Beispiel #1
0
	def do_GET(self):
		if self.path=='/':
			reload(gauss)
			self.send_response(200,'OK')
			self.send_header('Content-type','text/html')
			self.end_headers()
			print >>self.wfile,FRONTPAGE
		elif self.path=='/jquery.min.js':
			self.send_response(200,'OK')
			self.send_header('Content-type','text/html')
			self.end_headers()
			with open('jquery.min.js') as f:
				print >>self.wfile,f.read()
		elif self.path=='/favicon.ico':
			self.send_response(404)
		else:
			data=unquote(self.path[1:]).replace('lf','\n').strip()
			# print data
			self.send_response(200,'OK')
			self.send_header('Content-type','text/html')
			self.end_headers()
			try:
				m,n,M=gauss.parse(data)
				def outf(M):
					if isinstance(M,str):print >>self.wfile,M
					else:
						for x in M:
							for y in x:
								print >>self.wfile,'%6s'%y,
							print >>self.wfile
						print >>self.wfile,'-'*40
				gauss.solve(m,n,M,outf)
			except Exception,e:
				import traceback
				print >>self.wfile,traceback.format_exc()
Beispiel #2
0
def pointOfCollision_2(simplex):
    ''' Another approach to calculating the collision point, using
        baryocentric coordinates. '''
    assert isinstance(simplex, simplices.Simplex), 'Input must be a Simplex object'
    assert len(simplex.get_points()) == 4, 'Terminated without full simplex'
    #points in the minkowski simplex
    simpPoints = simplex.get_all_points(0)
    #points in the simplex of shape 1
    aPoints = simplex.get_all_points(1)
    #points in the simplex of shape 2
    bPoints = simplex.get_all_points(2)

    # create a matrix 
    matrix = [[1.0]*len(simpPoints)]
    vecs = []
    for vector in simpPoints:
        value = vector.value
        vecs.append(value)
    for i in range(len(vecs[0])):
        outvec = []
        for j in range(len(vecs)):
            outvec.append(vecs[j][i])
        matrix.append(outvec)
            

    barCoord = gauss.solve(matrix, [1.0, 0.0, 0.0, 0.0])
    if barCoord:
        collisionPoint = vectors.Vector()

        for i in range(len(aPoints)):
            collisionPoint += aPoints[i]*barCoord[i]
        assert isinstance(collisionPoint, vectors.Vector), 'CollisionPoint must be a vector'
        return collisionPoint
    else:
        return pointOfCollision(simplex)
def test_copy_middle_row_of_solvable():
    expected = [
        pytest.approx(elem) for elem in
        [0.2608695652173913, 0.04347826086956526, -0.1304347826086957]
    ]
    actual = solve([[4, 2, 1, 1], [7, 8, 9, 1], [7, 8, 9, 1], [9, 1, 3, 2]])
    actual = [pytest.approx(elem) for elem in actual]
    assert expected == actual
Beispiel #4
0
def solve(input_system):
    columns = matrix.columns(input_system)

    f = columns[-1]
    subspace = columns[:-1]

    system = []

    for i, e in enumerate(subspace):
        assert len(f) == len(e)

        equation = []

        for j, s in enumerate(subspace):
            equation.append(vector.dot(e, s))

        equation.append(vector.dot(e, f))

        system.append(equation)

    gauss.solve(system)
Beispiel #5
0
def Berlekamp_Welch(
        aList: List[int],   # inputs
        bList: List[int],   # received codeword
        k: int,
        t: int,
        p: int              # prime
    ) -> nmod_poly:
    """
    Berlekamp-Welsch-Decoder

    This function throws an exception if no solution exists

    see https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm
    """
    if len(aList) < 1:
        raise FuzzyError("aList is empty")
    if len(aList) != len(bList):
        raise FuzzyError("bList is empty")
    if k < 1 or t < 1:
        raise FuzzyError("k={0} and t={1} are not consistent".format(k, t))
    if p < 2 or not isprime(p):
        raise FuzzyError("p is not prime")

    n = len(aList)

    # Create the Berlekamp-Welch system of equations
    # and store them as an n x n matrix 'm' and a
    # constant source vector 'y' of length n

    m_entries: List[nmod] = []
    y_entries: List[nmod] = []
    for i in range(n):
        a: int = aList[i]
        b: int = bList[i]
        apowers: List[nmod] = mod_get_powers(a, k + t, p)
        for j in range(k+t):
            m_entries.append(apowers[j])
        for j in range(t):
            m_entries.append(-b * apowers[j])
        y_entries.append(b * apowers[t])

    m: nmod_mat = nmod_mat(n, n, m_entries, p)
    y: nmod_mat = nmod_mat(n, 1, y_entries, p)

    # solve the linear system of equations m * x = y for x

    try:
        x = gauss.solve(m, y).entries()
    except gauss.NoSolutionError:
        raise FuzzyError("No solution exists")

    # create the polynomials Q and E

    Qs: List[nmod] = x[:k+t]
    Es: List[nmod] = x[k+t:]
    Es.append(nmod(1, p))
    Q: nmod_poly = nmod_poly(Qs, p)
    E: nmod_poly = nmod_poly(Es, p)

    Answer: nmod_poly = Q // E
    Remainder: nmod_poly = Q - Answer * E
    if len(Remainder.coeffs()) > 0:
        raise FuzzyError("Remainder is not zero")
    return Answer
Beispiel #6
0
#!/usr/bin/python3

import gauss;

mat = [
        [ 1, 0, 0, 1 ],
        [ 0, 1, 0, 2 ],
        [ 0, 0, 1, 3 ]
      ]

gauss.matrix.output(mat)
comp = gauss.triangularize(mat, 3)
base = gauss.base(3, comp)
if not gauss.solve(mat, base, 3):
    print("No solution.")
else:
    gauss.output_results(base)

 def test_floats(self):
     m = numpy.array([[.1, .2, .3], [0., .1, .2], [0., 0., .1]])
     b = numpy.array([0.1, .04, .01])
     result = solve(m, b)
     expected = numpy.array([.3, .2, .1])
     assert_array_almost_equal(result, expected)
 def test(self):
     m = numpy.array([[1., 2., 3.], [0., 1., 2.], [0., 0., 1.]])
     b = numpy.array([10., 4., 1.])
     result = solve(m, b)
     expected = numpy.array([3., 2., 1.])
     assert_array_equal(result, expected)
def test_no2():
    with pytest.raises(ValueError, match="NO"):
        solve([[2, -1, 3, 1], [2, -1, -1, -2], [4, -2, 6, 0], [6, 8, -7, 2]])
def test_zero_column_no():
    with pytest.raises(ValueError, match="NO"):
        solve([[4, 2, 0, 1, 1], [4, 2, 0, 1, 2], [7, 8, 0, 9, 1],
               [9, 1, 0, 3, 5]])
def test_zero_column_inf():
    with pytest.raises(ValueError, match="INF"):
        solve([[0, 4, 2, 1, 1], [0, 4, 2, 1, 1], [0, 7, 8, 9, 1],
               [0, 9, 1, 3, 2]])
def test_inf2():
    with pytest.raises(ValueError, match="INF"):
        solve([[1, 0, 3, 3], [0, 3, 0, 3]])
def test_solvable2():
    expected = [pytest.approx(elem) for elem in [1.0, 1.0]]
    actual = solve([[1, 2, 3], [0, 3, 3], [0, 0, 0], [0, 0, 0]])
    actual = [pytest.approx(elem) for elem in actual]
    assert expected == actual
def test_no():
    with pytest.raises(ValueError, match="NO"):
        solve([[1, 3, 2, 7], [2, 6, 4, 8], [1, 4, 3, 1]])
def test_inf():
    with pytest.raises(ValueError, match="INF"):
        solve([[1, 3, 4, 4], [2, 1, 4, 5]])