Beispiel #1
0
def testPwBlrWithCpsParentMoves(coefs):
    output_line = ('Bayesian Piece-Wise Linear Regression with moves on' +
                   'change-points and parent sets.')
    print(output_line)
    logger.info(output_line)  # Print and write output

    # Generate data to test our algo
    network, _, adjMatrix = generateNetwork(args.num_features, args.num_indep,
                                            coefs, args.num_samples,
                                            args.change_points, args.verbose,
                                            args.generated_noise_var)

    baNet = Network(network, args.chain_length, args.burn_in)
    baNet.infer_network('varying_nh_dbn')

    trueAdjMatrix = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, trueAdjMatrix, args.verbose)
Beispiel #2
0
def testPwBlrWithParentMoves(coefs):
    output_line = ('Bayesian Piece-Wise Linear Regression with moves on' +
                   'the parent set only with fixed changepoints. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output

    # Generate data to test our algo
    network, _, adjMatrix = generateNetwork(args.num_features, args.num_indep,
                                            coefs, args.num_samples,
                                            args.change_points, args.verbose,
                                            args.generated_noise_var)

    baNet = Network(network, args.chain_length, args.burn_in,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'fixed_nh_dbn')  # Do the fixed chnagepoints version of the DBN algo

    trueAdjMatrix = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, trueAdjMatrix, args.verbose)
Beispiel #3
0
def test_h_dbn(coefs):
    output_line = ('Bayesian Linear Regression with moves on' +
                   'the parent set only. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output

    change_points = [
    ]  # set the cps empty list because this is the homegeneous version
    # Generate data to test our algo
    network, _, adjMatrix = generateNetwork(args.num_features, args.num_indep,
                                            coefs, args.num_samples,
                                            change_points, args.verbose,
                                            args.generated_noise_var)

    baNet = Network(network, args.chain_length, args.burn_in,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'h_dbn')  # Do the fixed parents version of the DBN algo

    trueAdjMatrix = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, trueAdjMatrix, args.verbose)