def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # Get images and labels for CIFAR-10. # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): images, labels = general.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) # Calculate loss. loss = general.loss(logits, labels) #Calculate accuracy accuracy = general.accuracy(logits, labels) # updates the model parameters. train_op = general.train(loss, global_step) #builder = tf.saved_model.builder.SavedModelBuilder(general.MODEL_DIR) //can't save later in end() because the graph will be frozen after begin() class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs([loss, accuracy ]) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results[0] examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) if self._step % FLAGS.eval_frequency == 0: accuracy = run_values.results[1] print('%s: precision @ 1 = %.3f' % (datetime.now(), accuracy)) #if self._step == FLAGS.max_steps -1: #builder = run_values.results[2] #def end(self, session): with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[ tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook() ], config=tf.ConfigProto(log_device_placement=FLAGS. log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
def evaluate(): """Run Eval once. Args: saver: Saver. summary_writer: Summary writer. top_k_op: Top K op. summary_op: Summary op. """ with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = read_image.inputs(eval_data, FLAGS.eval_batch_size) #这样居然也可以 FLAGS.batch_size = FLAGS.eval_batch_size # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) accuracy = general.accuracy(logits, labels) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( general.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] else: print('No checkpoint file found') return summary_writer.add_graph(sess.graph) # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord=coord, daemon=True, start=True)) num_iter = int( math.ceil(FLAGS.num_examples / FLAGS.eval_batch_size)) true_count = 0 # Counts the number of correct predictions. total_sample_count = num_iter * FLAGS.batch_size step = 0 accuracy_sum = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) accuracy_sum += sess.run(accuracy) true_count += np.sum(predictions) step += 1 # Compute precision @ 1. precision = true_count / total_sample_count accuracy_avg = accuracy_sum / step print('%s: precision @ 1 = %.4f' % (datetime.now(), precision)) print('%s: accuracy @ 1 = %.4f' % (datetime.now(), accuracy_avg)) ''' 2017-06-29 17:44:36.120575: precision @ 1 = 0.396 2017-06-29 17:44:36.120575: accuracy @ 1 = 0.411 真的不一样耶,为什么呢?随机吗? ''' summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add(tag='Precision @ 1', simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10)