Beispiel #1
0
def test_ne():
    """ Check that inequality works as expected."""
    gsp = galsim.GSParams(maxk_threshold=5.1e-3, folding_threshold=1.1e-3)
    objs = [galsim.Shapelet(1., 2),
            galsim.Shapelet(1., 3),
            galsim.Shapelet(2., 2),
            galsim.Shapelet(1., 2, bvec=[1, 0, 0, 0.2, 0.3, -0.1]),
            galsim.Shapelet(1., 2, gsparams=gsp)]
    all_obj_diff(objs)
Beispiel #2
0
def test_ne():
    import time
    t1 = time.time()
    gsp = galsim.GSParams(maxk_threshold=5.1e-3, folding_threshold=1.1e-3)
    objs = [
        galsim.Shapelet(1., 2),
        galsim.Shapelet(1., 3),
        galsim.Shapelet(2., 2),
        galsim.Shapelet(1., 2, bvec=[1, 0, 0, 0.2, 0.3, -0.1]),
        galsim.Shapelet(1., 2, gsparams=gsp)
    ]
    all_obj_diff(objs)

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Beispiel #3
0
def test_shapelet_gaussian():
    """Test that the simplest Shapelet profile is equivalent to a Gaussian
    """
    ftypes = [np.float32, np.float64]
    scale = 0.2
    test_flux = 23.

    # First, a Shapelet with only b_00 = 1 should be identically a Gaussian
    im1 = galsim.ImageF(64,64, scale=scale)
    im2 = galsim.ImageF(64,64, scale=scale)
    for sigma in [1., 0.6, 2.4]:
        gauss = galsim.Gaussian(flux=test_flux, sigma=sigma)
        gauss.drawImage(im1, method='no_pixel')
        for order in [0, 2, 8]:
            bvec = np.zeros(galsim.Shapelet.size(order))
            bvec[0] = test_flux
            shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
            shapelet.drawImage(im2, method='no_pixel')
            printval(im2,im1)
            np.testing.assert_array_almost_equal(
                    im1.array, im2.array, 5,
                    err_msg="Shapelet with (only) b00=1 disagrees with Gaussian result"
                            "for flux=%f, sigma=%f, order=%d"%(test_flux,sigma,order))
            np.testing.assert_almost_equal(
                    gauss.max_sb, shapelet.max_sb, 5,
                    err_msg="Shapelet max_sb did not match Gaussian max_sb")
            np.testing.assert_almost_equal(
                    gauss.flux, shapelet.flux, 5,
                    err_msg="Shapelet flux did not match Gaussian flux")
Beispiel #4
0
def test_shapelet_gaussian():
    """Test that the simplest Shapelet profile is equivalent to a Gaussian
    """
    import time
    t1 = time.time()

    ftypes = [np.float32, np.float64]
    scale = 0.2
    test_flux = 23.

    # First, a Shapelet with only b_00 = 1 should be identically a Gaussian
    im1 = galsim.ImageF(64, 64, scale=scale)
    im2 = galsim.ImageF(64, 64, scale=scale)
    for sigma in [1., 0.6, 2.4]:
        gauss = galsim.Gaussian(flux=test_flux, sigma=sigma)
        gauss.draw(im1)
        for order in [0, 2, 8]:
            bvec = np.zeros(galsim.LVectorSize(order))
            bvec[0] = test_flux
            shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
            shapelet.draw(im2)
            printval(im2, im1)
            np.testing.assert_array_almost_equal(
                im1.array,
                im2.array,
                5,
                err_msg=
                "Shapelet with (only) b00=1 disagrees with Gaussian result"
                "for flux=%f, sigma=%f, order=%d" % (test_flux, sigma, order))

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Beispiel #5
0
    def getPSF(self, pos, gsparams=None):
        """Returns the PSF at position pos

        @param pos       The position in pixel units for which to build the PSF.
        @param gsparams  (Optional) A GSParams instance to pass to the constructed GSObject.

        @returns a galsim.Shapelet instance.
        """
        if not self.bounds.includes(pos):
            raise IndexError("position in DES_Shapelet.getPSF is out of bounds")

        import numpy
        Px = self._definePxy(pos.x,self.bounds.xmin,self.bounds.xmax)
        Py = self._definePxy(pos.y,self.bounds.ymin,self.bounds.ymax)
        order = self.fit_order
        P = numpy.array([ Px[n-q] * Py[q] for n in range(order+1) for q in range(n+1) ])
        assert len(P) == self.fit_size

        # Note: This is equivalent to:
        #
        #     P = numpy.empty(self.fit_size)
        #     k = 0
        #     for n in range(self.fit_order+1):
        #         for q in range(n+1):
        #             P[k] = Px[n-q] * Py[q]
        #             k = k+1

        b1 = numpy.dot(P,self.interp_matrix)
        b = numpy.dot(b1,self.rot_matrix)
        assert len(b) == self.psf_size
        b += self.ave_psf
        ret = galsim.Shapelet(self.sigma, self.psf_order, b, gsparams=gsparams)
        return ret
Beispiel #6
0
def test_shapelet_properties():
    """Test some specific numbers for a particular Shapelet profile.
    """
    # A semi-random particular vector of coefficients.
    sigma = 1.8
    order = 4
    bvec = [
        1.3,  # n = 0
        0.02,
        0.03,  # n = 1
        0.23,
        -0.19,
        0.08,  # n = 2
        0.01,
        0.02,
        0.04,
        -0.03,  # n = 3
        -0.09,
        0.07,
        -0.11,
        -0.08,
        0.11
    ]  # n = 4

    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)

    check_basic(shapelet, "Shapelet", approx_maxsb=True)

    # Check flux
    flux = bvec[0] + bvec[5] + bvec[14]
    np.testing.assert_almost_equal(shapelet.getFlux(), flux, 10)
    # The maxSB is not very accurate for Shapelet, but in this case it is still ok (matching
    # xValue(0,0), which isn't actually the maximum) to 2 digits.
    np.testing.assert_almost_equal(
        shapelet.xValue(0, 0),
        shapelet.maxSB(),
        2,
        err_msg="Shapelet maxSB did not match maximum pixel value")
    # Check centroid
    cen = galsim.PositionD(
        bvec[1], -bvec[2]) + np.sqrt(2.) * galsim.PositionD(bvec[8], -bvec[9])
    cen *= 2. * sigma / flux
    np.testing.assert_almost_equal(shapelet.centroid().x, cen.x, 10)
    np.testing.assert_almost_equal(shapelet.centroid().y, cen.y, 10)
    # Check Fourier properties
    np.testing.assert_almost_equal(shapelet.maxK(), 4.61738371186, 10)
    np.testing.assert_almost_equal(shapelet.stepK(), 0.195133742529, 10)
    # Check image values in real and Fourier space
    zero = galsim.PositionD(0., 0.)
    np.testing.assert_almost_equal(shapelet.kValue(zero), flux + 0j, 10)
    np.testing.assert_almost_equal(shapelet.xValue(zero), 0.0653321217013, 10)

    # Check picklability
    do_pickle(shapelet)
    do_pickle(shapelet.SBProfile)
    do_pickle(shapelet.SBProfile.getBVec())
Beispiel #7
0
def BuildDES_Shapelet(config, key, base, ignore, gsparams, logger):
    """@brief Build a RealGalaxy type GSObject from user input.
    """
    opt = {'flux': float, 'num': int}
    kwargs, safe = galsim.config.GetAllParams(config,
                                              key,
                                              base,
                                              opt=opt,
                                              ignore=ignore)

    if 'des_shapelet' not in base:
        raise ValueError(
            "No DES_Shapelet instance available for building type = DES_Shapelet"
        )

    num = kwargs.get('num', 0)
    if num < 0:
        raise ValueError(
            "Invalid num < 0 supplied for DES_Shapelet: num = %d" % num)
    if num >= len(base['des_shapelet']):
        raise ValueError(
            "Invalid num supplied for DES_Shapelet (too large): num = %d" %
            num)

    des_shapelet = base['des_shapelet'][num]

    if 'image_pos' not in base:
        raise ValueError(
            "DES_Shapelet requested, but no image_pos defined in base.")
    image_pos = base['image_pos']

    # Convert gsparams from a dict to an actual GSParams object
    if gsparams: gsparams = galsim.GSParams(**gsparams)
    else: gsparams = None

    if des_shapelet.getBounds().includes(image_pos):
        #psf = des_shapelet.getPSF(image_pos, gsparams)
        # Because of serialization issues, the above call doesn't work.  So we need to
        # repeat the internals of getPSF here.
        b = des_shapelet.getB(image_pos)
        sigma = des_shapelet.getSigma()
        order = des_shapelet.getOrder()
        psf = galsim.Shapelet(sigma, order, b, gsparams=gsparams)
    else:
        message = 'Position ' + str(
            image_pos) + ' not in interpolation bounds: '
        message += str(des_shapelet.getBounds())
        raise galsim.config.gsobject.SkipThisObject(message)

    if 'flux' in kwargs:
        psf = psf.withFlux(kwargs['flux'])

    # The second item here is "safe", a boolean that declares whether the returned value is
    # safe to save and use again for later objects.  In this case, we wouldn't want to do
    # that, since they will be at different positions, so the interpolated PSF will be different.
    return psf, False
Beispiel #8
0
    def getPSF(self, image_pos, gsparams=None):
        """Returns the PSF at position image_pos

        @param image_pos    The position in pixel units for which to build the PSF.
        @param gsparams     (Optional) A GSParams instance to pass to the constructed GSObject.

        @returns the PSF as a galsim.Shapelet instance
        """
        return galsim.Shapelet(self.sigma,
                               self.psf_order,
                               self.getB(image_pos),
                               gsparams=gsparams)
Beispiel #9
0
def BuildDES_Shapelet(config, base, ignore, gsparams, logger):
    """Build a GSObject representing the shapelet model at the correct location in the image in a
    config-processing context.

    This is used as object type ``DES_Shapelet`` in a config file.

    It requires the use of the ``des_shapelet`` input field.
    """
    des_shapelet = galsim.config.GetInputObj('des_shapelet', config, base,
                                             'DES_Shapelet')

    opt = {'flux': float, 'num': int, 'image_pos': galsim.PositionD}
    params, safe = galsim.config.GetAllParams(config,
                                              base,
                                              opt=opt,
                                              ignore=ignore)

    if 'image_pos' in params:
        image_pos = params['image_pos']
    elif 'image_pos' in base:
        image_pos = base['image_pos']
    else:
        raise galsim.GalSimConfigError(
            "DES_Shapelet requested, but no image_pos defined in base.")

    # Convert gsparams from a dict to an actual GSParams object
    if gsparams: gsparams = galsim.GSParams(**gsparams)
    else: gsparams = None

    if des_shapelet.getBounds().includes(image_pos):
        #psf = des_shapelet.getPSF(image_pos, gsparams)
        # Because of serialization issues, the above call doesn't work.  So we need to
        # repeat the internals of getPSF here.
        b = des_shapelet.getB(image_pos)
        sigma = des_shapelet.getSigma()
        order = des_shapelet.getOrder()
        psf = galsim.Shapelet(sigma, order, b,
                              gsparams=gsparams).transform(-1, 0, 0, 1)
    else:
        message = 'Position ' + str(
            image_pos) + ' not in interpolation bounds: '
        message += str(des_shapelet.getBounds())
        raise galsim.config.gsobject.SkipThisObject(message)

    if 'flux' in params:
        psf = psf.withFlux(params['flux'])

    # The second item here is "safe", a boolean that declares whether the returned value is
    # safe to save and use again for later objects.  In this case, we wouldn't want to do
    # that, since they will be at different positions, so the interpolated PSF will be different.
    return psf, False
Beispiel #10
0
def test_shapelet_properties():
    """Test some specific numbers for a particular Shapelet profile.
    """
    import time
    t1 = time.time()

    # A semi-random particular vector of coefficients.
    sigma = 1.8
    order = 4
    bvec = [
        1.3,  # n = 0
        0.02,
        0.03,  # n = 1
        0.23,
        -0.19,
        0.08,  # n = 2
        0.01,
        0.02,
        0.04,
        -0.03,  # n = 3
        -0.09,
        0.07,
        -0.11,
        -0.08,
        0.11
    ]  # n = 4

    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)

    # Check flux
    flux = bvec[0] + bvec[5] + bvec[14]
    np.testing.assert_almost_equal(shapelet.getFlux(), flux, 10)
    # Check centroid
    cen = galsim.PositionD(
        bvec[1], -bvec[2]) + np.sqrt(2.) * galsim.PositionD(bvec[8], -bvec[9])
    cen *= 2. * sigma / flux
    np.testing.assert_almost_equal(shapelet.centroid().x, cen.x, 10)
    np.testing.assert_almost_equal(shapelet.centroid().y, cen.y, 10)
    # Check Fourier properties
    np.testing.assert_almost_equal(shapelet.maxK(), 4.61738371186, 10)
    np.testing.assert_almost_equal(shapelet.stepK(), 0.195133742529, 10)
    # Check image values in real and Fourier space
    zero = galsim.PositionD(0., 0.)
    np.testing.assert_almost_equal(shapelet.kValue(zero), flux + 0j, 10)
    np.testing.assert_almost_equal(shapelet.xValue(zero), 0.0653321217013, 10)

    # Check picklability
    do_pickle(shapelet)

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Beispiel #11
0
    def getPSF(self, image_pos, gsparams=None):
        """Returns the PSF at position image_pos

        @param image_pos    The position in pixel units for which to build the PSF.
        @param gsparams     (Optional) A GSParams instance to pass to the constructed GSObject.

        @returns the PSF as a galsim.Shapelet instance
        """
        psf = galsim.Shapelet(self.sigma, self.psf_order, self.getB(image_pos), gsparams=gsparams)

        # The fitpsf files were built with respect to (u,v) = (ra,dec).  The GalSim convention is
        # to use sky coordinates with u = -ra.  So we need to flip the profile across the v axis
        # to take u -> -u.
        psf = psf.transform(-1,0,0,1)

        return psf
Beispiel #12
0
def test_shapelet_drawImage():
    """Test some measured properties of a drawn shapelet against the supposed true values
    """
    ftypes = [np.float32, np.float64]
    scale = 0.2
    test_flux = 23.

    im = galsim.ImageF(129,129, scale=scale)
    for sigma in [1., 0.3, 2.4]:
        for order in [0, 2, 8]:
            bvec = np.zeros(galsim.Shapelet.size(order))
            bvec[0] = 1.  # N,m = 0,0
            k = 0
            for n in range(1,order+1):
                k += n+1
                if n%2 == 0:  # even n
                    bvec[k] = 0.23/(n*n)        # N,m = n,0  or p,q = n/2,n/2
                    if n >= 2:
                        bvec[k-2] = 0.14/n      # N,m = n,2  real part
                        bvec[k-1] = -0.08/n     # N,m = n,2  imag part
                else:  # odd n
                    if n >= 1:
                        bvec[k-1] = -0.08/n**3.2    # N,m = n,1  real part
                        bvec[k] = 0.05/n**2.1       # N,m = n,1  imag part
                    if n >= 3:
                        bvec[k-3] = 0.31/n**4.2    # N,m = n,3  real part
                        bvec[k-2] = -0.18/n**3.9       # N,m = n,3  imag part
            print('shapelet vector = ',bvec)
            shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)

            gsp = galsim.GSParams(xvalue_accuracy=1.e-8, kvalue_accuracy=1.e-8)
            shapelet2 = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec, gsparams=gsp)
            assert shapelet2 != shapelet
            assert shapelet2 == shapelet.withGSParams(gsp)
            assert shapelet2 == shapelet.withGSParams(xvalue_accuracy=1.e-8, kvalue_accuracy=1.e-8)

            check_basic(shapelet, "Shapelet", approx_maxsb=True)

            # Test normalization  (This is normally part of do_shoot.  When we eventually
            # implement photon shooting, we should go back to the normal do_shoot call,
            # and remove this section.)
            shapelet = shapelet.withFlux(test_flux)
            shapelet.drawImage(im)
            flux = im.array.sum()
            print('im.sum = ',flux,'  cf. ',test_flux)
            np.testing.assert_almost_equal(flux / test_flux, 1., 4,
                    err_msg="Flux normalization for Shapelet disagrees with expected result")
            np.testing.assert_allclose(
                    im.array.max(), shapelet.max_sb * im.scale**2, rtol=0.1,
                    err_msg="Shapelet max_sb did not match maximum pixel")

            # Test centroid
            # Note: this only works if the image has odd sizes.  If they are even, then
            # setCenter doesn't actually set the center to the true center of the image
            # (since it falls between pixels).
            im.setCenter(0,0)
            x,y = np.meshgrid(np.arange(im.array.shape[0]).astype(float) + im.xmin,
                              np.arange(im.array.shape[1]).astype(float) + im.ymin)
            x *= scale
            y *= scale
            flux = im.array.sum()
            mx = (x*im.array).sum() / flux
            my = (y*im.array).sum() / flux
            conv = galsim.Convolve([shapelet, galsim.Pixel(scale)])
            print('centroid = ',mx,my,' cf. ',conv.centroid)
            np.testing.assert_almost_equal(mx, shapelet.centroid.x, 3,
                    err_msg="Measured centroid (x) for Shapelet disagrees with expected result")
            np.testing.assert_almost_equal(my, shapelet.centroid.y, 3,
                    err_msg="Measured centroid (y) for Shapelet disagrees with expected result")
Beispiel #13
0
def test_shapelet_adjustments():
    """Test that adjusting the Shapelet profile in various ways does the right thing
    """
    import time
    t1 = time.time()

    ftypes = [np.float32, np.float64]

    nx = 128
    ny = 128
    scale = 0.2
    im = galsim.ImageF(nx, ny, scale=scale)

    sigma = 1.8
    order = 6
    bvec = [
        1.3,  # n = 0
        0.02,
        0.03,  # n = 1
        0.23,
        -0.19,
        0.08,  # n = 2
        0.01,
        0.02,
        0.04,
        -0.03,  # n = 3
        -0.09,
        0.07,
        -0.11,
        -0.08,
        0.11,  # n = 4
        -0.03,
        -0.02,
        -0.08,
        0.01,
        -0.06,
        -0.03,  # n = 5
        0.06,
        -0.02,
        0.00,
        -0.05,
        -0.04,
        0.01,
        0.09
    ]  # n = 6

    ref_shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    ref_im = galsim.ImageF(nx, ny)
    ref_shapelet.draw(ref_im, scale=scale)

    # Test setSigma
    shapelet = galsim.Shapelet(sigma=1., order=order, bvec=bvec)
    shapelet.setSigma(sigma)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setSigma disagrees with reference Shapelet")

    # Test setBVec
    shapelet = galsim.Shapelet(sigma=sigma, order=order)
    shapelet.setBVec(bvec)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setBVec disagrees with reference Shapelet")

    # Test setOrder
    shapelet = galsim.Shapelet(sigma=sigma, order=2)
    shapelet.setOrder(order)
    shapelet.setBVec(bvec)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setOrder disagrees with reference Shapelet")

    # Test that changing the order preserves the values to the extent possible.
    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    shapelet.setOrder(10)
    np.testing.assert_array_equal(
        shapelet.getBVec()[0:28],
        bvec,
        err_msg="Shapelet setOrder to larger doesn't preserve existing values."
    )
    np.testing.assert_array_equal(
        shapelet.getBVec()[28:66],
        np.zeros(66 - 28),
        err_msg="Shapelet setOrder to larger doesn't fill with zeros.")
    shapelet.setOrder(6)
    np.testing.assert_array_equal(
        shapelet.getBVec(),
        bvec,
        err_msg=
        "Shapelet setOrder back to original from larger doesn't preserve existing values."
    )
    shapelet.setOrder(3)
    np.testing.assert_array_equal(
        shapelet.getBVec()[0:10],
        bvec[0:10],
        err_msg="Shapelet setOrder to smaller doesn't preserve existing values."
    )
    shapelet.setOrder(6)
    np.testing.assert_array_equal(
        shapelet.getBVec()[0:10],
        bvec[0:10],
        err_msg=
        "Shapelet setOrder back to original from smaller doesn't preserve existing values."
    )
    shapelet.setOrder(6)
    np.testing.assert_array_equal(
        shapelet.getBVec()[10:28],
        np.zeros(28 - 10),
        err_msg=
        "Shapelet setOrder back to original from smaller doesn't fill with zeros."
    )

    # Test that setting a Shapelet with setNM gives the right profile
    shapelet = galsim.Shapelet(sigma=sigma, order=order)
    i = 0
    for n in range(order + 1):
        for m in range(n, -1, -2):
            if m == 0:
                shapelet.setNM(n, m, bvec[i])
                i = i + 1
            else:
                shapelet.setNM(n, m, bvec[i], bvec[i + 1])
                i = i + 2
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setNM disagrees with reference Shapelet")

    # Test that setting a Shapelet with setPQ gives the right profile
    shapelet = galsim.Shapelet(sigma=sigma, order=order)
    i = 0
    for n in range(order + 1):
        for m in range(n, -1, -2):
            p = (n + m) / 2
            q = (n - m) / 2
            if m == 0:
                shapelet.setPQ(p, q, bvec[i])
                i = i + 1
            else:
                shapelet.setPQ(p, q, bvec[i], bvec[i + 1])
                i = i + 2
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setPQ disagrees with reference Shapelet")

    # Test that the Shapelet setFlux does the same thing as the GSObject setFlux
    gsref_shapelet = galsim.GSObject(
        ref_shapelet)  # Make it opaque to the Shapelet versions
    gsref_shapelet.setFlux(23.)
    gsref_shapelet.draw(ref_im)
    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    shapelet.setFlux(23.)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet setFlux disagrees with GSObject setFlux")

    # Test that the Shapelet scaleFlux does the same thing as the GSObject scaleFlux
    gsref_shapelet.scaleFlux(0.23)
    gsref_shapelet.draw(ref_im)
    shapelet.scaleFlux(0.23)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet setFlux disagrees with SObject scaleFlux")

    # Test that the Shapelet applyRotation does the same thing as the GSObject applyRotation
    gsref_shapelet.applyRotation(23. * galsim.degrees)
    gsref_shapelet.draw(ref_im)
    shapelet.applyRotation(23. * galsim.degrees)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet applyRotation disagrees with GSObject applyRotation")

    # Test that the Shapelet applyDilation does the same thing as the GSObject applyDilation
    gsref_shapelet.applyDilation(1.3)
    gsref_shapelet.draw(ref_im)
    shapelet.applyDilation(1.3)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet applyDilation disagrees with GSObject applyDilation")

    # Test that the Shapelet applyMagnification does the same thing as the GSObject
    # applyMagnification
    gsref_shapelet.applyMagnification(0.8)
    gsref_shapelet.draw(ref_im)
    shapelet.applyMagnification(0.8)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg=
        "Shapelet applyMagnification disagrees with GSObject applyMagnification"
    )

    # Test that applyLensing works on Shapelet
    gsref_shapelet.applyLensing(-0.05, 0.15, 1.1)
    gsref_shapelet.draw(ref_im)
    shapelet.applyLensing(-0.05, 0.15, 1.1)
    shapelet.draw(im)
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet applyLensing disagrees with GSObject applyLensing")

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Beispiel #14
0
def test_shapelet_draw():
    """Test some measured properties of a drawn shapelet against the supposed true values
    """
    import time
    t1 = time.time()

    ftypes = [np.float32, np.float64]
    scale = 0.2
    test_flux = 23.

    pix = galsim.Pixel(scale)
    im = galsim.ImageF(129, 129, scale=scale)
    for sigma in [1., 0.3, 2.4]:
        for order in [0, 2, 8]:
            shapelet = galsim.Shapelet(sigma=sigma, order=order)
            shapelet.setNM(0, 0, 1.)
            for n in range(1, order + 1):
                if n % 2 == 0:  # even n
                    #shapelet.setNM(n,0,0.23/(n*n))
                    shapelet.setPQ(
                        n / 2, n / 2,
                        0.23 / (n * n))  # same thing.  Just test setPQ syntax.
                    if n >= 2:
                        shapelet.setNM(n, 2, 0.14 / n, -0.08 / n)
                else:  # odd n
                    if n >= 1:
                        shapelet.setNM(n, 1, -0.08 / n**3.2, 0.05 / n**2.1)
                    if n >= 3:
                        shapelet.setNM(n, 3, 0.31 / n**4.2, -0.18 / n**3.9)
            #print 'shapelet vector = ',shapelet.getBVec()

            # Test normalization  (This is normally part of do_shoot.  When we eventually
            # implement photon shooting, we should go back to the normal do_shoot call,
            # and remove this section.)
            shapelet.setFlux(test_flux)
            # Need to convolve with a pixel if we want the flux to come out right.
            conv = galsim.Convolve([pix, shapelet])
            conv.draw(im, normalization="surface brightness")
            flux = im.array.sum()
            print 'img.sum = ', flux, '  cf. ', test_flux / (scale * scale)
            np.testing.assert_almost_equal(
                flux * scale * scale / test_flux,
                1.,
                4,
                err_msg="Surface brightness normalization for Shapelet "
                "disagrees with expected result")
            conv.draw(im, normalization="flux")
            flux = im.array.sum()
            print 'im.sum = ', flux, '  cf. ', test_flux
            np.testing.assert_almost_equal(
                flux / test_flux,
                1.,
                4,
                err_msg=
                "Flux normalization for Shapelet disagrees with expected result"
            )

            # Test centroid
            # Note: this only works if the image has odd sizes.  If they are even, then
            # setCenter doesn't actually set the center to the true center of the image
            # (since it falls between pixels).
            im.setCenter(0, 0)
            x, y = np.meshgrid(
                np.arange(im.array.shape[0]).astype(float) + im.getXMin(),
                np.arange(im.array.shape[1]).astype(float) + im.getYMin())
            x *= scale
            y *= scale
            flux = im.array.sum()
            mx = (x * im.array).sum() / flux
            my = (y * im.array).sum() / flux
            print 'centroid = ', mx, my, ' cf. ', conv.centroid()
            np.testing.assert_almost_equal(
                mx,
                shapelet.centroid().x,
                3,
                err_msg=
                "Measured centroid (x) for Shapelet disagrees with expected result"
            )
            np.testing.assert_almost_equal(
                my,
                shapelet.centroid().y,
                3,
                err_msg=
                "Measured centroid (y) for Shapelet disagrees with expected result"
            )

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Beispiel #15
0
def test_shapelet_adjustments():
    """Test that adjusting the Shapelet profile in various ways does the right thing
    """
    ftypes = [np.float32, np.float64]

    nx = 128
    ny = 128
    scale = 0.2
    im = galsim.ImageF(nx,ny, scale=scale)

    sigma = 1.8
    order = 6
    bvec = [1.3,                                            # n = 0
            0.02, 0.03,                                     # n = 1
            0.23, -0.19, 0.08,                              # n = 2
            0.01, 0.02, 0.04, -0.03,                        # n = 3
            -0.09, 0.07, -0.11, -0.08, 0.11,                # n = 4
            -0.03, -0.02, -0.08, 0.01, -0.06, -0.03,        # n = 5
            0.06, -0.02, 0.00, -0.05, -0.04, 0.01, 0.09 ]   # n = 6

    ref_shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    ref_im = galsim.ImageF(nx,ny)
    ref_shapelet.drawImage(ref_im, scale=scale)

    # Test PQ and NM access
    np.testing.assert_equal(ref_shapelet.getPQ(0,0), (bvec[0],0))
    np.testing.assert_equal(ref_shapelet.getPQ(1,1), (bvec[5],0))
    np.testing.assert_equal(ref_shapelet.getPQ(1,2), (bvec[8],-bvec[9]))
    np.testing.assert_equal(ref_shapelet.getPQ(3,2), (bvec[19],bvec[20]))
    np.testing.assert_equal(ref_shapelet.getNM(0,0), (bvec[0],0))
    np.testing.assert_equal(ref_shapelet.getNM(2,0), (bvec[5],0))
    np.testing.assert_equal(ref_shapelet.getNM(3,-1), (bvec[8],-bvec[9]))
    np.testing.assert_equal(ref_shapelet.getNM(5,1), (bvec[19],bvec[20]))

    # Test that the Shapelet withFlux does the same thing as the GSObject withFlux
    # Make it opaque to the Shapelet versions
    alt_shapelet = ref_shapelet + 0. * galsim.Gaussian(sigma=1)
    alt_shapelet.withFlux(23.).drawImage(ref_im, method='no_pixel')
    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    shapelet.withFlux(23.).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet withFlux disagrees with GSObject withFlux")

    # Test that scaling the Shapelet flux does the same thing as the GSObject scaling
    (alt_shapelet * 0.23).drawImage(ref_im, method='no_pixel')
    (shapelet * 0.23).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet *= 0.23 disagrees with GSObject *= 0.23")

    # Test that the Shapelet rotate does the same thing as the GSObject rotate
    alt_shapelet.rotate(23. * galsim.degrees).drawImage(ref_im, method='no_pixel')
    shapelet.rotate(23. * galsim.degrees).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet rotate disagrees with GSObject rotate")

    # Test that the Shapelet dilate does the same thing as the GSObject dilate
    alt_shapelet.dilate(1.3).drawImage(ref_im, method='no_pixel')
    shapelet.dilate(1.3).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet dilate disagrees with GSObject dilate")

    # Test that the Shapelet expand does the same thing as the GSObject expand
    alt_shapelet.expand(1.7).drawImage(ref_im, method='no_pixel')
    shapelet.expand(1.7).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet expand disagrees with GSObject expand")

    # Test that the Shapelet magnify does the same thing as the GSObject magnify
    alt_shapelet.magnify(0.8).drawImage(ref_im, method='no_pixel')
    shapelet.magnify(0.8).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet magnify disagrees with GSObject magnify")

    # Test that lens works on Shapelet
    alt_shapelet.lens(-0.05, 0.15, 1.1).drawImage(ref_im, method='no_pixel')
    shapelet.lens(-0.05, 0.15, 1.1).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet lens disagrees with GSObject lens")
Beispiel #16
0
def test_flip():
    """Test several ways to flip a profile
    """
    # The Shapelet profile has the advantage of being fast and not circularly symmetric, so
    # it is a good test of the actual code for doing the flips (in SBTransform).
    # But since the bug Rachel reported in #645 was actually in SBInterpolatedImage
    # (one calculation implicitly assumed dx > 0), it seems worthwhile to run through all the
    # classes to make sure we hit everything with negative steps for dx and dy.
    prof_list = [
        galsim.Shapelet(sigma=0.17, order=2,
                        bvec=[1.7, 0.01,0.03, 0.29, 0.33, -0.18]),
    ]
    if __name__ == "__main__":
        image_dir = './real_comparison_images'
        catalog_file = 'test_catalog.fits'
        rgc = galsim.RealGalaxyCatalog(catalog_file, dir=image_dir)
        # Some of these are slow, so only do the Shapelet test as part of the normal unit tests.
        prof_list += [
            galsim.Airy(lam_over_diam=0.17, flux=1.7),
            galsim.Airy(lam_over_diam=0.17, obscuration=0.2, flux=1.7),
            # Box gets rendered with real-space convolution.  The default accuracy isn't quite
            # enough to get the flip to match at 6 decimal places.
            galsim.Box(0.17, 0.23, flux=1.7,
                       gsparams=galsim.GSParams(realspace_relerr=1.e-6)),
            # Without being convolved by anything with a reasonable k cutoff, this needs
            # a very large fft.
            galsim.DeVaucouleurs(half_light_radius=0.17, flux=1.7),
            # I don't really understand why this needs a lower maxk_threshold to work, but
            # without it, the k-space tests fail.
            galsim.Exponential(scale_radius=0.17, flux=1.7,
                               gsparams=galsim.GSParams(maxk_threshold=1.e-4)),
            galsim.Gaussian(sigma=0.17, flux=1.7),
            galsim.Kolmogorov(fwhm=0.17, flux=1.7),
            galsim.Moffat(beta=2.5, fwhm=0.17, flux=1.7),
            galsim.Moffat(beta=2.5, fwhm=0.17, flux=1.7, trunc=0.82),
            galsim.OpticalPSF(lam_over_diam=0.17, obscuration=0.2, nstruts=6,
                              coma1=0.2, coma2=0.5, defocus=-0.1, flux=1.7),
            # Like with Box, we need to increase the real-space convolution accuracy.
            # This time lowering both relerr and abserr.
            galsim.Pixel(0.23, flux=1.7,
                         gsparams=galsim.GSParams(realspace_relerr=1.e-6,
                                                  realspace_abserr=1.e-8)),
            # Note: RealGalaxy should not be rendered directly because of the deconvolution.
            # Here we convolve it by a Gaussian that is slightly larger than the original PSF.
            galsim.Convolve([ galsim.RealGalaxy(rgc, index=0, flux=1.7),  # "Real" RealGalaxy
                              galsim.Gaussian(sigma=0.08) ]),
            galsim.Convolve([ galsim.RealGalaxy(rgc, index=1, flux=1.7),  # "Fake" RealGalaxy
                              galsim.Gaussian(sigma=0.08) ]),             # (cf. test_real.py)
            galsim.Spergel(nu=-0.19, half_light_radius=0.17, flux=1.7),
            galsim.Spergel(nu=0., half_light_radius=0.17, flux=1.7),
            galsim.Spergel(nu=0.8, half_light_radius=0.17, flux=1.7),
            galsim.Sersic(n=2.3, half_light_radius=0.17, flux=1.7),
            galsim.Sersic(n=2.3, half_light_radius=0.17, flux=1.7, trunc=0.82),
            # The shifts here caught a bug in how SBTransform handled the recentering.
            # Two of the shifts (0.125 and 0.375) lead back to 0.0 happening on an integer
            # index, which now works correctly.
            galsim.Sum([ galsim.Gaussian(sigma=0.17, flux=1.7).shift(-0.2,0.125),
                         galsim.Exponential(scale_radius=0.23, flux=3.1).shift(0.375,0.23)]),
            galsim.TopHat(0.23, flux=1.7),
            # Box and Pixel use real-space convolution.  Convolve with a Gaussian to get fft.
            galsim.Convolve([ galsim.Box(0.17, 0.23, flux=1.7).shift(-0.2,0.1),
                              galsim.Gaussian(sigma=0.09) ]),
            galsim.Convolve([ galsim.TopHat(0.17, flux=1.7).shift(-0.275,0.125),
                              galsim.Gaussian(sigma=0.09) ]),
            # Test something really crazy with several layers worth of transformations
            galsim.Convolve([
                galsim.Sum([
                    galsim.Gaussian(sigma=0.17, flux=1.7).shear(g1=0.1,g2=0.2).shift(2,3),
                    galsim.Kolmogorov(fwhm=0.33, flux=3.9).transform(0.31,0.19,-0.23,0.33) * 88.,
                    galsim.Box(0.11, 0.44, flux=4).rotate(33 * galsim.degrees) / 1.9
                ]).shift(-0.3,1),
                galsim.AutoConvolve(galsim.TopHat(0.5).shear(g1=0.3,g2=0)).rotate(3*galsim.degrees),
                (galsim.AutoCorrelate(galsim.Box(0.2, 0.3)) * 11).shift(3,2).shift(2,-3) * 0.31
            ]).shift(0,0).transform(0,-1,-1,0).shift(-1,1)
        ]

    s = galsim.Shear(g1=0.11, g2=-0.21)
    s1 = galsim.Shear(g1=0.11, g2=0.21)  # Appropriate for the flips around x and y axes
    s2 = galsim.Shear(g1=-0.11, g2=-0.21)  # Appropriate for the flip around x=y

    # Also use shears with just a g1 to get dx != dy, but dxy, dyx = 0.
    q = galsim.Shear(g1=0.11, g2=0.)
    q1 = galsim.Shear(g1=0.11, g2=0.)  # Appropriate for the flips around x and y axes
    q2 = galsim.Shear(g1=-0.11, g2=0.)  # Appropriate for the flip around x=y

    decimal=6  # Oddly, these aren't as precise as I would have expected.
               # Even when we only go to this many digits of accuracy, the Exponential needed
               # a lower than default value for maxk_threshold.
    im = galsim.ImageD(16,16, scale=0.05)

    for prof in prof_list:
        print('prof = ',prof)

        # Not all profiles are expected to have a max_sb value close to the maximum pixel value,
        # so mark the ones where we don't want to require this to be true.
        close_maxsb = True
        name = str(prof)
        if ('DeVauc' in name or 'Sersic' in name or 'Spergel' in name or
            'Optical' in name or 'shift' in name):
            close_maxsb = False

        # Make sure we hit all 4 fill functions.
        # image_x uses fillXValue with izero, jzero
        # image_x1 uses fillXValue with izero, jzero, and unequal dx,dy
        # image_x2 uses fillXValue with dxy, dyx
        # image_k uses fillKValue with izero, jzero
        # image_k1 uses fillKValue with izero, jzero, and unequal dx,dy
        # image_k2 uses fillKValue with dxy, dyx
        image_x = prof.drawImage(image=im.copy(), method='no_pixel')
        image_x1 = prof.shear(q).drawImage(image=im.copy(), method='no_pixel')
        image_x2 = prof.shear(s).drawImage(image=im.copy(), method='no_pixel')
        image_k = prof.drawImage(image=im.copy())
        image_k1 = prof.shear(q).drawImage(image=im.copy())
        image_k2 = prof.shear(s).drawImage(image=im.copy())

        if close_maxsb:
            np.testing.assert_allclose(
                    image_x.array.max(), prof.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image_x1.array.max(), prof.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image_x2.array.max(), prof.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        # Flip around y axis (i.e. x -> -x)
        flip1 = prof.transform(-1, 0, 0, 1)
        image2_x = flip1.drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x.array, image2_x.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed x test")
        image2_x1 = flip1.shear(q1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x1.array, image2_x1.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed x1 test")
        image2_x2 = flip1.shear(s1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x2.array, image2_x2.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed x2 test")
        image2_k = flip1.drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k.array, image2_k.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed k test")
        image2_k1 = flip1.shear(q1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k1.array, image2_k1.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed k1 test")
        image2_k2 = flip1.shear(s1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k2.array, image2_k2.array[:,::-1], decimal=decimal,
            err_msg="Flipping image around y-axis failed k2 test")

        if close_maxsb:
            np.testing.assert_allclose(
                    image2_x.array.max(), flip1.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x1.array.max(), flip1.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x2.array.max(), flip1.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        # Flip around x axis (i.e. y -> -y)
        flip2 = prof.transform(1, 0, 0, -1)
        image2_x = flip2.drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x.array, image2_x.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed x test")
        image2_x1 = flip2.shear(q1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x1.array, image2_x1.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed x1 test")
        image2_x2 = flip2.shear(s1).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x2.array, image2_x2.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed x2 test")
        image2_k = flip2.drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k.array, image2_k.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed k test")
        image2_k1 = flip2.shear(q1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k1.array, image2_k1.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed k1 test")
        image2_k2 = flip2.shear(s1).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k2.array, image2_k2.array[::-1,:], decimal=decimal,
            err_msg="Flipping image around x-axis failed k2 test")

        if close_maxsb:
            np.testing.assert_allclose(
                    image2_x.array.max(), flip2.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x1.array.max(), flip2.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x2.array.max(), flip2.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        # Flip around x=y (i.e. y -> x, x -> y)
        flip3 = prof.transform(0, 1, 1, 0)
        image2_x = flip3.drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x.array, np.transpose(image2_x.array), decimal=decimal,
            err_msg="Flipping image around x=y failed x test")
        image2_x1 = flip3.shear(q2).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x1.array, np.transpose(image2_x1.array), decimal=decimal,
            err_msg="Flipping image around x=y failed x1 test")
        image2_x2 = flip3.shear(s2).drawImage(image=im.copy(), method='no_pixel')
        np.testing.assert_array_almost_equal(
            image_x2.array, np.transpose(image2_x2.array), decimal=decimal,
            err_msg="Flipping image around x=y failed x2 test")
        image2_k = flip3.drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k.array, np.transpose(image2_k.array), decimal=decimal,
            err_msg="Flipping image around x=y failed k test")
        image2_k1 = flip3.shear(q2).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k1.array, np.transpose(image2_k1.array), decimal=decimal,
            err_msg="Flipping image around x=y failed k1 test")
        image2_k2 = flip3.shear(s2).drawImage(image=im.copy())
        np.testing.assert_array_almost_equal(
            image_k2.array, np.transpose(image2_k2.array), decimal=decimal,
            err_msg="Flipping image around x=y failed k2 test")

        if close_maxsb:
            np.testing.assert_allclose(
                    image2_x.array.max(), flip3.max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x1.array.max(), flip3.shear(q).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")
            np.testing.assert_allclose(
                    image2_x2.array.max(), flip3.shear(s).max_sb*im.scale**2, rtol=0.2,
                    err_msg="max_sb did not match maximum pixel value")

        do_pickle(prof, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(flip1, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(flip2, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(flip3, lambda x: x.drawImage(image=im.copy(), method='no_pixel'))
        do_pickle(prof)
        do_pickle(flip1)
        do_pickle(flip2)
        do_pickle(flip3)
Beispiel #17
0
def test_dep_shapelet():
    """Test the deprecated methods in galsim/deprecated/shapelet.py
    """
    np.testing.assert_almost_equal(check_dep(galsim.LVectorSize, 12),
                                   galsim.ShapeletSize(12))

    # The next bit is from the old test_shapelet_adjustments() test

    ftypes = [np.float32, np.float64]

    nx = 128
    ny = 128
    scale = 0.2
    im = galsim.ImageF(nx, ny, scale=scale)

    sigma = 1.8
    order = 6
    bvec = [
        1.3,  # n = 0
        0.02,
        0.03,  # n = 1
        0.23,
        -0.19,
        0.08,  # n = 2
        0.01,
        0.02,
        0.04,
        -0.03,  # n = 3
        -0.09,
        0.07,
        -0.11,
        -0.08,
        0.11,  # n = 4
        -0.03,
        -0.02,
        -0.08,
        0.01,
        -0.06,
        -0.03,  # n = 5
        0.06,
        -0.02,
        0.00,
        -0.05,
        -0.04,
        0.01,
        0.09
    ]  # n = 6

    ref_shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    ref_im = galsim.ImageF(nx, ny)
    ref_shapelet.drawImage(ref_im, scale=scale, method='no_pixel')

    # test setsigma
    shapelet = galsim.Shapelet(sigma=1., order=order, bvec=bvec)
    check_dep(shapelet.setSigma, sigma)
    shapelet.drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setSigma disagrees with reference Shapelet")

    # Test setBVec
    shapelet = galsim.Shapelet(sigma=sigma, order=order)
    check_dep(shapelet.setBVec, bvec)
    shapelet.drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setBVec disagrees with reference Shapelet")

    # Test setOrder
    shapelet = galsim.Shapelet(sigma=sigma, order=2)
    check_dep(shapelet.setOrder, order)
    check_dep(shapelet.setBVec, bvec)
    shapelet.drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setOrder disagrees with reference Shapelet")

    # Test that changing the order preserves the values to the extent possible.
    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    check_dep(shapelet.setOrder, 10)
    np.testing.assert_array_equal(
        shapelet.getBVec()[0:28],
        bvec,
        err_msg="Shapelet setOrder to larger doesn't preserve existing values."
    )
    np.testing.assert_array_equal(
        shapelet.getBVec()[28:66],
        np.zeros(66 - 28),
        err_msg="Shapelet setOrder to larger doesn't fill with zeros.")
    check_dep(shapelet.setOrder, 6)
    np.testing.assert_array_equal(
        shapelet.getBVec(),
        bvec,
        err_msg=
        "Shapelet setOrder back to original from larger doesn't preserve existing values."
    )
    check_dep(shapelet.setOrder, 3)
    np.testing.assert_array_equal(
        shapelet.getBVec()[0:10],
        bvec[0:10],
        err_msg="Shapelet setOrder to smaller doesn't preserve existing values."
    )
    check_dep(shapelet.setOrder, 6)
    np.testing.assert_array_equal(
        shapelet.getBVec()[0:10],
        bvec[0:10],
        err_msg=
        "Shapelet setOrder back to original from smaller doesn't preserve existing values."
    )
    check_dep(shapelet.setOrder, 6)
    np.testing.assert_array_equal(
        shapelet.getBVec()[10:28],
        np.zeros(28 - 10),
        err_msg=
        "Shapelet setOrder back to original from smaller doesn't fill with zeros."
    )

    # Test that setting a Shapelet with setNM gives the right profile
    shapelet = galsim.Shapelet(sigma=sigma, order=order)
    i = 0
    for n in range(order + 1):
        for m in range(n, -1, -2):
            if m == 0:
                check_dep(shapelet.setNM, n, m, bvec[i])
                i = i + 1
            else:
                check_dep(shapelet.setNM, n, m, bvec[i], bvec[i + 1])
                i = i + 2
    shapelet.drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setNM disagrees with reference Shapelet")

    # Test that setting a Shapelet with setPQ gives the right profile
    shapelet = galsim.Shapelet(sigma=sigma, order=order)
    i = 0
    for n in range(order + 1):
        for m in range(n, -1, -2):
            p = (n + m) // 2
            q = (n - m) // 2
            if m == 0:
                check_dep(shapelet.setPQ, p, q, bvec[i])
                i = i + 1
            else:
                check_dep(shapelet.setPQ, p, q, bvec[i], bvec[i + 1])
                i = i + 2
    shapelet.drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array,
        ref_im.array,
        6,
        err_msg="Shapelet set with setPQ disagrees with reference Shapelet")

    # Check fitImage
    s1 = galsim.Shapelet(sigma=sigma, order=10)
    check_dep(s1.fitImage, image=im)
    s2 = galsim.FitShapelet(sigma=sigma, order=10, image=im)
    np.testing.assert_array_almost_equal(s1.getBVec(), s2.getBVec())
Beispiel #18
0
def test_shapelet_fit():
    """Test fitting a Shapelet decomposition of an image
    """
    import time
    t1 = time.time()

    for norm in ['f', 'sb']:
        # We fit a shapelet approximation of a distorted Moffat profile:
        flux = 20
        psf = galsim.Moffat(beta=3.4, half_light_radius=1.2, flux=flux)
        psf.applyShear(g1=0.11, g2=0.07)
        psf.applyShift(0.03, 0.04)
        scale = 0.2
        pixel = galsim.Pixel(scale)
        conv = galsim.Convolve([psf, pixel])
        im1 = conv.draw(scale=scale, normalization=norm)

        sigma = 1.2  # Match half-light-radius as a decent first approximation.
        shapelet = galsim.Shapelet(sigma=sigma, order=10)
        shapelet.fitImage(im1, normalization=norm)
        #print 'fitted shapelet coefficients = ',shapelet.getBVec()

        # Check flux
        print 'flux = ', shapelet.getFlux(), '  cf. ', flux
        np.testing.assert_almost_equal(
            shapelet.getFlux() / flux,
            1.,
            1,
            err_msg="Fitted shapelet has the wrong flux")

        # Test centroid
        print 'centroid = ', shapelet.centroid(), '  cf. ', conv.centroid()
        np.testing.assert_almost_equal(
            shapelet.centroid().x,
            conv.centroid().x,
            2,
            err_msg="Fitted shapelet has the wrong centroid (x)")
        np.testing.assert_almost_equal(
            shapelet.centroid().y,
            conv.centroid().y,
            2,
            err_msg="Fitted shapelet has the wrong centroid (y)")

        # Test drawing image from shapelet
        im2 = im1.copy()
        shapelet.draw(im2, normalization=norm)
        # Check that images are close to the same:
        print 'norm(diff) = ', np.sum((im1.array - im2.array)**2)
        print 'norm(im) = ', np.sum(im1.array**2)
        assert np.sum(
            (im1.array - im2.array)**2) < 1.e-3 * np.sum(im1.array**2)

        # Remeasure -- should now be very close to the same.
        shapelet2 = shapelet.copy()
        shapelet2.fitImage(im2, normalization=norm)
        np.testing.assert_equal(
            shapelet.getSigma(),
            shapelet2.getSigma(),
            err_msg="Second fitted shapelet has the wrong sigma")
        np.testing.assert_equal(
            shapelet.getOrder(),
            shapelet2.getOrder(),
            err_msg="Second fitted shapelet has the wrong order")
        np.testing.assert_almost_equal(
            shapelet.getBVec(),
            shapelet2.getBVec(),
            6,
            err_msg="Second fitted shapelet coefficients do not match original"
        )

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Beispiel #19
0
def test_shapelet_drawImage():
    """Test some measured properties of a drawn shapelet against the supposed true values
    """
    import time
    t1 = time.time()

    ftypes = [np.float32, np.float64]
    scale = 0.2
    test_flux = 23.

    im = galsim.ImageF(129,129, scale=scale)
    for sigma in [1., 0.3, 2.4]:
        for order in [0, 2, 8]:
            bvec = np.zeros(galsim.ShapeletSize(order))
            bvec[0] = 1.  # N,m = 0,0
            k = 0
            for n in range(1,order+1):
                k += n+1
                if n%2 == 0:  # even n
                    bvec[k] = 0.23/(n*n)        # N,m = n,0  or p,q = n/2,n/2
                    if n >= 2:
                        bvec[k-2] = 0.14/n      # N,m = n,2  real part
                        bvec[k-1] = -0.08/n     # N,m = n,2  imag part
                else:  # odd n
                    if n >= 1:
                        bvec[k-1] = -0.08/n**3.2    # N,m = n,1  real part
                        bvec[k] = 0.05/n**2.1       # N,m = n,1  imag part
                    if n >= 3:
                        bvec[k-3] = 0.31/n**4.2    # N,m = n,3  real part
                        bvec[k-2] = -0.18/n**3.9       # N,m = n,3  imag part
            print 'shapelet vector = ',bvec
            shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)

            # Test normalization  (This is normally part of do_shoot.  When we eventually 
            # implement photon shooting, we should go back to the normal do_shoot call, 
            # and remove this section.)
            shapelet = shapelet.withFlux(test_flux)
            shapelet.drawImage(im)
            flux = im.array.sum()
            print 'im.sum = ',flux,'  cf. ',test_flux
            np.testing.assert_almost_equal(flux / test_flux, 1., 4,
                    err_msg="Flux normalization for Shapelet disagrees with expected result")

            # Test centroid
            # Note: this only works if the image has odd sizes.  If they are even, then
            # setCenter doesn't actually set the center to the true center of the image 
            # (since it falls between pixels).
            im.setCenter(0,0)
            x,y = np.meshgrid(np.arange(im.array.shape[0]).astype(float) + im.getXMin(), 
                              np.arange(im.array.shape[1]).astype(float) + im.getYMin())
            x *= scale
            y *= scale
            flux = im.array.sum()
            mx = (x*im.array).sum() / flux
            my = (y*im.array).sum() / flux
            conv = galsim.Convolve([shapelet, galsim.Pixel(scale)])
            print 'centroid = ',mx,my,' cf. ',conv.centroid()
            np.testing.assert_almost_equal(mx, shapelet.centroid().x, 3,
                    err_msg="Measured centroid (x) for Shapelet disagrees with expected result")
            np.testing.assert_almost_equal(my, shapelet.centroid().y, 3,
                    err_msg="Measured centroid (y) for Shapelet disagrees with expected result")

    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(),t2-t1)
Beispiel #20
0
def test_shapelet_adjustments():
    """Test that adjusting the Shapelet profile in various ways does the right thing
    """
    import time
    t1 = time.time()

    ftypes = [np.float32, np.float64]

    nx = 128
    ny = 128
    scale = 0.2
    im = galsim.ImageF(nx,ny, scale=scale)

    sigma = 1.8
    order = 6
    bvec = [1.3,                                            # n = 0
            0.02, 0.03,                                     # n = 1
            0.23, -0.19, 0.08,                              # n = 2
            0.01, 0.02, 0.04, -0.03,                        # n = 3
            -0.09, 0.07, -0.11, -0.08, 0.11,                # n = 4
            -0.03, -0.02, -0.08, 0.01, -0.06, -0.03,        # n = 5
            0.06, -0.02, 0.00, -0.05, -0.04, 0.01, 0.09 ]   # n = 6

    ref_shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    ref_im = galsim.ImageF(nx,ny)
    ref_shapelet.drawImage(ref_im, scale=scale)

    # Test that the Shapelet withFlux does the same thing as the GSObject withFlux
    gsref_shapelet = galsim.GSObject(ref_shapelet)  # Make it opaque to the Shapelet versions
    gsref_shapelet.withFlux(23.).drawImage(ref_im, method='no_pixel')
    shapelet = galsim.Shapelet(sigma=sigma, order=order, bvec=bvec)
    shapelet.withFlux(23.).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet withFlux disagrees with GSObject withFlux")

    # Test that scaling the Shapelet flux does the same thing as the GSObject scaling
    gsref_shapelet *= 0.23
    gsref_shapelet.drawImage(ref_im, method='no_pixel')
    shapelet *= 0.23
    shapelet.drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet *= 0.23 disagrees with GSObject *= 0.23")

    # Test that the Shapelet rotate does the same thing as the GSObject rotate
    gsref_shapelet.rotate(23. * galsim.degrees).drawImage(ref_im, method='no_pixel')
    shapelet.rotate(23. * galsim.degrees).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet rotate disagrees with GSObject rotate")

    # Test that the Shapelet dilate does the same thing as the GSObject dilate
    gsref_shapelet.dilate(1.3).drawImage(ref_im, method='no_pixel')
    shapelet.dilate(1.3).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet dilate disagrees with GSObject dilate")

    # Test that the Shapelet magnify does the same thing as the GSObject magnify
    gsref_shapelet.magnify(0.8).drawImage(ref_im, method='no_pixel')
    shapelet.magnify(0.8).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet magnify disagrees with GSObject magnify")

    # Test that lens works on Shapelet
    gsref_shapelet.lens(-0.05, 0.15, 1.1).drawImage(ref_im, method='no_pixel')
    shapelet.lens(-0.05, 0.15, 1.1).drawImage(im, method='no_pixel')
    np.testing.assert_array_almost_equal(
        im.array, ref_im.array, 6,
        err_msg="Shapelet lens disagrees with GSObject lens")

    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(),t2-t1)