Beispiel #1
0
def main(args):
    # load and preprocess dataset
    data = load_data(args)

    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)

    with tf.device(device):

        features = tf.convert_to_tensor(data.features, dtype=tf.float32)
        labels = tf.convert_to_tensor(data.labels, dtype=tf.int64)
        train_mask = tf.convert_to_tensor(data.train_mask, dtype=tf.bool)
        val_mask = tf.convert_to_tensor(data.val_mask, dtype=tf.bool)
        test_mask = tf.convert_to_tensor(data.test_mask, dtype=tf.bool)
        num_feats = features.shape[1]
        n_classes = data.num_labels
        n_edges = data.graph.number_of_edges()
        print("""----Data statistics------'
        #Edges %d
        #Classes %d 
        #Train samples %d
        #Val samples %d
        #Test samples %d""" %
              (n_edges, n_classes, train_mask.numpy().sum(),
               val_mask.numpy().sum(), test_mask.numpy().sum()))

        g = data.graph
        # add self loop
        g.remove_edges_from(nx.selfloop_edges(g))
        g = DGLGraph(g)
        g.add_edges(g.nodes(), g.nodes())
        n_edges = g.number_of_edges()
        # create model
        heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
        model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes,
                    heads, tf.nn.elu, args.in_drop, args.attn_drop,
                    args.negative_slope, args.residual)
        print(model)
        if args.early_stop:
            stopper = EarlyStopping(patience=100)

        # loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
        #     from_logits=False)
        loss_fcn = tf.nn.sparse_softmax_cross_entropy_with_logits

        # use optimizer
        optimizer = tf.keras.optimizers.Adam(learning_rate=args.lr,
                                             epsilon=1e-8)

        # initialize graph
        dur = []
        for epoch in range(args.epochs):
            if epoch >= 3:
                t0 = time.time()
            # forward
            with tf.GradientTape() as tape:
                tape.watch(model.trainable_weights)
                logits = model(features, training=True)
                loss_value = tf.reduce_mean(
                    loss_fcn(labels=labels[train_mask],
                             logits=logits[train_mask]))
                # Manually Weight Decay
                # We found Tensorflow has a different implementation on weight decay
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
                    loss_value = loss_value + \
                        args.weight_decay*tf.nn.l2_loss(weight)

                grads = tape.gradient(loss_value, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))

            if epoch >= 3:
                dur.append(time.time() - t0)

            train_acc = accuracy(logits[train_mask], labels[train_mask])

            if args.fastmode:
                val_acc = accuracy(logits[val_mask], labels[val_mask])
            else:
                val_acc = evaluate(model, features, labels, val_mask)
                if args.early_stop:
                    if stopper.step(val_acc, model):
                        break

            print(
                "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
                " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(
                    epoch, np.mean(dur),
                    loss_value.numpy().item(), train_acc, val_acc,
                    n_edges / np.mean(dur) / 1000))

        print()
        if args.early_stop:
            model.load_weights('es_checkpoint.pb')
        acc = evaluate(model, features, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))
Beispiel #2
0
                  weighted_metrics=['categorical_crossentropy', 'acc'])

    model_input = [features, A.toarray()]

    val_data = (model_input, y_val, val_mask)

    mc_callback = ModelCheckpoint('./best_model.h5',
                                  monitor='val_weighted_categorical_crossentropy',
                                  save_best_only=True,
                                  save_weights_only=True)

    print("start training")
    model.fit(model_input, y_train, sample_weight=train_mask, validation_data=val_data,
              batch_size=A.shape[0], epochs=200, shuffle=False, verbose=2,
              callbacks=[mc_callback])
    # test
    model.load_weights('./best_model.h5')
    eval_results = model.evaluate(
        model_input, y_test, sample_weight=test_mask, batch_size=A.shape[0])

    print('Done.\n'
          'Test loss: {}\n'
          'Test weighted_loss: {}\n'
          'Test accuracy: {}'.format(*eval_results))

    gcn_embedding = model.layers[-1]
    embedding_model = Model(model.input, outputs=Lambda(lambda x: gcn_embedding.output)(model.input))
    embedding_weights = embedding_model.predict(model_input, batch_size=A.shape[0])
    y = np.genfromtxt("{}{}.content".format('../data/cora/', 'cora'), dtype=np.dtype(str))[:, -1]
    plot_embeddings(embedding_weights, np.arange(A.shape[0]), y)