class TBOutputTest(TfGraphTestCase):
    def setUp(self):
        super().setUp()
        self.log_dir = tempfile.TemporaryDirectory()
        self.tabular = TabularInput()
        self.tabular.clear()
        self.tensor_board_output = TensorBoardOutput(self.log_dir.name)

    def tearDown(self):
        self.tensor_board_output.close()
        self.log_dir.cleanup()
        super().tearDown()
Beispiel #2
0
def run_garage(env, seed, log_dir):
    """
    Create garage model and training.

    Replace the trpo with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:import baselines.common.tf_util as U
    """
    deterministic.set_seed(seed)

    with LocalRunner() as runner:
        env = TfEnv(normalize(env))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(32, 32),
                use_trust_region=True,
            ),
        )

        algo = TRPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.98,
            max_kl_step=0.01,
            policy_ent_coeff=0.0,
            plot=False,
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, "progress.csv")
        garage_logger.add_output(CsvOutput(tabular_log_file))
        garage_logger.add_output(StdOutput())
        garage_logger.add_output(TensorBoardOutput(log_dir))

        runner.setup(algo, env)
        runner.train(n_epochs=976, batch_size=1024)

        garage_logger.remove_all()

        return tabular_log_file
def run_garage(env, seed, log_dir):
    '''
    Create garage model and training.

    Replace the ddpg with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)

    with LocalRunner() as runner:
        env = TfEnv(env)
        # Set up params for ddpg
        action_noise = OUStrategy(env.spec, sigma=params['sigma'])

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        qf = ContinuousMLPQFunction(env_spec=env.spec,
                                    hidden_sizes=params['qf_hidden_sizes'],
                                    hidden_nonlinearity=tf.nn.relu)

        replay_buffer = SimpleReplayBuffer(
            env_spec=env.spec,
            size_in_transitions=params['replay_buffer_size'],
            time_horizon=params['n_rollout_steps'])

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    policy_lr=params['policy_lr'],
                    qf_lr=params['qf_lr'],
                    target_update_tau=params['tau'],
                    n_train_steps=params['n_train_steps'],
                    discount=params['discount'],
                    min_buffer_size=int(1e4),
                    exploration_strategy=action_noise,
                    policy_optimizer=tf.train.AdamOptimizer,
                    qf_optimizer=tf.train.AdamOptimizer)

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        tensorboard_log_dir = osp.join(log_dir)
        garage_logger.add_output(StdOutput())
        garage_logger.add_output(CsvOutput(tabular_log_file))
        garage_logger.add_output(TensorBoardOutput(tensorboard_log_dir))

        runner.setup(ddpg, env)
        runner.train(n_epochs=params['n_epochs'],
                     n_epoch_cycles=params['n_epoch_cycles'],
                     batch_size=params['n_rollout_steps'])

        garage_logger.remove_all()

        return tabular_log_file
Beispiel #4
0
def run_garage(env, seed, log_dir):
    '''
    Create garage model and training.

    Replace the ppo with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)

    with LocalRunner() as runner:
        env = TfEnv(normalize(env))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    tf_optimizer_args=dict(learning_rate=1e-3),
                ),
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                tf_optimizer_args=dict(learning_rate=1e-3),
            ),
            plot=False,
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        garage_logger.add_output(StdOutput())
        garage_logger.add_output(CsvOutput(tabular_log_file))
        garage_logger.add_output(TensorBoardOutput(log_dir))

        runner.setup(algo, env)
        runner.train(n_epochs=488, batch_size=2048)

        garage_logger.remove_all()

        return tabular_log_file
Beispiel #5
0
def run_garage(env, seed, log_dir):
    """
    Create garage model and training.

    Replace the ppo with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    """
    deterministic.set_seed(seed)
    env.reset()

    with LocalRunner() as runner:
        env = TfEnv(env)

        action_noise = OUStrategy(env.spec, sigma=params['sigma'])

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh,
            input_include_goal=True,
        )

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=params['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            input_include_goal=True,
        )

        replay_buffer = HerReplayBuffer(
            env_spec=env.spec,
            size_in_transitions=params['replay_buffer_size'],
            time_horizon=params['n_rollout_steps'],
            replay_k=0.4,
            reward_fun=env.compute_reward,
        )

        algo = DDPG(
            env_spec=env.spec,
            policy=policy,
            qf=qf,
            replay_buffer=replay_buffer,
            policy_lr=params['policy_lr'],
            qf_lr=params['qf_lr'],
            plot=False,
            target_update_tau=params['tau'],
            n_epochs=params['n_epochs'],
            n_epoch_cycles=params['n_epoch_cycles'],
            n_train_steps=params['n_train_steps'],
            discount=params['discount'],
            exploration_strategy=action_noise,
            policy_optimizer=tf.train.AdamOptimizer,
            qf_optimizer=tf.train.AdamOptimizer,
            buffer_batch_size=256,
            input_include_goal=True,
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        logger.add_output(StdOutput())
        logger.add_output(CsvOutput(tabular_log_file))
        logger.add_output(TensorBoardOutput(log_dir))

        runner.setup(algo, env)
        runner.train(n_epochs=params['n_epochs'],
                     n_epoch_cycles=params['n_epoch_cycles'],
                     batch_size=params['n_rollout_steps'])

        logger.remove_all()

        return tabular_log_file
 def setUp(self):
     super().setUp()
     self.log_dir = tempfile.TemporaryDirectory()
     self.tabular = TabularInput()
     self.tabular.clear()
     self.tensor_board_output = TensorBoardOutput(self.log_dir.name)
Beispiel #7
0
def run_experiment(argv):
    default_log_dir = config.GARAGE_LOG_DIR
    now = datetime.datetime.now(dateutil.tz.tzlocal())

    # avoid name clashes when running distributed jobs
    rand_id = str(uuid.uuid4())[:5]
    timestamp = now.strftime('%Y_%m_%d_%H_%M_%S_%f_%Z')

    default_exp_name = 'experiment_%s_%s' % (timestamp, rand_id)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--n_parallel',
        type=int,
        default=1,
        help=('Number of parallel workers to perform rollouts. '
              "0 => don't start any workers"))
    parser.add_argument(
        '--exp_name',
        type=str,
        default=default_exp_name,
        help='Name of the experiment.')
    parser.add_argument(
        '--log_dir',
        type=str,
        default=None,
        help='Path to save the log and iteration snapshot.')
    parser.add_argument(
        '--snapshot_mode',
        type=str,
        default='all',
        help='Mode to save the snapshot. Can be either "all" '
        '(all iterations will be saved), "last" (only '
        'the last iteration will be saved), "gap" (every'
        '`snapshot_gap` iterations are saved), or "none" '
        '(do not save snapshots)')
    parser.add_argument(
        '--snapshot_gap',
        type=int,
        default=1,
        help='Gap between snapshot iterations.')
    parser.add_argument(
        '--tabular_log_file',
        type=str,
        default='progress.csv',
        help='Name of the tabular log file (in csv).')
    parser.add_argument(
        '--text_log_file',
        type=str,
        default='debug.log',
        help='Name of the text log file (in pure text).')
    parser.add_argument(
        '--tensorboard_step_key',
        type=str,
        default=None,
        help='Name of the step key in tensorboard_summary.')
    parser.add_argument(
        '--params_log_file',
        type=str,
        default='params.json',
        help='Name of the parameter log file (in json).')
    parser.add_argument(
        '--variant_log_file',
        type=str,
        default='variant.json',
        help='Name of the variant log file (in json).')
    parser.add_argument(
        '--resume_from_dir',
        type=str,
        default=None,
        help='Directory of the pickle file to resume experiment from.')
    parser.add_argument(
        '--resume_epoch',
        type=str,
        default=None,
        help='Index of iteration to restore from. '
        'Can be "first", "last" or a number. '
        'Not applicable when snapshot_mode="last"')
    parser.add_argument(
        '--plot',
        type=ast.literal_eval,
        default=False,
        help='Whether to plot the iteration results')
    parser.add_argument(
        '--log_tabular_only',
        type=ast.literal_eval,
        default=False,
        help='Print only the tabular log information (in a horizontal format)')
    parser.add_argument('--seed', type=int, help='Random seed for numpy')
    parser.add_argument(
        '--args_data', type=str, help='Pickled data for objects')
    parser.add_argument(
        '--variant_data',
        type=str,
        help='Pickled data for variant configuration')
    parser.add_argument(
        '--use_cloudpickle', type=ast.literal_eval, default=False)

    args = parser.parse_args(argv[1:])

    if args.seed is not None:
        deterministic.set_seed(args.seed)

    # SIGINT is blocked for all processes created in parallel_sampler to avoid
    # the creation of sleeping and zombie processes.
    #
    # If the user interrupts run_experiment, there's a chance some processes
    # won't die due to a dead lock condition where one of the children in the
    # parallel sampler exits without releasing a lock once after it catches
    # SIGINT.
    #
    # Later the parent tries to acquire the same lock to proceed with his
    # cleanup, but it remains sleeping waiting for the lock to be released.
    # In the meantime, all the process in parallel sampler remain in the zombie
    # state since the parent cannot proceed with their clean up.
    with mask_signals([signal.SIGINT]):
        if args.n_parallel > 0:
            parallel_sampler.initialize(n_parallel=args.n_parallel)
            if args.seed is not None:
                parallel_sampler.set_seed(args.seed)

    if not args.plot:
        garage.plotter.Plotter.disable()
        garage.tf.plotter.Plotter.disable()

    if args.log_dir is None:
        if args.resume_from_dir is None:
            log_dir = osp.join(default_log_dir, args.exp_name)
        else:
            log_dir = args.resume_from_dir
    else:
        log_dir = args.log_dir
    tabular_log_file = osp.join(log_dir, args.tabular_log_file)
    text_log_file = osp.join(log_dir, args.text_log_file)
    params_log_file = osp.join(log_dir, args.params_log_file)

    if args.variant_data is not None:
        variant_data = pickle.loads(base64.b64decode(args.variant_data))
        variant_log_file = osp.join(log_dir, args.variant_log_file)
        dump_variant(variant_log_file, variant_data)
    else:
        variant_data = None

    if not args.use_cloudpickle:
        log_parameters(params_log_file, args)

    logger.add_output(TextOutput(text_log_file))
    logger.add_output(CsvOutput(tabular_log_file))
    logger.add_output(TensorBoardOutput(log_dir))
    logger.add_output(StdOutput())
    prev_snapshot_dir = snapshotter.snapshot_dir
    prev_mode = snapshotter.snapshot_mode
    snapshotter.snapshot_dir = log_dir
    snapshotter.snapshot_mode = args.snapshot_mode
    snapshotter.snapshot_gap = args.snapshot_gap
    logger.push_prefix('[%s] ' % args.exp_name)

    if args.resume_from_dir is not None:
        with LocalRunner() as runner:
            runner.restore(args.resume_from_dir, from_epoch=args.resume_epoch)
            runner.resume()
    else:
        # read from stdin
        if args.use_cloudpickle:
            import cloudpickle
            method_call = cloudpickle.loads(base64.b64decode(args.args_data))
            try:
                method_call(variant_data)
            except BaseException:
                children = garage.plotter.Plotter.get_plotters()
                children += garage.tf.plotter.Plotter.get_plotters()
                if args.n_parallel > 0:
                    children += [parallel_sampler]
                child_proc_shutdown(children)
                raise
        else:
            data = pickle.loads(base64.b64decode(args.args_data))
            maybe_iter = concretize(data)
            if is_iterable(maybe_iter):
                for _ in maybe_iter:
                    pass

    snapshotter.snapshot_mode = prev_mode
    snapshotter.snapshot_dir = prev_snapshot_dir
    logger.remove_all()
    logger.pop_prefix()