Beispiel #1
0
def true_skill_v(mean_delta, draw_margin, c):
    team_performance_difference = mean_delta / c
    draw_margin = draw_margin / c
    denominator = gaussian.cdf(team_performance_difference - draw_margin)
    if denominator < 1e-161:
        return -team_performance_difference + draw_margin
    return gaussian.at(team_performance_difference - draw_margin) / denominator
Beispiel #2
0
def true_skill_v(mean_delta, draw_margin, c):
    team_performance_difference = mean_delta / c
    draw_margin = draw_margin / c
    denominator = gaussian.cdf(team_performance_difference - draw_margin)
    if denominator < 1e-161:
        return -team_performance_difference + draw_margin
    return gaussian.at(team_performance_difference - draw_margin) / denominator
Beispiel #3
0
def true_skill_w(mean_delta, draw_margin, c):
    team_performance_difference = mean_delta / c
    draw_margin = draw_margin / c
    denominator = gaussian.cdf(team_performance_difference - draw_margin)
    if denominator < 1e-161:
        if team_performance_difference < 0.0:
            return 1
        return 0

    v_win = true_skill_v(mean_delta*c, draw_margin*c, c)
    return v_win * (v_win + team_performance_difference - draw_margin)
Beispiel #4
0
def true_skill_w(mean_delta, draw_margin, c):
    team_performance_difference = mean_delta / c
    draw_margin = draw_margin / c
    denominator = gaussian.cdf(team_performance_difference - draw_margin)
    if denominator < 1e-161:
        if team_performance_difference < 0.0:
            return 1
        return 0

    v_win = true_skill_v(mean_delta * c, draw_margin * c, c)
    return v_win * (v_win + team_performance_difference - draw_margin)
import stdio
import gaussian

#-----------------------------------------------------------------------

# Accept a mean and standard deviation as command-line arguments.
# Write to standard output a table of the percentage of students
# scoring below certain scores on the SAT, assuming the test scores
# obey a Gaussian  distribution with the given mean and standard
# deviation.

mu = float(sys.argv[1])
sigma = float(sys.argv[2])

for score in range(400, 1600+1, 100):
    percent = gaussian.cdf(score, mu, sigma)
    stdio.writef('%4d  %.4f\n', score, percent)
 
#-----------------------------------------------------------------------

# python gaussiantable.py 1019 209
#  400  0.0015
#  500  0.0065
#  600  0.0225
#  700  0.0635
#  800  0.1474
#  900  0.2845
# 1000  0.4638
# 1100  0.6508
# 1200  0.8068
# 1300  0.9106