Beispiel #1
0
    def get_json(self, params, id):
        id = int(id);
        graph.update_if_needed()

        # ??? The stats includes persons "Unknown" that were created during a
        # gedcom import for the purpose of preserving families. Will be fixed
        # when we store children differently (for instance in a group)

        distance = dict()
        decujus = graph.node_from_id(id)

        allpeople = graph.people_in_tree(id=decujus.main_id, distance=distance)
        persons = extended_personas(
            nodes=allpeople, styles=None, event_types=event_types_for_pedigree,
            graph=graph)

        f = graph.fathers(decujus.main_id)
        fathers = graph.people_in_tree(id=f[0], maxdepthDescendants=0) if f else []
        m = graph.mothers(decujus.main_id)
        mothers = graph.people_in_tree(id=m[0], maxdepthDescendants=0) if m else []

        cal = CalendarGregorian()

        generations = dict()  # list of persons for each generation
        for a in allpeople:
            d = distance[a]
            if d not in generations:
                generations[d] = []
            generations[d].append(a)

        ranges = []

        for index in sorted(generations.keys()):
            births = None
            deaths = None
            gen_range = [index + 1, "?", "?", ""]  # gen, min, max, legend
            for p in generations[index]:
                p = persons[p.main_id]
                if p.birth and p.birth.Date:
                    if births is None or p.birth.Date < births:
                        births = p.birth.Date
                        year = p.birth.Date.year(cal)
                        if year is not None:
                            gen_range[1] = year

                if p.death and p.death.Date:
                    if deaths is None or p.death.Date > deaths:
                        deaths = p.death.Date
                        year = p.death.Date.year(cal)
                        if year is not None:
                            gen_range[2] = year

            if index >= 0:
                gen_range[3] = "Gen. %02d (%d / %d) %s - %s" \
                    % (index + 1, len(generations[index]), 2 ** (index + 1),
                       gen_range[1], gen_range[2])
            else:
                gen_range[3] = "Desc. %02d (%d) %s - %s" \
                    % (-index, len(generations[index]),
                       gen_range[1], gen_range[2])

            # Postprocess the ranges:
            #   generation n's earliest date has to be at least 15 years before
            #     its children's earliest date (can't have children before that)
            #   generation n's latest date (death) has to be after the children's
            #     generation earliest date (first birth)

            if len(ranges) > 0:
                if gen_range[1] == "?":
                    gen_range[1] = ranges[-1][1] - 15
                if gen_range[2] == "?" or gen_range[2] < ranges[-1][1]:
                    gen_range[2] = ranges[-1][1]
            if gen_range[2] == '?':
                gen_range[2] = datetime.datetime.now().year

            ranges.append(gen_range)

        ages = []
        for a in range(0, 120, 5):
            ages.append([a, 0, 0, 0])  # date_range, males, females, unknown

        for p in persons.itervalues():
            if p.birth and p.birth.Date and p.death and p.death.Date:
                age = p.death.Date.years_since(p.birth.Date)
                if age is not None:
                    if p.sex == "M":
                        ages[int(age / 5)][1] += 1
                    elif p.sex == "F":
                        ages[int(age / 5)][2] += 1
                    else:
                        ages[int(age / 5)][3] += 1

        return {
            "total_ancestors": len(allpeople),
            "total_father":    len(fathers),
            "total_mother":    len(mothers),
            "total_persons":   len(graph),
            "ranges":          ranges,
            "ages":            ages,
            "decujus":         decujus.main_id,
            "decujus_name":  "%s %s" % (
                persons[decujus.main_id].given_name,
                persons[decujus.main_id].surname)
        }
Beispiel #2
0
def find_candidate():
    """Find all candidate personas for a merge"""

    p1 = 7843  # Emmanuel Briot
    p2 = 1     # Emmanuel Briot
    p3 = 3052  # Marie HOUTEVILLE
    p4 = 3335  # Thomine Levesque
    p5 = 1311
    p6 = 7842

    persons = extended_personas(
        graph=global_graph,
        nodes=set([global_graph.node_from_id(p1),
                   global_graph.node_from_id(p2),
                   global_graph.node_from_id(p3),
                   global_graph.node_from_id(p4),
                   global_graph.node_from_id(p5),
                   global_graph.node_from_id(p6)]),
        styles=None, query_groups=False)
    for p in [(p1, p2), (p2, p1), (p3, p4), (p5, p6), (p6, p5)]:
        score = compare(persons[p[0]], persons[p[1]])

    # Get all persons from the database with a guess at their lifespan.
    # If we know the birth date, lifespan starts there, otherwise it starts
    #   some years before the first event
    # Likewise for death date.
    # This results is potentially over-optimistic lifespans, but still reduces
    # the number of comparisons to do.
    # The following query (and its processing) might take a while on big
    # databases, but we'll need access to the whole information for persons
    # anyway, so we might as well query everything from the start)
    # number of persons: 9171
    #   number of queries:6   total queries time:0.26s   total time:26.21s

    persons = extended_personas(
        nodes=None, styles=None, graph=global_graph, query_groups=False)

    # A temporary structure ordered by the first date in lifespan

    births = []
    delta = datetime.timedelta(days=maximum_lifespan * 365)

    for p in persons.values():
        birth = death = None

        if p.birth is not None:
            birth = p.birth.date_sort
        if p.death is not None:
            death = p.death.date_sort
        if birth is None or death is None:
            h = [a.event.date_sort
                 for a in p.all_events.values()
                 if a.event.date_sort is not None]
            if h:
                h.sort()
                birth = birth or h[0] - delta
                death = death or h[-1] + delta

        # If birth is None, that means there are no events, and we don't
        # really want to merge that person then.
        if birth:
            p.max_lifespan = death
            heapq.heappush(births, (birth, p))

    # Now we traverse the list and only compare persons that were alive at
    # the same time (otherwise we assume they cannot be merged)
    # ??? We can save time by not comparing when we have already
    # decided in the past they can't be the same

    alive = []  # Each person alive at the given date
    comparisons = 0
    same = 0

    while births:
        date, person = heapq.heappop(births)

        for a in alive:
            if a.max_lifespan < date:
                alive.remove(a)
            elif date.year < 1970:
                continue
            else:
                # print "Compare %s and %s" % (person.name, a.name)
                comparisons += 1
                score = compare(a, person)
                if score >= 150:
                    print(
                        "%d Might be the same: %d %s and %d %s, score=%d %d" %
                        (date.year, person.id, person.name, a.id, a.name,
                         score, compare(person, a)))
                    same += 1

        alive.append(person)

    # Maximum comparisons (n^2) would be: 83_302_129
    # Actual comparisons with this algo:  14_635_289
    print("Number of comparisons: ", comparisons)
    print("Possible merges: ", same)
Beispiel #3
0
def __get_json_sosa_tree(graph, id, max_levels, style_rules,
                  last_descendant_known=-1,
                  maxdepthDescendants=1, last_gen_known=-1):
    """
        :param last_gen_known: is the number of the last generation for which the
            client already has data, and thus do not need to be sent again. -1
            to retrieve all.
        :param maxdepthDescendants:
            The number of generations for which we compute the children.
    """

    decujus = graph.node_from_id(id)
    styles = Styles(style_rules, graph, decujus=decujus.main_id)

    distance = dict()
    ancestors = graph.people_in_tree(
        id=decujus.main_id, maxdepthAncestors=max_levels - 1,
        maxdepthDescendants=0, distance=distance)
    ancestors = [a for a in ancestors if distance[a] >= last_gen_known]

    descendants = graph.people_in_tree(
        id=decujus.main_id, maxdepthAncestors=0,
        distance=distance, maxdepthDescendants=maxdepthDescendants)
    descendants = [
        a for a in descendants
        if a != decujus and distance[a] >= last_descendant_known]

    sosa_tree = dict()
    marriage = dict()
    children = {}

    persons = {}
    all_person_nodes = set(ancestors).union(descendants)
    if all_person_nodes:
        persons = extended_personas(
            all_person_nodes, styles,
            event_types=event_types_for_pedigree, graph=graph)

    def add_parents(p):
        p.generation = distance[graph.node_from_id(p.id)]
        if p.generation >= max_levels:
            return

        fathers = graph.fathers(p.id)
        mothers = graph.mothers(p.id)
        p.parents = [
            None if not fathers else persons.get(fathers[0].main_id, None),
            None if not mothers else persons.get(mothers[0].main_id, None)]

        for pa in p.parents:
            if pa:
                add_parents(pa)

    def add_children(p, gen):
        p.children = []
        sorted = [(persons[node.main_id] if node.main_id in persons else None,
                   node)
                  for node in graph.children(p.id)]
        sorted.sort(
            key=lambda c: c[0].birth.Date if c[0] and c[0].birth else None)
        for c in sorted:
            if c[0]:
                c[0].generation = -gen # distance[c[1]]
                p.children.append(c[0])
                if gen < maxdepthDescendants:
                    add_children(c[0], gen + 1)

    main = persons[decujus.main_id]
    add_parents(main)
    add_children(main, gen=1)

    # We will however return a simpler version of the information computed
    # above (which includes all known events for the persons)

    show_age = False
    def person_to_json_for_pedigree(obj):
        if isinstance(obj, models.Persona):
            d = obj.death
            if show_age and obj.birth:
                if d:
                    if d.Date:
                        d.Date += " (age %s)" % (
                            str(d.Date.years_since(obj.birth.Date)), )
                else:
                    d = {Date: " (age %s)" % (
                       str(DateRange.today().years_since(obj.birth.Date)), )}

            return {
                'id':   obj.id,
                'givn': obj.given_name,
                'surn': obj.surname,
                'sex':  obj.sex,
                'generation': obj.generation,
                'parents': obj.parents if hasattr(obj, 'parents') else None,
                'children': obj.children if hasattr(obj, 'children') else None,
                'style': obj.styles,
                'birth': obj.birth,
                'marriage': obj.marriage,
                'death': d}

    return to_json(
        obj= {'generations': max_levels,
              'descendants': maxdepthDescendants,
              'decujus':     main, 
              'styles':      styles.all_styles()},
        custom=person_to_json_for_pedigree) 
Beispiel #4
0
def view(request, decujus=1):
    """Display the statistics for a given person"""

    decujus = int(decujus)

    graph.update_if_needed()
    if len(graph) == 0:
        return render_to_response(
            'geneaprove/firsttime.html',
            context_instance=RequestContext(request))

    # ??? The stats includes persons "Unknown" that were created during a
    # gedcom import for the purpose of preserving families. Will be fixed
    # when we store children differently (for instance in a group)

    distance = dict()
    ancestors = graph.people_in_tree(id=decujus, distance=distance)
    persons = extended_personas(
        nodes=ancestors, styles=None, event_types=event_types_for_pedigree,
        graph=graph)

    f = graph.fathers(decujus)
    fathers = graph.people_in_tree(id=f[0], maxdepthDescendants=0) if f else []
    m = graph.mothers(decujus)
    mothers = graph.people_in_tree(id=m[0], maxdepthDescendants=0) if m else []

    cal = CalendarGregorian()

    generations = dict()  # list of persons for each generation
    for a in ancestors:
        d = distance[a]
        if d not in generations:
            generations[d] = []
        generations[d].append(a)

    ranges = []

    for index in sorted(generations.keys()):
        births = None
        deaths = None
        gen_range = [index + 1, "?", "?", ""]  # gen, min, max, legend
        for p in generations[index]:
            p = persons[p.main_id]
            if p.birth and p.birth.Date:
                if births is None or p.birth.Date < births:
                    births = p.birth.Date
                    year = p.birth.Date.year(cal)
                    if year is not None:
                        gen_range[1] = year

            if p.death and p.death.Date:
                if deaths is None or p.death.Date > deaths:
                    deaths = p.death.Date
                    year = p.death.Date.year(cal)
                    if year is not None:
                        gen_range[2] = year

        gen_range[3] = "Gen. %02d (%d / %d) (%s - %s)" \
            % (index + 1, len(generations[index]), 2 ** (index + 1),
               gen_range[1], gen_range[2])

        # Postprocess the ranges:
        #   generation n's earliest date has to be at least 15 years before
        #     its children's earliest date (can't have children before that)
        #   generation n's latest date (death) has to be after the children's
        #     generation earliest date (first birth)

        if len(ranges) > 0:
            if gen_range[1] == "?":
                gen_range[1] = ranges[-1][1] - 15
            if gen_range[2] == "?" or gen_range[2] < ranges[-1][1]:
                gen_range[2] = ranges[-1][1]
        if gen_range[2] == '?':
            gen_range[2] = datetime.datetime.now().year

        ranges.append(gen_range)

    ages = []
    for a in range(0, 120, 5):
        ages.append([a, 0, 0, 0])  # date_range, males, females, unknown

    for p in persons.itervalues():
        if p.birth and p.birth.Date and p.death and p.death.Date:
            age = p.death.Date.years_since(p.birth.Date)
            if age is not None:
                if p.sex == "M":
                    ages[int(age / 5)][1] += 1
                elif p.sex == "F":
                    ages[int(age / 5)][2] += 1
                else:
                    ages[int(age / 5)][3] += 1

    data = {
        "total_ancestors": len(ancestors),
        "total_father":    len(fathers),
        "total_mother":    len(mothers),
        "total_persons":   len(graph),
        "ranges":          ranges,
        "ages":            ages,
        "decujus":         decujus,
        "decujus_name":  "%s %s" % (
            persons[decujus].given_name, persons[decujus].surname)
    }

    return HttpResponse(to_json(data), content_type='application/json')
Beispiel #5
0
def get_sosa_tree(graph, id, max_levels, style_rules,
                  last_descendant_known=-1,
                  maxdepthDescendants=1, last_gen_known=-1):
   """
       :param last_gen_known: is the number of the last generation for which the
           client already has data, and thus do not need to be sent again. -1
           to retrieve all.
       :param maxdepthDescendants:
           The number of generations for which we compute the children.
   """

   decujus = graph.node_from_id(id)

   styles = Styles(style_rules, graph, decujus=decujus.main_id)

   distance = dict()
   ancestors = graph.people_in_tree(
       id=decujus.main_id, maxdepthAncestors=max_levels - 1,
       maxdepthDescendants=0, distance=distance)
   ancestors = [a for a in ancestors if distance[a] >= last_gen_known]

   descendants = graph.people_in_tree(
       id=decujus.main_id, maxdepthAncestors=0,
       distance=distance, maxdepthDescendants=maxdepthDescendants)
   descendants.remove(decujus)
   descendants = [a for a in descendants if distance[a] >= last_descendant_known]

   sosa_tree = dict()
   marriage = dict()
   children = {}
   persons = {}

   all_person_nodes = set(ancestors).union(descendants)
   if all_person_nodes:
       persons = extended_personas(
           all_person_nodes, styles,
           event_types=event_types_for_pedigree, graph=graph)

       def build_sosa_tree(sosa_tree, marriage, sosa, id):
           # A person might not be in 'persons', and yet its parent be there,
           # in case we have filtered out earlier generations.
           if id in persons:
               sosa_tree[sosa] = id
               persons[id].generation = distance[graph.node_from_id(id)]
               if persons[id].marriage:
                   marriage[sosa] = persons[id].marriage
           fathers = graph.fathers(id)
           if fathers:
               build_sosa_tree(sosa_tree, marriage, sosa * 2, fathers[0].main_id)
           mothers = graph.mothers(id)
           if mothers:
               build_sosa_tree(
                   sosa_tree, marriage, sosa * 2 + 1, mothers[0].main_id)

       def build_children_tree(children, id, gen):
           if id in persons:
               children[id] = []
           sorted = [(persons[node.main_id] if node.main_id in persons else None, node)
                     for node in graph.children(id)]
           sorted.sort(key=lambda p: p[0].birth.Date if p[0] and p[0].birth else None)
           for p in sorted:
               if p[0]:
                   p[0].generation = -distance[p[1]]
                   if id in persons:
                       children[id].append(p[0].id)
               if gen < maxdepthDescendants:
                   build_children_tree(children, id=p[0].id, gen=gen + 1)

       build_sosa_tree(sosa_tree, marriage, 1, decujus.main_id)
       build_children_tree(children, id=decujus.main_id, gen=1)

   return {'generations': max_levels,
           'descendants': maxdepthDescendants,
           'persons':     persons,    # All persons indexed by id
           'sosa':        sosa_tree,  # sosa_number -> person_id
           'children':    children,   # personId -> [children_id*]
           'marriage':    marriage,   # sosa_number -> marriage info
           'styles':      styles.all_styles()}
Beispiel #6
0
    def get_json(self, params, id):
        # ??? Should lock until the view has been generated
        graph.update_if_needed()

        max_levels = int(params.get("gens", 5))
        last_descendant_known = int(params.get("desc_known", -1))

        # The number of generations for which we compute the children.
        maxdepthDescendants = int(params.get("descendant_gens", 1))

        # the number of the last generation for which the client already has
        # data, and thus do not need to be sent again. -1 to retrieve all.
        last_gen_known = int(params.get("gens_known", -1))

        # Whether to show full dates or only the year
        self.year_only = params.get('year_only', '') == 'true'

        decujus = graph.node_from_id(id)
        styles = Styles(style_rules, graph, decujus=decujus.main_id)

        distance = dict()
        people = graph.people_in_tree(
            id=decujus.main_id,
            maxdepthAncestors=max_levels - 1,
            maxdepthDescendants=maxdepthDescendants,
            distance=distance)
        ancestors = [a for a in people
                     if distance[a] >= 0 and distance[a] >= last_gen_known]
        descendants = [a for a in people
                       if a != decujus and distance[a] < 0
                       and distance[a] <= -last_descendant_known]

        sosa_tree = dict()
        marriage = dict()
        children = {}

        persons = {}
        all_person_nodes = set(ancestors).union(descendants)
        if all_person_nodes:
            persons = extended_personas(
                all_person_nodes, styles,
                event_types=event_types_for_pedigree, graph=graph)

        def add_parents(p):
            p.generation = distance[graph.node_from_id(p.id)]
            if p.generation >= max_levels:
                return

            fathers = graph.fathers(p.id)
            mothers = graph.mothers(p.id)
            p.parents = [
                None if not fathers else persons.get(fathers[0].main_id, None),
                None if not mothers else persons.get(mothers[0].main_id, None)]

            for pa in p.parents:
                if pa:
                    add_parents(pa)

        def add_children(p, gen):
            p.children = []
            sorted = [(persons[node.main_id] if node.main_id in persons else None,
                       node)
                      for node in graph.children(p.id)]
            sorted.sort(
                key=lambda c: c[0].birth.Date if c[0] and c[0].birth else None)
            for c in sorted:
                if c[0]:
                    c[0].generation = -gen # distance[c[1]]
                    p.children.append(c[0])
                    if gen < maxdepthDescendants:
                        add_children(c[0], gen + 1)

        main = persons[decujus.main_id]
        add_parents(main)
        add_children(main, gen=1)
        return {'generations': max_levels,
                'descendants': maxdepthDescendants,
                'decujus':     main, 
                'styles':      styles.all_styles()}
Beispiel #7
0
def find_candidate(graph):
    """Find all candidate personas for a merge"""

    p1 = 7843  # Emmanuel Briot
    p2 = 1     # Emmanuel Briot
    p3 = 3052  # Marie HOUTEVILLE
    p4 = 3335  # Thomine Levesque
    p5 = 1311
    p6 = 7842

    persons = extended_personas(
        nodes=set([graph.node_from_id(p1),
                   graph.node_from_id(p2),
                   graph.node_from_id(p3),
                   graph.node_from_id(p4),
                   graph.node_from_id(p5),
                   graph.node_from_id(p6)]),
        styles=None, same=same, query_groups=False)
    for p in [(p1, p2), (p2, p1), (p3, p4), (p5, p6), (p6, p5)]:
        print persons[p[0]].name, persons[p[1]].name
        score = compare(persons[p[0]], persons[p[1]])
        print "  => ", score

    # Get all persons from the database with a guess at their lifespan.
    # If we know the birth date, lifespan starts there, otherwise it starts
    #   some years before the first event
    # Likewise for death date.
    # This results is potentially over-optimistic lifespans, but still reduces
    # the number of comparisons to do.
    # The following query (and its processing) might take a while on big
    # databases, but we'll need access to the whole information for persons
    # anyway, so we might as well query everything from the start)
    # number of persons: 9171
    #   number of queries:6   total queries time:0.26s   total time:26.21s

    persons = extended_personas(
        nodes=None, styles=None, graph=graph, query_groups=False)

    # A temporary structure ordered by the first date in lifespan

    births = []
    delta = datetime.timedelta(days=maximum_lifespan * 365)

    for p in persons.itervalues():
        birth = death = None

        if p.birth is not None:
            birth = p.birth.date_sort
        if p.death is not None:
            death = p.death.date_sort
        if birth is None or death is None:
            h = [a.event.date_sort
                 for a in p.all_events.itervalues()
                 if a.event.date_sort is not None]
            if h:
                h.sort()
                birth = birth or h[0] - delta
                death = death or h[-1] + delta

        # If birth is None, that means there are no events, and we don't
        # really want to merge that person then.
        if birth:
            p.max_lifespan = death
            heapq.heappush(births, (birth, p))

    # Now we traverse the list and only compare persons that were alive at
    # the same time (otherwise we assume they cannot be merged)
    # ??? We can save time by not comparing when we have already
    # decided in the past they can't be the same

    alive = []  # Each person alive at the given date
    comparisons = 0
    same = 0

    while births:
        date, person = heapq.heappop(births)

        for a in alive:
            if a.max_lifespan < date:
                alive.remove(a)
            elif date.year < 1970:
                continue
            else:
                # print "Compare %s and %s" % (person.name, a.name)
                comparisons += 1
                score = compare(a, person)
                if score >= 150:
                    print "%d Might be the same: %d %s and %d %s, score=%d %d" % (
                        date.year, person.id, person.name, a.id, a.name, score,
                        compare(person, a))
                    same += 1

        alive.append(person)

    # Maximum comparisons (n^2) would be: 83_302_129
    # Actual comparisons with this algo:  14_635_289
    print "Number of comparisons: ", comparisons
    print "Possible merges: ", same
Beispiel #8
0
def view(request, decujus=1):
    """Display the statistics for a given person"""

    decujus = int(decujus)

    graph.update_if_needed()
    if len(graph) == 0:
        return render_to_response('geneaprove/firsttime.html',
                                  context_instance=RequestContext(request))

    # ??? The stats includes persons "Unknown" that were created during a
    # gedcom import for the purpose of preserving families. Will be fixed
    # when we store children differently (for instance in a group)

    distance = dict()
    ancestors = graph.people_in_tree(id=decujus, distance=distance)
    persons = extended_personas(nodes=ancestors,
                                styles=None,
                                event_types=event_types_for_pedigree,
                                graph=graph)

    f = graph.fathers(decujus)
    fathers = graph.people_in_tree(id=f[0], maxdepthDescendants=0) if f else []
    m = graph.mothers(decujus)
    mothers = graph.people_in_tree(id=m[0], maxdepthDescendants=0) if m else []

    cal = CalendarGregorian()

    generations = dict()  # list of persons for each generation
    for a in ancestors:
        d = distance[a]
        if d not in generations:
            generations[d] = []
        generations[d].append(a)

    ranges = []

    for index in sorted(generations.keys()):
        births = None
        deaths = None
        gen_range = [index + 1, "?", "?", ""]  # gen, min, max, legend
        for p in generations[index]:
            p = persons[p.main_id]
            if p.birth and p.birth.Date:
                if births is None or p.birth.Date < births:
                    births = p.birth.Date
                    year = p.birth.Date.year(cal)
                    if year is not None:
                        gen_range[1] = year

            if p.death and p.death.Date:
                if deaths is None or p.death.Date > deaths:
                    deaths = p.death.Date
                    year = p.death.Date.year(cal)
                    if year is not None:
                        gen_range[2] = year

        gen_range[3] = "Generation %02d (%d out of %d) (%s - %s)" \
            % (index + 1, len(generations[index]), 2 ** (index + 1),
               gen_range[1], gen_range[2])

        # Postprocess the ranges:
        #   generation n's earliest date has to be at least 15 years before
        #     its children's earliest date (can't have children before that)
        #   generation n's latest date (death) has to be after the children's
        #     generation earliest date (first birth)

        if len(ranges) > 0:
            if gen_range[1] == "?":
                gen_range[1] = ranges[-1][1] - 15
            if gen_range[2] == "?" or gen_range[2] < ranges[-1][1]:
                gen_range[2] = ranges[-1][1]
        if gen_range[2] == '?':
            gen_range[2] = datetime.datetime.now().year

        ranges.append(gen_range)

    ages = []
    for a in range(0, 120, 5):
        ages.append([a, 0, 0, 0])  # date_range, males, females, unknown

    for p in persons.itervalues():
        if p.birth and p.birth.Date and p.death and p.death.Date:
            age = p.death.Date.years_since(p.birth.Date)
            if age is not None:
                if p.sex == "M":
                    ages[int(age / 5)][1] += 1
                elif p.sex == "F":
                    ages[int(age / 5)][2] += 1
                else:
                    ages[int(age / 5)][3] += 1

    data = {
        "total_ancestors":
        len(ancestors),
        "total_father":
        len(fathers),
        "total_mother":
        len(mothers),
        "total_persons":
        len(graph),
        "ranges":
        ranges,
        "ages":
        ages,
        "decujus":
        decujus,
        "decujus_name":
        "%s %s" % (persons[decujus].given_name, persons[decujus].surname)
    }

    return HttpResponse(to_json(data), content_type='application/json')
Beispiel #9
0
    def get_json(self, params, id):
        # ??? Should lock until the view has been generated
        global_graph.update_if_needed()

        max_levels = int(params.get("gens", 5))
        last_descendant_known = int(params.get("desc_known", -1))

        # The number of generations for which we compute the children.
        maxdepthDescendants = int(params.get("descendant_gens", 1))

        # the number of the last generation for which the client already has
        # data, and thus do not need to be sent again. -1 to retrieve all.
        last_gen_known = int(params.get("gens_known", -1))

        self.year_only = params.get('year_only', '') == 'true'

        decujus = global_graph.node_from_id(id)

        styles = Styles(style_rules(), global_graph, decujus=decujus.main_id)
        styles = None  # disabled for now

        distance = dict()
        people = global_graph.people_in_tree(
            id=decujus.main_id,
            maxdepthAncestors=max_levels - 1,
            maxdepthDescendants=maxdepthDescendants,
            distance=distance)
        ancestors = [a for a in people
                     if distance[a] >= 0 and distance[a] >= last_gen_known]
        descendants = [a for a in people
                       if a != decujus and distance[a] < 0 and
                       distance[a] <= -last_descendant_known]

        sosa_tree = dict()
        marriage = dict()
        children = {}

        persons = {}
        all_person_nodes = set(ancestors).union(descendants)
        if all_person_nodes:
            persons = extended_personas(
                all_person_nodes, styles,
                event_types=event_types_for_pedigree(), graph=global_graph)

        def add_parents(p):
            p.generation = distance[global_graph.node_from_id(p.id)]
            if p.generation >= max_levels:
                return

            fathers = global_graph.fathers(p.id)
            mothers = global_graph.mothers(p.id)
            p.parents = [
                None if not fathers else fathers[0].main_id,
                None if not mothers else mothers[0].main_id]

            if fathers and fathers[0].main_id in persons:
                add_parents(persons[fathers[0].main_id])
            if mothers and mothers[0].main_id in persons:
                add_parents(persons[mothers[0].main_id])

        def add_children(p, gen):
            p.children = []
            sorted = [
                (persons[node.main_id] if node.main_id in persons else None,
                 node)
                for node in global_graph.children(p.id)]
            for c in sorted:
                if c[0]:
                    c[0].generation = -gen  # distance[c[1]]
                    p.children.append(c[0].id)
                    if gen < maxdepthDescendants:
                        add_children(c[0], gen + 1)

        main = persons[decujus.main_id]
        add_parents(main)
        add_children(main, gen=1)
        main = persons[decujus.main_id]

        layout = {}
        for p in persons.values():
            layout[p.id] = {'children': getattr(p, 'children', None),
                            'parents': getattr(p, 'parents', None)}

        return {'generations': max_levels,
                'descendants': maxdepthDescendants,
                'decujus':     decujus.main_id,
                'persons':     list(persons.values()),
                'layout':      layout,
                'styles':      styles.all_styles() if styles is not None else None}