Beispiel #1
0
def make_exposure_model(outdir, E1, E2):
    """

    Parameters
    ----------
    outdir: str
        directory chere are stored the data
    E1: float
        energy min
    E2: float
        energy max

    Returns
    -------

    """
    exp = SkyImageList.read(outdir + "/fov_bg_maps" + str(E1) + "_" + str(E2) + "_TeV.fits")["exposure"]
    exp.write(outdir + "/exp_maps" + str(E1) + "_" + str(E2) + "_TeV.fits", clobber=True)
    load_table_model("exposure", outdir + "/exp_maps" + str(E1) + "_" + str(E2) + "_TeV.fits")
    exposure.ampl = 1
    freeze(exposure.ampl)
    return exposure
Beispiel #2
0
def make_bkg_model(outdir, E1, E2, freeze_bkg, ampl_init=1):
    """

    Parameters
    ----------
    outdir: str
        directory chere are stored the data
    E1: float
        energy min
    E2: float
        energy max
    freeze_bkg: bool
        True if you want to froze the norm of the bkg in the fit

    Returns
    -------

    """
    bkgmap = SkyImageList.read(outdir + "/fov_bg_maps" + str(E1) + "_" + str(E2) + "_TeV.fits")["bkg"]
    bkgmap.write(outdir + "/off_maps" + str(E1) + "_" + str(E2) + "_TeV.fits", clobber=True)
    load_table_model("bkg", outdir + "/off_maps" + str(E1) + "_" + str(E2) + "_TeV.fits")
    set_par(bkg.ampl, val=ampl_init, min=0, max=None, frozen=freeze_bkg)
    return bkg
Beispiel #3
0
                               name_method_fond,
                               config_name,
                               image_size,
                               for_integral_flux=False,
                               ereco=energy_reco)
outdir_profiles = make_outdir_profile(source_name,
                                      name_method_fond,
                                      config_name,
                                      image_size,
                                      for_integral_flux=False,
                                      ereco=energy_reco)

# Pour pouvoir definir la gaussienne centre sur la source au centre des cartes en general
E1 = energy_bins[0].value
E2 = energy_bins[1].value
on = SkyImageList.read(outdir_data + "/fov_bg_maps" + str(E1) + "_" + str(E2) +
                       "_TeV.fits")["counts"]

if "l_gal" in input_param["param_SgrA"]["sourde_name_skycoord2"]:
    source_center = SkyCoord(
        input_param["param_SgrA"]["sourde_name_skycoord2"]["l_gal"],
        input_param["param_SgrA"]["sourde_name_skycoord2"]["b_gal"],
        unit='deg',
        frame="galactic").icrs
else:
    source_center = SkyCoord.from_name(
        input_param["general"]["sourde_name_skycoord"])

param_fit = input_param["param_fit_morpho"]
if param_fit["Em_gal"]:
    name += "_Em_gal"
if param_fit["gauss_SgrA"]["fit"]:
Beispiel #4
0
from astropy import units as u
from astropy.convolution import Gaussian2DKernel
from astropy.coordinates import SkyCoord

from photutils.detection import find_peaks

from gammapy.image import SkyImageList
from gammapy.detect import TSImageEstimator
from gammapy.catalog import source_catalogs

# ## Compute TS image

# In[3]:

# Load data from files
images = SkyImageList.read('../datasets/fermi_survey/all.fits.gz')
images['COUNTS'].name = 'counts'
images['BACKGROUND'].name = 'background'
images['EXPOSURE'].name = 'exposure'

# In[4]:

# Compute a source kernel (source template) in oversample mode,
# PSF is not taken into account
kernel = Gaussian2DKernel(2.5, mode='oversample')

# Compute a TS map. 'On' is the raw counts map, 'Background' is the background model,
# 'ExpGammaMap' denotes to the exposure map.
estimator = TSImageEstimator()
result = estimator.run(images, kernel)
Beispiel #5
0
    input_param["energy binning"]["Emax"],
    input_param["energy binning"]["nbin"], 'TeV')
energy_centers = energy_bins.log_centers

#outdir data and result
config_name = input_param["general"]["config_name"]
outdir_data = make_outdir_data(source_name, name_method_fond, len(energy_bins),
                               config_name, image_size, for_integral_flux)
outdir_result = make_outdir_filesresult(source_name, name_method_fond,
                                        len(energy_bins), config_name,
                                        image_size, for_integral_flux)

#Pour pouvoir definir la gaussienne centre sur la source au centre des cartes en general
E1 = energy_bins[0].value
E2 = energy_bins[1].value
on = SkyImageList.read(outdir_data + "/fov_bg_maps" + str(E1) + "_" + str(E2) +
                       "_TeV.fits")["counts"]
"""
Source model paramaters initial
"""
#Dans HGPS, c est une gaussienne de 0.05deg en sigma donc *2.35 pour fwhm
#avec HESS meme une source pontuelle ne fera jamais en dessous de 0.03-0.05 degre,
imax = -1
#imax=12
counts = np.zeros(
    (len(energy_bins[0:imax]), on.data.shape[0], on.data.shape[1]))
exposure_data = np.zeros(
    (len(energy_bins[0:imax]), on.data.shape[0], on.data.shape[1]))
bkg_data = np.zeros(
    (len(energy_bins[0:imax]), on.data.shape[0], on.data.shape[1]))
psf_data = np.zeros(
    (len(energy_bins[0:imax]), on.data.shape[0], on.data.shape[1]))
# name_method_fond = "coszenbinning_zen_0_27_39_49_57_65_72_15binE"
name_method_fond = "coszenbinning_zen_0_34_49_61_72_sansLMC"

config_name = "Mpp_Std"
outdir_data = make_outdir_data(name_source, name_method_fond, len(energy_bins),
                               config_name)
outdir_plot = make_outdir_plot(name_source, name_method_fond, len(energy_bins),
                               config_name)

exclusion_mask = SkyMask.read('tevcat_exclusion_radius_0p5.fits')
#exclusion_mask = SkyMask.read('exclusion_large.fits')
for i_E, E in enumerate(energy_bins[:-2]):
    E1 = energy_bins[i_E].value
    E2 = energy_bins[i_E + 1].value
    significance_map = SkyImageList.read(outdir_data + "/fov_bg_maps" +
                                         str(E1) + "_" + str(E2) +
                                         "_TeV.fits")["significance"]
    #coord=significance_map.coordinates()
    #center=significance_map.center
    #offset=center.separation(coord)
    #i=np.where(offset>Angle(2,"deg"))
    #significance_map.data[i]=-1000
    refheader = significance_map.to_image_hdu().header
    exclusion_mask = exclusion_mask.reproject(reference=refheader)
    pt.figure(i_E)
    n, bins, patches = histo_significance(significance_map, exclusion_mask)
    bin_center = (bins[1:] + bins[0:-1]) / 2
    popt, pcov = curve_fit(norm, bin_center, n)
    perr = np.sqrt(np.diag(pcov))
    pt.plot(bin_center,
            norm(bin_center, popt[0], popt[1], popt[2]),