rforest_seeds = [22, 37, 44, 55, 78]
split_seeds = [11, 37, 52, 71, 98]

exp = Modeling(
    name=
    "Pathway genes with signatures - modeling with RForest over few data splits",
    param_grid=param_grid,
    estimator_seeds=rforest_seeds,
    split_seeds=split_seeds,
    n_combinations=30,
    kfolds=3,
    tuning_jobs=4,
    rforest_jobs=1)

# Initialize new ModelingResults object
exp_results = ModelingResults(exp)
print(exp_results.kfolds, exp_results.tuning_jobs, exp_results.scoring,
      exp_results.max_iter)

# Load previously computed results
# filename = ""
# with open("../Created data/Results/" + filename, "rb") as f:
#     exp_results = dill.load(f)

# ITERATE OVER DRUGS

# Get rid of warnings
import warnings
warnings.filterwarnings("ignore")

drug_counter = 0
Beispiel #2
0
# Create ModelingWithFeatureSelecction object
enet_seeds = [22, 37, 44, 55, 78]
split_seeds = [11, 37, 52, 71, 98]

enet_exp = Modeling(name="ElasticNet genome wide without feature selection",
                    param_grid=param_grid,
                    estimator_seeds=enet_seeds,
                    split_seeds=split_seeds,
                    n_combinations=30,
                    kfolds=3,
                    tuning_jobs=12,
                    max_iter=2500)

# Initialize new ModelingResults object
exp_results = ModelingResults(enet_exp)

# Load current ModelingResults object
#with open("../Created data/Results/genome_wide-enet_over_few_data_splits_without_feature_selection.pkl", "rb") as f:
#exp_results = dill.load(f)

# ITERATE OVER DRUGS

# Get rid of warnings
import warnings
warnings.filterwarnings("ignore")

drug_counter = 0
log = True  # Controls verbosity during iterating over drugs

for drug_id in drugs: