Beispiel #1
0
    def calculatePropensities(self, emo=True, role=True):

        for edge in self.edges:  # for every edge, calculate propensities and append as an attribute
            attributeDict = {}

            emoPropList = propensities.propCalc(self, edge)[0] if emo else None
            if len(emoPropList) > 0:
                attributeDict['Emotion'] = emoPropList
                attributeDict['emoWeight'] = propensities.aggregateProps(
                    emoPropList)

            rolePropList = propensities.propCalc(self,
                                                 edge)[1] if role else None
            if len(rolePropList) > 0:
                attributeDict['Role'] = rolePropList
                attributeDict['roleWeight'] = propensities.aggregateProps(
                    rolePropList)

            inflPropList = propensities.propCalc(self,
                                                 edge)[2] if role else None
            if len(inflPropList) > 0:
                attributeDict['Influence'] = inflPropList
                attributeDict['inflWeight'] = propensities.aggregateProps(
                    inflPropList)

            self.G[edge[0]][edge[1]] = attributeDict

        self.edges = nx.edges(self.G)
Beispiel #2
0
    def calculatePropensities(self,
                              propToggle={
                                  'emo': True,
                                  'infl': True,
                                  'role': True
                              }):
        self.propToggle = propToggle

        for edge in self.edges:  # for every edge, calculate propensities and append as an attribute
            attributeDict = {"propsFlag": True}

            IO, emoPropList, rolePropList, inflPropList = propensities.propCalc(
                self, edge, propToggle)
            attributeDict['IO'] = IO

            if propToggle['emo'] and len(emoPropList) > 0:
                attributeDict['Emotion'] = emoPropList

            if propToggle['role'] and len(rolePropList) > 0:
                attributeDict['Role'] = rolePropList

            if propToggle['infl'] and len(inflPropList) > 0:
                attributeDict['Influence'] = inflPropList

            self.G[edge[0]][edge[1]].update(attributeDict)

        self.edges = nx.edges(self.G)
Beispiel #3
0
    def drag_predict(self, node=None):
        # ERGM generates probability matrix where order is G.nodes() x G.nodes()
        ergm_prob_mat = ergm.probability(G=self.G)
        if node is not None:
            # Assigning propensities probabilities and generating add_node links
            for target in self.G.nodes_iter():
                IO, emoProps, roleProps, inflProps = propensities.propCalc(
                    self, (node, target))
                if len(emoProps) > 0:
                    w = []
                    for prop in emoProps:
                        if len(prop) > 1:
                            w.append(
                                prop[1]
                            )  # add the product of the attribute weights to a list for each prop
                    w_avg = np.average(
                        w)  # find average propensity product weight
                    prob = np.random.binomial(
                        1, w_avg * 1 / 2 if w_avg * 1 / 2 > 0 else 0)
                    # use w_avg as the probability for a bernoulli distribution
                    if prob:
                        self.G.add_edge(node, target)
                        self.G[node][target]['Emotion'] = emoProps
                        self.G[node][target]['Role'] = roleProps if len(
                            roleProps) > 0 else None
                        self.G[node][target]['Influence'] = inflProps if len(
                            inflProps) > 0 else None
                        self.G[node][target]['Predicted'] = True
        # iterate through all possible edges
        for i, j in product(range(len(self.G.nodes())), repeat=2):
            if i != j:
                node = self.G.nodes()[i]
                target = self.G.nodes()[j]
                prob = ergm_prob_mat[i, j] * 0.05

                # check props
                if self.G[node].get(target) is not None:
                    ## check emo props to modify adjacency prob matrix if present
                    if self.G[node][target].get('Emotion') is not None:
                        w = []
                        for prop in emoProps:
                            w.append(
                                prop[4] * prop[5]
                            )  # add the product of the attribute weights to a list for each prop
                        w_avg = np.average(w)
                        prob = (prob + w_avg * 0.5) / 2

                presence = np.random.binomial(1, prob) if prob < 1 else 1
                # use adjacency prob mat as the probability for a bernoulli distribution
                if presence:
                    self.G.add_edge(node, target)
                    self.G[node][target]['Predicted'] = True
        self.feedbackUpdate()