Beispiel #1
0
def universe_repeats(moons):
    # find when there is a cycle in the x position and velocity of all moons,
    # and also for the y and z coordinates too
    seenx, seeny, seenz = set(), set(), set()
    findx, findy, findz = True, True, True
    while findx or findy or findz:
        x = tuple([(m[0], m[3]) for m in moons])
        y = tuple([(m[1], m[4]) for m in moons])
        z = tuple([(m[2], m[5]) for m in moons])
        if x in seenx: findx = False
        if y in seeny: findy = False
        if z in seenz: findz = False
        seenx.add(x); seeny.add(y); seenz.add(z)
        update(moons)
    # now we can say that the first cycle of all three elements is
    # the lowest common multiple of the three independent cycles
    return lcm(lcm(len(seenx), len(seeny)), len(seenz))
Beispiel #2
0
def earliest(ids):
    time, interval = ids[0]
    for offset, period in ids[1:]:
        while True:
            if (time + offset) % period == 0:
                break
            time += interval
        interval = lcm(interval, period)
    return time
def cycle_product(m1: Monomial, m2: Monomial) -> Monomial:
    """
    Given two monomials (from the
    cycle index of a symmetry group),
    compute the resultant monomial
    in the cartesian product
    corresponding to their merging.
    """
    assert isinstance(m1, Monomial) and isinstance(m2, Monomial)
    A = m1.variables
    B = m2.variables
    result_variables = dict()
    for i in A:
        for j in B:
            k = lcm(i, j)
            g = (i * j) // k
            if k in result_variables:
                result_variables[k] += A[i] * B[j] * g
            else:
                result_variables[k] = A[i] * B[j] * g

    return Monomial(result_variables, Fraction(m1.coeff * m2.coeff, 1))
Beispiel #4
0
 def test_lcm(self):
     self.assertEqual(24, lcm(8, 12))