Beispiel #1
0
def test_get_pattern_recognition_invalid_status(mocker):
    # MOCK RESPONSE
    mock_response = requests.Response()
    mock_response.status_code = 400
    mocker.patch(target="requests.get", new=mocker.Mock(return_value=mock_response))
    result = finnhub_model.get_pattern_recognition(ticker="PM", resolution="D")

    assert result.empty
Beispiel #2
0
def test_get_pattern_recognition(recorder, mocker):
    # MOCK RESPONSE
    mock_response = requests.Response()
    mock_response.status_code = 200
    mocker.patch.object(
        target=mock_response,
        attribute="json",
        side_effect=lambda: json.loads(RESPONSE_SAMPLE),
    )
    mocker.patch(target="requests.get", new=mocker.Mock(return_value=mock_response))

    result_df = finnhub_model.get_pattern_recognition(ticker="PM", resolution="D")
    recorder.capture(result_df)
Beispiel #3
0
def test_get_pattern_recognition_invalid_json(mocker):
    # MOCK RESPONSE
    mock_response = requests.Response()
    mock_response.status_code = 200
    mocker.patch.object(
        target=mock_response,
        attribute="json",
        side_effect=lambda: dict(),
    )
    mocker.patch(target="requests.get", new=mocker.Mock(return_value=mock_response))

    result = finnhub_model.get_pattern_recognition(ticker="PM", resolution="D")

    assert result.empty
Beispiel #4
0
def test_get_pattern_recognition_invalid_status(mocker):
    # MOCK RESPONSE
    attrs = {
        "status_code": 400,
        "json.return_value": {
            "error": "mock error message"
        },
    }

    mock_response = mocker.Mock(**attrs)

    mocker.patch(target="requests.get",
                 new=mocker.Mock(return_value=mock_response))
    result = finnhub_model.get_pattern_recognition(ticker="PM", resolution="D")

    assert result.empty
def plot_pattern_recognition(ticker: str, resolution: str, export: str):
    """Plot pattern recognition signal

    Parameters
    ----------
    ticker : str
        Ticker to display pattern recognition on top of the data
    resolution : str
        Resolution of data to get pattern recognition from
    export: str
        Format of export file
    """

    pattern = finnhub_model.get_pattern_recognition(ticker, resolution)

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "pr",
        pattern,
    )

    l_segments = []
    for i in pattern:
        a_part = ("", "")
        if "aprice" in pattern[i]:
            if pattern[i]["aprice"] != 0 and not math.isnan(
                    pattern[i]["aprice"]):
                a_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["atime"]).strftime("%Y-%m-%d"),
                    pattern[i]["aprice"],
                )

        b_part = ("", "")
        if "bprice" in pattern[i]:
            if pattern[i]["bprice"] != 0 and not math.isnan(
                    pattern[i]["bprice"]):
                b_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["btime"]).strftime("%Y-%m-%d"),
                    pattern[i]["bprice"],
                )

        c_part = ("", "")
        if "cprice" in pattern[i]:
            if pattern[i]["cprice"] != 0 and not math.isnan(
                    pattern[i]["cprice"]):
                c_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["ctime"]).strftime("%Y-%m-%d"),
                    pattern[i]["cprice"],
                )

        d_part = ("", "")
        if "dprice" in pattern[i]:
            if pattern[i]["dprice"] != 0 and not math.isnan(
                    pattern[i]["dprice"]):
                d_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["dtime"]).strftime("%Y-%m-%d"),
                    pattern[i]["dprice"],
                )

        segment = (a_part, b_part, c_part, d_part)

        l_segment = list(segment)
        while ("", "") in l_segment:
            l_segment.remove(("", ""))
        segm = tuple(l_segment)

        l_segments.append(segm)

    start_time = 999999999999
    for i in pattern:
        if pattern[i]["atime"] < start_time:
            start_time = pattern[i]["atime"]

    df_stock = yf.download(
        ticker,
        start=datetime.utcfromtimestamp(start_time).strftime("%Y-%m-%d"),
        progress=False,
    )
    df_stock["date_id"] = (df_stock.index.date -
                           df_stock.index.date.min()).astype("timedelta64[D]")
    df_stock["date_id"] = df_stock["date_id"].dt.days + 1

    df_stock["OC_High"] = df_stock[["Open", "Close"]].max(axis=1)
    df_stock["OC_Low"] = df_stock[["Open", "Close"]].min(axis=1)

    mc = mpf.make_marketcolors(up="green",
                               down="red",
                               edge="black",
                               wick="black",
                               volume="in",
                               ohlc="i")

    s = mpf.make_mpf_style(marketcolors=mc, gridstyle=":", y_on_right=False)

    mpf.plot(
        df_stock,
        type="candle",
        volume=False,
        title=f"\n{ticker}",
        alines=l_segments,
        xrotation=10,
        style=s,
        figratio=(10, 7),
        figscale=1.10,
        figsize=plot_autoscale(),
        update_width_config=dict(candle_linewidth=1.0,
                                 candle_width=0.8,
                                 volume_linewidth=1.0),
    )

    for ix in range(len(pattern.columns)):
        print(f"From {l_segments[ix][0][0]} to {l_segments[ix][-1][0]}")
        print(
            f"Pattern: {pattern[0]['patternname']} ({pattern[0]['patterntype']})",
            "\n")
def plot_pattern_recognition(
    ticker: str,
    resolution: str,
    export: str,
    external_axes: Optional[List[plt.Axes]] = None,
):
    """Plot pattern recognition signal

    Parameters
    ----------
    ticker : str
        Ticker to display pattern recognition on top of the data
    resolution : str
        Resolution of data to get pattern recognition from
    export: str
        Format of export file
    external_axes : Optional[List[plt.Axes]], optional
        External axes (1 axis is expected in the list), by default None
    """

    pattern = finnhub_model.get_pattern_recognition(ticker, resolution)

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "pr",
        pattern,
    )

    l_segments = []
    for i in pattern:
        a_part = ("", "")
        if "aprice" in pattern[i]:
            if pattern[i]["aprice"] != 0 and not math.isnan(
                    pattern[i]["aprice"]):
                a_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["atime"]).strftime("%Y-%m-%d"),
                    pattern[i]["aprice"],
                )

        b_part = ("", "")
        if "bprice" in pattern[i]:
            if pattern[i]["bprice"] != 0 and not math.isnan(
                    pattern[i]["bprice"]):
                b_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["btime"]).strftime("%Y-%m-%d"),
                    pattern[i]["bprice"],
                )

        c_part = ("", "")
        if "cprice" in pattern[i]:
            if pattern[i]["cprice"] != 0 and not math.isnan(
                    pattern[i]["cprice"]):
                c_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["ctime"]).strftime("%Y-%m-%d"),
                    pattern[i]["cprice"],
                )

        d_part = ("", "")
        if "dprice" in pattern[i]:
            if pattern[i]["dprice"] != 0 and not math.isnan(
                    pattern[i]["dprice"]):
                d_part = (
                    datetime.utcfromtimestamp(
                        pattern[i]["dtime"]).strftime("%Y-%m-%d"),
                    pattern[i]["dprice"],
                )

        segment = (a_part, b_part, c_part, d_part)

        l_segment = list(segment)
        while ("", "") in l_segment:
            l_segment.remove(("", ""))
        segm = tuple(l_segment)

        l_segments.append(segm)

    start_time = 999999999999
    for i in pattern:
        if pattern[i]["atime"] < start_time:
            start_time = pattern[i]["atime"]

    df_stock = yf.download(
        ticker,
        start=datetime.utcfromtimestamp(start_time).strftime("%Y-%m-%d"),
        progress=False,
    )
    df_stock["date_id"] = (df_stock.index.date -
                           df_stock.index.date.min()).astype("timedelta64[D]")
    df_stock["date_id"] = df_stock["date_id"].dt.days + 1

    df_stock["OC_High"] = df_stock[["Open", "Close"]].max(axis=1)
    df_stock["OC_Low"] = df_stock[["Open", "Close"]].min(axis=1)

    candle_chart_kwargs = {
        "type": "candle",
        "style": theme.mpf_style,
        "volume": False,
        "alines": l_segments,
        "xrotation": theme.xticks_rotation,
        "scale_padding": {
            "left": 0.3,
            "right": 1,
            "top": 0.8,
            "bottom": 0.8
        },
        "update_width_config": {
            "candle_linewidth": 0.6,
            "candle_width": 0.8,
            "volume_linewidth": 0.8,
            "volume_width": 0.8,
        },
        "warn_too_much_data": 10000,
    }
    # This plot has 2 axes
    if not external_axes:
        candle_chart_kwargs["returnfig"] = True
        candle_chart_kwargs["figratio"] = (10, 7)
        candle_chart_kwargs["figscale"] = 1.10
        candle_chart_kwargs["figsize"] = plot_autoscale()
        (fig, ax) = mpf.plot(df_stock, **candle_chart_kwargs)
        fig.suptitle(
            f"\n{ticker}",
            x=0.055,
            y=0.965,
            horizontalalignment="left",
        )

        theme.visualize_output(force_tight_layout=False)

    else:
        if len(external_axes) != 1:
            logger.error("Expected list of one axis item.")
            console.print("[red]Expected list of 1 axis items./n[/red]")
            return
        (ax, ) = external_axes
        candle_chart_kwargs["ax"] = ax
        mpf.plot(df_stock, **candle_chart_kwargs)

    for ix in range(len(pattern.columns)):
        console.print(
            f"From {l_segments[ix][0][0]} to {l_segments[ix][-1][0]}")
        console.print(
            f"Pattern: {pattern[0]['patternname']} ({pattern[0]['patterntype']})",
            "\n")