def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') # store read dataframe object loaded_df = {} with open(inputs, 'r') as param_handler: params = json.load(param_handler) # Override the refit parameter params['search_schemes']['options']['refit'] = True \ if params['save'] != 'nope' else False with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) optimizer = params['search_schemes']['selected_search_scheme'] optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params['search_schemes']['options'] if groups: header = 'infer' if ( options['cv_selector']['groups_selector']['header_g']) else None column_option = ( options['cv_selector']['groups_selector'] ['column_selector_options_g']['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = (options['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups splitter, groups = get_cv(options.pop('cv_selector')) options['cv'] = splitter primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None params_builder = params['search_schemes']['search_params_builder'] param_grid = _eval_search_params(params_builder) estimator = clean_params(estimator) # save the SearchCV object without fit if params['save'] == 'save_no_fit': searcher = optimizer(estimator, param_grid, **options) print(searcher) with open(outfile_object, 'wb') as output_handler: pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == 'IRAPSClassifier': main_est.set_params(memory=memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params['outer_split'].pop('split_mode') if split_mode == 'nested_cv': # make sure refit is choosen # this could be True for sklearn models, but not the case for # deep learning models if not options['refit'] and \ not all(hasattr(estimator, attr) for attr in ('config', 'model_type')): warnings.warn("Refit is change to `True` for nested validation!") setattr(searcher, 'refit', True) outer_cv, _ = get_cv(params['outer_split']['cv_selector']) # nested CV, outer cv using cross_validate if options['error_score'] == 'raise': rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop('estimator', []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, 'cv_results_in_folds') try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = 'cv_results_' + '_' + 'split%d' % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, 'cv_results_', None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep='\t', header=True, index=False) except Exception as e: print(e) finally: del os keys = list(rval.keys()) for k in keys: if k.startswith('test'): rval['mean_' + k] = np.mean(rval[k]) rval['std_' + k] = np.std(rval[k]) if k.endswith('time'): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) return 0 # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options['error_score'] == 'raise': searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: warnings.warn("GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!") return # clean prams best_estimator_ = clean_params(best_estimator_) main_est = get_main_estimator(best_estimator_) if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ with open(outfile_object, 'wb') as output_handler: print("Best estimator is saved: %s " % repr(best_estimator_)) pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)
def main(inputs_path, output_obj, base_paths=None, meta_path=None): """ Parameter --------- inputs_path : str File path for Galaxy parameters output_obj : str File path for ensemble estimator ouput base_paths : str File path or paths concatenated by comma. meta_path : str File path """ with open(inputs_path, 'r') as param_handler: params = json.load(param_handler) estimator_type = params['algo_selection']['estimator_type'] # get base estimators base_estimators = [] for idx, base_file in enumerate(base_paths.split(',')): if base_file and base_file != 'None': model = load_model_from_h5(base_file) else: estimator_json = ( params['base_est_builder'][idx]['estimator_selector']) model = get_estimator(estimator_json) if estimator_type.startswith('sklearn'): named = model.__class__.__name__.lower() named = 'base_%d_%s' % (idx, named) base_estimators.append((named, model)) else: base_estimators.append(model) # get meta estimator, if applicable if estimator_type.startswith('mlxtend'): if meta_path: meta_estimator = load_model_from_h5(meta_path) else: estimator_json = (params['algo_selection']['meta_estimator'] ['estimator_selector']) meta_estimator = get_estimator(estimator_json) options = params['algo_selection']['options'] cv_selector = options.pop('cv_selector', None) if cv_selector: if Version(galaxy_ml_version) < Version('0.8.3'): cv_selector.pop('n_stratification_bins', None) splitter, groups = get_cv(cv_selector) options['cv'] = splitter # set n_jobs options['n_jobs'] = N_JOBS weights = options.pop('weights', None) if weights: weights = ast.literal_eval(weights) if weights: options['weights'] = weights mod_and_name = estimator_type.split('_') mod = sys.modules[mod_and_name[0]] klass = getattr(mod, mod_and_name[1]) if estimator_type.startswith('sklearn'): options['n_jobs'] = N_JOBS ensemble_estimator = klass(base_estimators, **options) elif mod == mlxtend.classifier: ensemble_estimator = klass(classifiers=base_estimators, meta_classifier=meta_estimator, **options) else: ensemble_estimator = klass(regressors=base_estimators, meta_regressor=meta_estimator, **options) print(ensemble_estimator) for base_est in base_estimators: print(base_est) dump_model_to_h5(ensemble_estimator, output_obj)
def main(inputs_path, output_obj, base_paths=None, meta_path=None, outfile_params=None): """ Parameter --------- inputs_path : str File path for Galaxy parameters output_obj : str File path for ensemble estimator ouput base_paths : str File path or paths concatenated by comma. meta_path : str File path outfile_params : str File path for params output """ with open(inputs_path, 'r') as param_handler: params = json.load(param_handler) estimator_type = params['algo_selection']['estimator_type'] # get base estimators base_estimators = [] for idx, base_file in enumerate(base_paths.split(',')): if base_file and base_file != 'None': with open(base_file, 'rb') as handler: model = load_model(handler) else: estimator_json = ( params['base_est_builder'][idx]['estimator_selector']) model = get_estimator(estimator_json) if estimator_type.startswith('sklearn'): named = model.__class__.__name__.lower() named = 'base_%d_%s' % (idx, named) base_estimators.append((named, model)) else: base_estimators.append(model) # get meta estimator, if applicable if estimator_type.startswith('mlxtend'): if meta_path: with open(meta_path, 'rb') as f: meta_estimator = load_model(f) else: estimator_json = (params['algo_selection']['meta_estimator'] ['estimator_selector']) meta_estimator = get_estimator(estimator_json) options = params['algo_selection']['options'] cv_selector = options.pop('cv_selector', None) if cv_selector: splitter, groups = get_cv(cv_selector) options['cv'] = splitter # set n_jobs options['n_jobs'] = N_JOBS weights = options.pop('weights', None) if weights: weights = ast.literal_eval(weights) if weights: options['weights'] = weights mod_and_name = estimator_type.split('_') mod = sys.modules[mod_and_name[0]] klass = getattr(mod, mod_and_name[1]) if estimator_type.startswith('sklearn'): options['n_jobs'] = N_JOBS ensemble_estimator = klass(base_estimators, **options) elif mod == mlxtend.classifier: ensemble_estimator = klass(classifiers=base_estimators, meta_classifier=meta_estimator, **options) else: ensemble_estimator = klass(regressors=base_estimators, meta_regressor=meta_estimator, **options) print(ensemble_estimator) for base_est in base_estimators: print(base_est) with open(output_obj, 'wb') as out_handler: pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL) if params['get_params'] and outfile_params: results = get_search_params(ensemble_estimator) df = pd.DataFrame(results, columns=['', 'Parameter', 'Value']) df.to_csv(outfile_params, sep='\t', index=False)
def _get_single_cv_split(params, array, infile_labels=None, infile_groups=None): """ output (train, test) subset from a cv splitter Parameters ---------- params : dict Galaxy tool inputs array : pandas DataFrame object The target dataset to split infile_labels : str File path to dataset containing target values infile_groups : str File path to dataset containing group values """ y = None groups = None nth_split = params['mode_selection']['nth_split'] # read groups if infile_groups: header = 'infer' if (params['mode_selection']['cv_selector'] ['groups_selector']['header_g']) else None column_option = ( params['mode_selection']['cv_selector']['groups_selector'] ['column_selector_options_g']['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = (params['mode_selection']['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None groups = read_columns(infile_groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() params['mode_selection']['cv_selector']['groups_selector'] = groups # read labels if infile_labels: target_input = ( params['mode_selection']['cv_selector'].pop('target_input')) header = 'infer' if target_input['header1'] else None col_index = target_input['col'][0] - 1 df = pd.read_csv(infile_labels, sep='\t', header=header, parse_dates=True) y = df.iloc[:, col_index].values # construct the cv splitter object splitter, groups = get_cv(params['mode_selection']['cv_selector']) total_n_splits = splitter.get_n_splits(array.values, y=y, groups=groups) if nth_split > total_n_splits: raise ValueError("Total number of splits is {}, but got `nth_split` " "= {}".format(total_n_splits, nth_split)) i = 1 for train_index, test_index in splitter.split(array.values, y=y, groups=groups): # suppose nth_split >= 1 if i == nth_split: break else: i += 1 train = array.iloc[train_index, :] test = array.iloc[test_index, :] return train, test
def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) params_builder = params['search_schemes']['search_params_builder'] with open(infile_estimator, 'rb') as estimator_handler: estimator = load_model(estimator_handler) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options']['column_selector_options_1'] ['selected_column_selector_option']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) # fasta_file input elif input_type == 'seq_fasta': pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith('fasta_path'): estimator.set_params( **{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!") elif input_type == 'refseq_and_interval': path_params = { 'data_batch_generator__ref_genome_path': ref_seq, 'data_batch_generator__intervals_path': intervals, 'data_batch_generator__target_path': targets } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = 'infer' if params['input_options']['header2'] else None column_option = (params['input_options']['column_selector_options_2'] ['selected_column_selector_option2']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_2']['col2'] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == 'refseq_and_interval': estimator.set_params( data_batch_generator__features=y.ravel().tolist()) y = None # end y optimizer = params['search_schemes']['selected_search_scheme'] optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params['search_schemes']['options'] if groups: header = 'infer' if (options['cv_selector']['groups_selector'] ['header_g']) else None column_option = (options['cv_selector']['groups_selector'] ['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = (options['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns( groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups splitter, groups = get_cv(options.pop('cv_selector')) options['cv'] = splitter options['n_jobs'] = N_JOBS primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None # del loaded_df del loaded_df # handle memory memory = joblib.Memory(location=CACHE_DIR, verbose=0) # cache iraps_core fits could increase search speed significantly if estimator.__class__.__name__ == 'IRAPSClassifier': estimator.set_params(memory=memory) else: # For iraps buried in pipeline for p, v in estimator_params.items(): if p.endswith('memory'): # for case of `__irapsclassifier__memory` if len(p) > 8 and p[:-8].endswith('irapsclassifier'): # cache iraps_core fits could increase search # speed significantly new_params = {p: memory} estimator.set_params(**new_params) # security reason, we don't want memory being # modified unexpectedly elif v: new_params = {p, None} estimator.set_params(**new_params) # For now, 1 CPU is suggested for iprasclassifier elif p.endswith('n_jobs'): new_params = {p: 1} estimator.set_params(**new_params) # for security reason, types of callbacks are limited elif p.endswith('callbacks'): for cb in v: cb_type = cb['callback_selection']['callback_type'] if cb_type not in ALLOWED_CALLBACKS: raise ValueError( "Prohibited callback type: %s!" % cb_type) param_grid = _eval_search_params(params_builder) searcher = optimizer(estimator, param_grid, **options) # do nested split split_mode = params['outer_split'].pop('split_mode') # nested CV, outer cv using cross_validate if split_mode == 'nested_cv': outer_cv, _ = get_cv(params['outer_split']['cv_selector']) if options['error_score'] == 'raise': rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=0, error_score=options['error_score']) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=0, error_score=options['error_score']) except ValueError: pass for warning in w: print(repr(warning.message)) keys = list(rval.keys()) for k in keys: if k.startswith('test'): rval['mean_' + k] = np.mean(rval[k]) rval['std_' + k] = np.std(rval[k]) if k.endswith('time'): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) else: if split_mode == 'train_test_split': train_test_split = try_get_attr( 'galaxy_ml.model_validations', 'train_test_split') # make sure refit is choosen # this could be True for sklearn models, but not the case for # deep learning models if not options['refit'] and \ not all(hasattr(estimator, attr) for attr in ('config', 'model_type')): warnings.warn("Refit is change to `True` for nested " "validation!") setattr(searcher, 'refit', True) split_options = params['outer_split'] # splits if split_options['shuffle'] == 'stratified': split_options['labels'] = y X, X_test, y, y_test = train_test_split(X, y, **split_options) elif split_options['shuffle'] == 'group': if groups is None: raise ValueError("No group based CV option was " "choosen for group shuffle!") split_options['labels'] = groups if y is None: X, X_test, groups, _ =\ train_test_split(X, groups, **split_options) else: X, X_test, y, y_test, groups, _ =\ train_test_split(X, y, groups, **split_options) else: if split_options['shuffle'] == 'None': split_options['shuffle'] = None X, X_test, y, y_test =\ train_test_split(X, y, **split_options) # end train_test_split # shared by both train_test_split and non-split if options['error_score'] == 'raise': searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) # no outer split if split_mode == 'no': # save results cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) # train_test_split, output test result using best_estimator_ # or rebuild the trained estimator using weights if applicable. else: scorer_ = searcher.scorer_ if isinstance(scorer_, collections.Mapping): is_multimetric = True else: is_multimetric = False best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: raise ValueError("GridSearchCV object has no " "`best_estimator_` when `refit`=False!") if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ and hasattr(estimator.data_batch_generator, 'target_path'): test_score = best_estimator_.evaluate( X_test, scorer=scorer_, is_multimetric=is_multimetric) else: test_score = _score(best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric) if not is_multimetric: test_score = {primary_scoring: test_score} for key, value in test_score.items(): test_score[key] = [value] result_df = pd.DataFrame(test_score) result_df.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) if outfile_object: best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: warnings.warn("GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!") return main_est = best_estimator_ if isinstance(best_estimator_, pipeline.Pipeline): main_est = best_estimator_.steps[-1][-1] if hasattr(main_est, 'model_') \ and hasattr(main_est, 'save_weights'): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, 'data_generator_', None): del main_est.data_generator_ del main_est.data_batch_generator with open(outfile_object, 'wb') as output_handler: pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)
def main( inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter("ignore") # store read dataframe object loaded_df = {} with open(inputs, "r") as param_handler: params = json.load(param_handler) # Override the refit parameter params["search_schemes"]["options"]["refit"] = ( True if params["save"] != "nope" else False ) with open(infile_estimator, "rb") as estimator_handler: estimator = load_model(estimator_handler) optimizer = params["search_schemes"]["selected_search_scheme"] optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params["search_schemes"]["options"] if groups: header = ( "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None ) column_option = options["cv_selector"]["groups_selector"][ "column_selector_options_g" ]["selected_column_selector_option_g"] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ "col_g" ] else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns( groups, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) groups = groups.ravel() options["cv_selector"]["groups_selector"] = groups splitter, groups = get_cv(options.pop("cv_selector")) options["cv"] = splitter primary_scoring = options["scoring"]["primary_scoring"] # get_scoring() expects secondary_scoring to be a comma separated string (not a list) # Check if secondary_scoring is specified secondary_scoring = options["scoring"].get("secondary_scoring", None) if secondary_scoring is not None: # If secondary_scoring is specified, convert the list into comman separated string options["scoring"]["secondary_scoring"] = ",".join( options["scoring"]["secondary_scoring"] ) options["scoring"] = get_scoring(options["scoring"]) if options["error_score"]: options["error_score"] = "raise" else: options["error_score"] = np.nan if options["refit"] and isinstance(options["scoring"], dict): options["refit"] = primary_scoring if "pre_dispatch" in options and options["pre_dispatch"] == "": options["pre_dispatch"] = None params_builder = params["search_schemes"]["search_params_builder"] param_grid = _eval_search_params(params_builder) estimator = clean_params(estimator) # save the SearchCV object without fit if params["save"] == "save_no_fit": searcher = optimizer(estimator, param_grid, **options) print(searcher) with open(outfile_object, "wb") as output_handler: pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y( estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path, ) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) main_est = get_main_estimator(estimator) if main_est.__class__.__name__ == "IRAPSClassifier": main_est.set_params(memory=memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params["outer_split"].pop("split_mode") if split_mode == "nested_cv": # make sure refit is choosen # this could be True for sklearn models, but not the case for # deep learning models if not options["refit"] and not all( hasattr(estimator, attr) for attr in ("config", "model_type") ): warnings.warn("Refit is change to `True` for nested validation!") setattr(searcher, "refit", True) outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) # nested CV, outer cv using cross_validate if options["error_score"] == "raise": rval = cross_validate( searcher, X, y, scoring=options["scoring"], cv=outer_cv, n_jobs=N_JOBS, verbose=options["verbose"], return_estimator=(params["save"] == "save_estimator"), error_score=options["error_score"], return_train_score=True, ) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=options["scoring"], cv=outer_cv, n_jobs=N_JOBS, verbose=options["verbose"], return_estimator=(params["save"] == "save_estimator"), error_score=options["error_score"], return_train_score=True, ) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop("estimator", []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, "cv_results_in_folds") try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = "cv_results_" + "_" + "split%d" % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, "cv_results_", None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep="\t", header=True, index=False) except Exception as e: print(e) finally: del os keys = list(rval.keys()) for k in keys: if k.startswith("test"): rval["mean_" + k] = np.mean(rval[k]) rval["std_" + k] = np.std(rval[k]) if k.endswith("time"): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" return 0 # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options["error_score"] == "raise": searcher.fit(X, y, groups=groups) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv( path_or_buf=outfile_result, sep="\t", header=True, index=False ) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, "best_estimator_", None) if not best_estimator_: warnings.warn( "GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!" ) return # clean prams best_estimator_ = clean_params(best_estimator_) main_est = get_main_estimator(best_estimator_) if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): if outfile_weights: main_est.save_weights(outfile_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ del main_est.validation_data if getattr(main_est, "data_generator_", None): del main_est.data_generator_ with open(outfile_object, "wb") as output_handler: print("Best estimator is saved: %s " % repr(best_estimator_)) pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)
def main(inputs_path, output_obj, base_paths=None, meta_path=None, outfile_params=None): """ Parameter --------- inputs_path : str File path for Galaxy parameters output_obj : str File path for ensemble estimator ouput base_paths : str File path or paths concatenated by comma. meta_path : str File path outfile_params : str File path for params output """ with open(inputs_path, "r") as param_handler: params = json.load(param_handler) estimator_type = params["algo_selection"]["estimator_type"] # get base estimators base_estimators = [] for idx, base_file in enumerate(base_paths.split(",")): if base_file and base_file != "None": with open(base_file, "rb") as handler: model = load_model(handler) else: estimator_json = params["base_est_builder"][idx][ "estimator_selector"] model = get_estimator(estimator_json) if estimator_type.startswith("sklearn"): named = model.__class__.__name__.lower() named = "base_%d_%s" % (idx, named) base_estimators.append((named, model)) else: base_estimators.append(model) # get meta estimator, if applicable if estimator_type.startswith("mlxtend"): if meta_path: with open(meta_path, "rb") as f: meta_estimator = load_model(f) else: estimator_json = params["algo_selection"]["meta_estimator"][ "estimator_selector"] meta_estimator = get_estimator(estimator_json) options = params["algo_selection"]["options"] cv_selector = options.pop("cv_selector", None) if cv_selector: splitter, _groups = get_cv(cv_selector) options["cv"] = splitter # set n_jobs options["n_jobs"] = N_JOBS weights = options.pop("weights", None) if weights: weights = ast.literal_eval(weights) if weights: options["weights"] = weights mod_and_name = estimator_type.split("_") mod = sys.modules[mod_and_name[0]] klass = getattr(mod, mod_and_name[1]) if estimator_type.startswith("sklearn"): options["n_jobs"] = N_JOBS ensemble_estimator = klass(base_estimators, **options) elif mod == mlxtend.classifier: ensemble_estimator = klass(classifiers=base_estimators, meta_classifier=meta_estimator, **options) else: ensemble_estimator = klass(regressors=base_estimators, meta_regressor=meta_estimator, **options) print(ensemble_estimator) for base_est in base_estimators: print(base_est) with open(output_obj, "wb") as out_handler: pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL) if params["get_params"] and outfile_params: results = get_search_params(ensemble_estimator) df = pd.DataFrame(results, columns=["", "Parameter", "Value"]) df.to_csv(outfile_params, sep="\t", index=False)
def main(inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter. infile_estimator : str File path to estimator. infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter('ignore') # store read dataframe object loaded_df = {} with open(inputs, 'r') as param_handler: params = json.load(param_handler) # Override the refit parameter params['search_schemes']['options']['refit'] = True \ if (params['save'] != 'nope' or params['outer_split']['split_mode'] == 'nested_cv') else False estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) if estimator.__class__.__name__ == 'KerasGBatchClassifier': _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') setattr(_search, '_fit_and_score', _fit_and_score) setattr(_validation, '_fit_and_score', _fit_and_score) optimizer = params['search_schemes']['selected_search_scheme'] if optimizer == 'skopt.BayesSearchCV': optimizer = BayesSearchCV else: optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params['search_schemes']['options'] if groups: header = 'infer' if ( options['cv_selector']['groups_selector']['header_g']) else None column_option = ( options['cv_selector']['groups_selector'] ['column_selector_options_g']['selected_column_selector_option_g']) if column_option in [ 'by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name' ]: c = (options['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups cv_selector = options.pop('cv_selector') if Version(galaxy_ml_version) < Version('0.8.3'): cv_selector.pop('n_stratification_bins', None) splitter, groups = get_cv(cv_selector) options['cv'] = splitter primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) # TODO make BayesSearchCV support multiple scoring if optimizer == 'skopt.BayesSearchCV' and \ isinstance(options['scoring'], dict): options['scoring'] = options['scoring'][primary_scoring] warnings.warn("BayesSearchCV doesn't support multiple " "scorings! Primary scoring is used.") if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None params_builder = params['search_schemes']['search_params_builder'] param_grid = _eval_search_params(params_builder) # save the SearchCV object without fit if params['save'] == 'save_no_fit': searcher = optimizer(estimator, param_grid, **options) dump_model_to_h5(searcher, outfile_object) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) estimator = _set_memory(estimator, memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params['outer_split'].pop('split_mode') # Nested CV if split_mode == 'nested_cv': cv_selector = params['outer_split']['cv_selector'] if Version(galaxy_ml_version) < Version('0.8.3'): cv_selector.pop('n_stratification_bins', None) outer_cv, _ = get_cv(cv_selector) # nested CV, outer cv using cross_validate if options['error_score'] == 'raise': rval = cross_validate( searcher, X, y, groups=groups, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], fit_params={'groups': groups}, return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, groups=groups, scoring=options['scoring'], cv=outer_cv, n_jobs=N_JOBS, verbose=options['verbose'], fit_params={'groups': groups}, return_estimator=(params['save'] == 'save_estimator'), error_score=options['error_score'], return_train_score=True) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop('estimator', []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, 'cv_results_in_folds') try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = 'cv_results_' + '_' + 'split%d' % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, 'cv_results_', None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep='\t', header=True, index=False) except Exception as e: print(e) finally: del os keys = list(rval.keys()) for k in keys: if k.startswith('test'): rval['mean_' + k] = np.mean(rval[k]) rval['std_' + k] = np.std(rval[k]) if k.endswith('time'): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) return 0 # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options['error_score'] == 'raise': searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, 'best_estimator_', None) if not best_estimator_: warnings.warn("GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!") return print("Saving best estimator: %s " % repr(best_estimator_)) dump_model_to_h5(best_estimator_, outfile_object)