3, 4]
                    for num_cxg in cxgs:
                        cxg_folder = "cxg_" + str(num_cxg) + "/"
                        ls = lines[cxgs.index(num_cxg)]

                        app3_bwix_data = []
                        for et in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
                            app3_bw = eval.load_content(infix + cxg_folder + infile + "_app3_"+str(et)+".bw")
                            # keys for .get()
                            # "et": et,
                            #  "cdf_bw_max": cdf for Max_BW
                            #  "avg_bw_max": one value for Avg. Max_BW per CBSD
                            # bwcdf_data.append(app3_bw.get("cdf_bw_max"))
                            # bwcdf_legend.append("Approach_3: ET="+str(app3_bw.get("et")))
                            # bwcdf_style.append(("dashed", int(et*10-1)))

                            app3_ixic = eval.load_content(infix + cxg_folder + infile + "_app3_"+str(et)+".ixic")
                            # keys for .get()
                            # "et": et,
                            # "cdf_ix":     cdf for inter-CxG ix
                            # "avg_ix_max": one value for Avg. inter-CxG ix per CBSD
                            # ixiccdf_data.append(app3_ixic.get("cdf_ix"))
                            # ixiccdf_legend.append("Approach_3: ET=" + str(app3_ixic.get("et")))
                            # ixiccdf_style.append(("dashed", int(et*10-1)))

                            app3_bwix_data.append((app3_ixic.get("avg_ix_max"),
                                                   app3_bw.get("avg_bw_max"),
                                                   "ET="+str(app3_bw.get("et"))
                                                   ))

                        bwix_data.append(app3_bwix_data)
                        bwix_legend.append(str(num_cxg) + " CxGs, Density " + str(den))
                        bwix_style.append((ls, color))



    # text_cdf_bw = {"title": "CDF of Max Bandwidth",
    #                "xlabel": "Bandwidth (MHz)",
    #                "ylabel": "Probability (in %)",
    #                "xlim": (0, 90),
    #                "ylim": (0, 110),
    #                }
    #
    # text_cdf_ix = {"title": "CDF of Potential Interference",
    #                "xlabel": "dbm",
    #                "ylabel": "Probability (in %)",
    #                "xlim": (-150, 0),
    #                "ylim": (0, 110),
    #                }

                text_bw_interference = {"xlabel": "Average Inter-CxG Interference per CBSD (dbm per channel)",
                                        "ylabel": "Average Bandwidth per CBSD (MHz)",
                                        "xlim": (-140, 0),
                                        "ylim": (0, 90),
                                        }

    # eval.plot_cdf(bwcdf_data, bwcdf_legend, bwcdf_style, text_cdf_bw,
    #               outfix + "bandwidth/" + outfile + "_compare_bw.png")
    #
    # eval.plot_cdf(ixiccdf_data, ixiccdf_legend, ixiccdf_style, text_cdf_ix,
    #               outfix + "interference/" + outfile + "_compare_ix.png")

                outfile_bwix = loc + "_" + pm

                eval.plot_bw_interfernce(bwix_data, bwix_legend, bwix_style, text_bw_interference,
                                         outfix + "quality_34/" + outfile_bwix + "_compare_bwix.png")

                stop = time.time()

                print outfile_bwix, "ready! in", "{0:.4f}".format(stop-start), "seconds"
Beispiel #8
0
def plot_data_gen(locs, cats, dens, pms):
    infix = "experiment/plot/sameseed/"
    outfix = "experiment/plot/sameseed/figures/"

    for num_cxg in cxgs:
        cxg_folder = "cxg_" + str(num_cxg) + "/"
        outfile = "cxg_" + str(num_cxg)

        for cat in cats:

            bwset = []
            ix_value_set = []
            ix_coverage_set = []
            quality_value_set = []
            quality_coverage_set = []

            for pm in pms:
                pm_txt = "ITM" if pm == "itm" else "Hybrid"

                bwrow = []
                ix_value_row = []
                ix_coverage_row = []
                quality_value_row = []
                quality_coverage_row = []

                for den in dens:

                    bw_data = []
                    bw_legend = []
                    bw_style = []

                    ix_value_data = []
                    ix_coverage_data = []
                    ix_legend = []
                    ix_style = []

                    quality_value_data = []
                    quality_coverage_data = []

                    for loc in locs:
                        loc_txt = "Virginia Beach" if loc == "vb" else "San Diego"

                        infile = loc + "_" + str(den) + "_" + cat + "_" + pm
                        color = colors[locs.index(loc)]
                        ls = locs.index(loc)

                        # Bandwidth
                        app3_bw = eval.load_content(infix + cxg_folder +
                                                    infile + "_app3.cxgbw")

                        bw_data.append([(et,
                                         app3_bw.get(str(et)).get(target_cxg))
                                        for et in ets])
                        bw_legend.append(loc_txt)
                        bw_style.append((lines[ls % len(lines)], color))

                        # Inter-CxG Interference
                        app3_ixic = eval.load_content(infix + cxg_folder +
                                                      infile + ".ixcovval")

                        ix_coverage = app3_ixic.get("ix_coverage")
                        noises = app3_ixic.get("noise")

                        ix_coverage_data.append([
                            (et, ix_coverage.get(str(et)).get(target_cxg))
                            for et in ets[1:]
                        ])
                        ix_value_data.append([
                            (et, noises.get(str(et)).get(target_cxg))
                            for et in ets[1:]
                        ])
                        ix_legend.append(loc_txt)
                        ix_style.append((lines[ls % len(lines)], color))

                        # Quality
                        quality_coverage_data.append([
                            (app3_bw.get(str(et)).get(target_cxg),
                             ix_coverage.get(str(et)).get(target_cxg))
                            for et in ets[1:]
                        ])

                        quality_value_data.append([
                            (app3_bw.get(str(et)).get(target_cxg),
                             noises.get(str(et)).get(target_cxg))
                            for et in ets[1:]
                        ])

                    bwrow.append((bw_data, bw_legend, bw_style,
                                  "Density=" + str(den) + ", " + pm_txt))
                    ix_coverage_row.append(
                        (ix_coverage_data, ix_legend, ix_style,
                         "Density=" + str(den) + ", " + pm_txt))
                    ix_value_row.append(
                        (ix_value_data, ix_legend, ix_style,
                         "Density=" + str(den) + ", " + pm_txt))
                    quality_coverage_row.append(
                        (quality_coverage_data, ix_legend, ix_style,
                         "Density=" + str(den) + ", " + pm_txt))
                    quality_value_row.append(
                        (quality_value_data, ix_legend, ix_style,
                         "Density=" + str(den) + ", " + pm_txt))

                bwset.append(bwrow)
                ix_coverage_set.append(ix_coverage_row)
                ix_value_set.append(ix_value_row)
                quality_coverage_set.append(quality_coverage_row)
                quality_value_set.append(quality_value_row)

            text_bar_bw = {
                "xlabel": "Edge Threshold",
                "ylabel": "AMABCC in " + target_cxg + " (MHz)",
                "xlim": (0.0, 1.0),
                "ylim": (0, 80),
                "figsize": (6, 8)
            }

            text_ix_coverage = {
                "xlabel": "Edge Threshold",
                "ylabel": "RCIAC of " + target_cxg + " (%)",
                "xlim": (0.0, 1.0),
                "ylim": (0, 110),
                "figsize": (6, 8)
            }

            text_ix_value = {
                "xlabel": "Edge Threshold",
                "ylabel": "AAICIGC of " + target_cxg + " (dbm)",
                "xlim": (0.0, 1.0),
                "ylim": (-100, -30),
                "figsize": (6, 8)
            }

            text_quality_coverage = {
                "xlabel": "Average Maxium Bandwidth Assigned",
                "ylabel": "Percentage of " + target_cxg +
                " Covered Area Interfered by other CxGs (%)",
                "xlim": (0.0, 80),
                "ylim": (0, 110),
                "figsize": (6, 8)
            }

            text_quality_value = {
                "xlabel":
                "Average Maxium Bandwidth Assigned",
                "ylabel":
                "Average Noise (dbm/10 MHz) from other CxGs of the Interfered Area in "
                + target_cxg,
                "xlim": (0.0, 80),
                "ylim": (-100, -30),
                "figsize": (6, 8)
            }

            eval.plot_group(bwset, text_bar_bw,
                            outfix + "bandwidth/" + outfile + "_bw.png")
            eval.plot_group(ix_coverage_set, text_ix_coverage,
                            outfix + "ix_coverage/" + outfile + "_ixcov.png")
            eval.plot_group(ix_value_set, text_ix_value,
                            outfix + "ix_value/" + outfile + "_ixval.png")
            # eval.plot_group(quality_coverage_set, text_quality_coverage, outfix + "quality/" + outfile + "_qtcov.png")
            # eval.plot_group(quality_value_set, text_quality_value, outfix + "quality/" + outfile + "_qtval.png")

            print outfile, "ready!"
Beispiel #9
0
def plot_data_gen(loc, den, cat, pm):
    infile = loc + "_" + str(den) + "_" + cat + "_" + pm
    # infix = "experiment/plot/raw/compare/"
    # outfix = "experiment/plot/raw/compare/figures/"
    infix = "experiment/plot/test/compare/"
    outfix = "experiment/plot/test/compare/figures/"

    outfile = infile

    start = time.time()

    bwcdf_data = []
    bwcdf_legend = []
    bwcdf_style = []

    ixiccdf_data = []
    ixiccdf_legend = []
    ixiccdf_style = []

    bwix_data = []
    bwix_legend = []
    bwix_style = []

    app1_bw = eval.load_content(infix + infile + "_app1.bw")
    # keys for .get()
    # "avg_bw_actual":  one value for Avg. Bandwidth per CBSD
    # "cdf_bw_actual":  cdf for Avg. BW

    bwcdf_data.append(app1_bw.get("cdf_bw_actual"))
    bwcdf_legend.append("Approach_1")
    bwcdf_style.append(("solid", 0))

    app1_ixic = eval.load_content(infix + infile + "_app1.ixic")
    # keys for .get()
    # "dbm_per_ch": cdf for Avg. inter-CxG ix
    # "avg_ix_per_ch_per_cbsd": one value for Avg. inter-CxG ix per CBSD
    # "max_noises": cdf for Max. inter-CxG ix
    # "min_noises": cdf for Min. inter-CxG ix

    ixiccdf_data.append(app1_ixic.get("dbm_per_ch"))
    ixiccdf_legend.append("Approach_1: Avg")
    ixiccdf_style.append(("solid", 0))

    ixiccdf_data.append(app1_ixic.get("max_noises"))
    ixiccdf_legend.append("Approach_1: Max")
    ixiccdf_style.append(("solid", 1))

    ixiccdf_data.append(app1_ixic.get("min_noises"))
    ixiccdf_legend.append("Approach_1: Min")
    ixiccdf_style.append(("solid", 2))

    bwix_data.append([(app1_ixic.get("avg_ix_per_ch_per_cbsd"),
                       app1_bw.get("avg_bw_actual"), "ETWF")])
    bwix_legend.append("Approach_1")
    bwix_style.append(("solid", 0))

    app3_bwix_data = []
    for et in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
        app3_bw = eval.load_content(infix + infile + "_app3_" + str(et) +
                                    ".bw")
        # keys for .get()
        # "et": et,
        #  "cdf_bw_max": cdf for Max_BW
        #  "avg_bw_max": one value for Avg. Max_BW per CBSD
        bwcdf_data.append(app3_bw.get("cdf_bw_max"))
        bwcdf_legend.append("Approach_3: ET=" + str(app3_bw.get("et")))
        bwcdf_style.append(("dashed", int(et * 10 - 1)))

        app3_ixic = eval.load_content(infix + infile + "_app3_" + str(et) +
                                      ".ixic")
        # keys for .get()
        # "et": et,
        # "cdf_ix":     cdf for inter-CxG ix
        # "avg_ix_max": one value for Avg. inter-CxG ix per CBSD
        ixiccdf_data.append(app3_ixic.get("cdf_ix"))
        ixiccdf_legend.append("Approach_3: ET=" + str(app3_ixic.get("et")))
        ixiccdf_style.append(("dashed", int(et * 10 - 1)))

        app3_bwix_data.append(
            (app3_ixic.get("avg_ix_max"), app3_bw.get("avg_bw_max"),
             "ET=" + str(app3_bw.get("et"))))

    bwix_data.append(app3_bwix_data)
    bwix_legend.append("Approach_3")
    bwix_style.append(("dashed", 0))

    text_cdf_bw = {
        "title": "CDF of Max Bandwidth",
        "xlabel": "Bandwidth (MHz)",
        "ylabel": "Probability (in %)",
        "xlim": (0, 90),
        "ylim": (0, 110),
    }

    text_cdf_ix = {
        "title": "CDF of Potential Interference",
        "xlabel": "dbm",
        "ylabel": "Probability (in %)",
        "xlim": (-150, 0),
        "ylim": (0, 110),
    }

    text_bw_interference = {
        "xlabel": "Average Inter-CxG Interference per CBSD (dbm per channel)",
        "ylabel": "Average Bandwidth per CBSD (MHz)",
        "xlim": (-140, 0),
        "ylim": (0, 90),
    }

    eval.plot_cdf(bwcdf_data, bwcdf_legend, bwcdf_style, text_cdf_bw,
                  outfix + "bandwidth/" + outfile + "_compare_bw.png")

    eval.plot_cdf(ixiccdf_data, ixiccdf_legend, ixiccdf_style, text_cdf_ix,
                  outfix + "interference/" + outfile + "_compare_ix.png")

    eval.plot_bw_interfernce(
        bwix_data, bwix_legend, bwix_style, text_bw_interference,
        outfix + "quality/" + outfile + "_compare_bwix.png")

    stop = time.time()

    print infile, "ready! in", "{0:.4f}".format(stop - start), "seconds"