elif month == 'JUN': return 6 elif month == 'JUL': return 7 elif month == 'AUG': return 8 elif month == 'SEP': return 9 elif month == 'OCT': return 10 elif month == 'NOV': return 11 elif month == 'DEC': return 12 gdb = google_db() for airline in bob: for date_obj in bob[airline]: try: year = int(date_obj[-4:]) month = int(convert_month_to_num(date_obj[3:6])) day = int(date_obj[0:2]) except Exception: continue print(year, month, day) timestamp = datetime(year, month, day) new_data = bob[airline][date_obj] new_data['timestamp'] = timestamp gdb.store_data(new_data, date_obj, airline + '_delay_data')
def __init__(self): setup_credentials() self.g_db = google_db() self.g_sa = g_sentiment_analysis() self.count = 0
if count == 0: print("UNDEFINED BEHAVIOR!!!!") print("No data for day ", start, ". Will put zero...") output.append(0) else: avg_sentiment_for_day = sentiment_sum / count output.append(avg_sentiment_for_day) start += day return output if __name__ == '__main__': gdb = gdatabase.google_db() jetblue_sentiment_each_day = extract_sources_label_per_day(gdb, JETBLUE_SENTIMENT_LABELS, START_DAY, END_DAY, 'sentiment') #other_airline_sentiment_each_day = extract_sources_sentiment_per_day(gdb, OTHER_AIRLINE_SENTIMENT_LABELS, START_DAY, END_DAY, 'sentiment') normalized_jetblue_sentiment_per_day = [] for i in range(len(jetblue_sentiment_each_day)): # Positive sentiment for jetblue and all other airlines: jetblue_sentiment_positive = jetblue_sentiment_each_day[i] + 1 #all_other_sentiment_positive = other_airline_sentiment_each_day[i] + 1 # Normalize jetblue sentiment relative to feedback for all other airlines: #jetblue_sentiment_normalized = jetblue_sentiment_positive / all_other_sentiment_positive jetblue_sentiment_normalized = jetblue_sentiment_positive / 1