Beispiel #1
0
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = mx.nd.array(data.features)
    labels = mx.nd.array(data.labels)
    train_mask = mx.nd.array(data.train_mask)
    val_mask = mx.nd.array(data.val_mask)
    test_mask = mx.nd.array(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes, train_mask.sum().asscalar(),
           val_mask.sum().asscalar(), test_mask.sum().asscalar()))

    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)

    features = features.as_in_context(ctx)
    labels = labels.as_in_context(ctx)
    train_mask = train_mask.as_in_context(ctx)
    val_mask = val_mask.as_in_context(ctx)
    test_mask = test_mask.as_in_context(ctx)

    # create GCN model
    g = data.graph
    if args.self_loop:
        g.remove_edges_from(g.selfloop_edges())
        g.add_edges_from(zip(g.nodes(), g.nodes()))
    g = DGLGraph(g)
    # normalization
    degs = g.in_degrees().astype('float32')
    norm = mx.nd.power(degs, -0.5)
    if cuda:
        norm = norm.as_in_context(ctx)
    g.ndata['norm'] = mx.nd.expand_dims(norm, 1)

    model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers,
                mx.nd.relu, args.dropout)
    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam', {
        'learning_rate': args.lr,
        'wd': args.weight_decay
    })

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print(
                "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur),
                                              loss.asscalar(), acc,
                                              n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))
Beispiel #2
0
def main(args):
    # load and preprocess dataset
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))

    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.int().to(ctx)

    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              train_mask.sum().asscalar(),
              val_mask.sum().asscalar(),
              test_mask.sum().asscalar()))

    # add self loop
    if args.self_loop:
        g = dgl.remove_self_loop(g)
        g = dgl.add_self_loop(g)
    # normalization
    degs = g.in_degrees().astype('float32')
    norm = mx.nd.power(degs, -0.5)
    if cuda:
        norm = norm.as_in_context(ctx)
    g.ndata['norm'] = mx.nd.expand_dims(norm, 1)

    model = GCN(g,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                mx.nd.relu,
                args.dropout)
    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))