Beispiel #1
0
def custom_floating_point_inverter (fpX,wf,we):

		bias=pow(2,we-1)-1

		#Convert to binary
		bin_strX=gf.hex_to_bin(fpX)
		print "Bin_str",bin_strX

		#Get sign
		sign= bin_strX[0]
		print "sign: ",sign

		#Handle special cases:
		#eZ >> exponent is; 0[all zeros], 1[all 1's], 2[non-special case]
		#mZ >> mantissa is; 0[all zeros], 1[non-special case]

		#Check exponent
		dec_expX=gf.bin_to_dec(bin_strX[1:we+1])
		if dec_expX == 0: #Exponent is all 0's
				eZ=0
		elif dec_expX == (pow(2,we)-1): #Exponent is all 1's
				eZ =1
		else: #Not a special case
				eZ=2;

		#Check mantissa
		if eZ != 2: #Only do if a special case
				count0s =0
				for i in range(wf):
						if bin_strX[1+we+i]=='0':
								count0s = count0s+1;

				if count0s == wf: #All bits in mantissa are 0's
						mZ=0
				else:
						mZ=1;

				#Report on special cases
				if eZ==0:
						if mZ==0:#Value is zero:
								return 0.0
						else: #mZ==1 : Denormalized number
								print '\033[1;41mError, denormalized values are not part of the accepted format for hydra\033[1;m'
								return "XXXXXXXXX"
				else: #eZ==1:
						if mZ==0:#Value is infinity
								if sign == '0':
										return "+INF"
								else:
										return "-INF"
						else: #mZ==1: value is not a number
								return "NAN"


		#If not a special case continue as normal
		#Determine exponent
		print "exp bits: ", bin_strX[1:we+1]
		expX=int(dec_expX-bias)
		print "expX: ",expX

		#Multiply out of scientific notation
		print "mant bits: ", bin_strX[we+1:]
		mantissaX=bin_strX[we+1:] 

		bin_value ="1"+ mantissaX #Mantissa with the implied one added on in front

		if expX>=wf:#Add zeros onto the end
				for i in range(expX-wf):
						bin_value=bin_value+"0"

		elif expX<wf and expX>0: #Place the point in the correct location, all bits already present
				bin_value = bin_value[0:expX+1]+"."+bin_value[expX+1:]
		
		elif expX<0: #Add zeros and the point infront of the value
				for i in range(int(abs(expX)-1)):
						bin_value = "0"+bin_value
				bin_value = "0."+bin_value
		elif expX==0:
				bin_value=bin_value[0]+"."+bin_value[1:]
	
		#Convert binary to decimal
		float_value = gf.bin_to_dec(bin_value)
		if sign == '0':
				return float_value
		else:
				return "-"+str(float_value)
Beispiel #2
0
def custom_floating_point_inverter (fpX,wf,we):

		bias=pow(2,we-1)-1

		#Convert to binary
		bin_strX=gf.hex_to_bin(fpX)

		#Get sign
		sign= bin_strX[0]

		#Handle special cases:
		#eZ >> exponent is; 0[all zeros], 1[all 1's], 2[non-special case]
		#mZ >> mantissa is; 0[all zeros], 1[only last bit is a 1 meaning*] 2[non-special case]

		#Check exponent
		dec_expX=gf.bin_to_dec(bin_strX[1:we+1])
		if dec_expX == 0: #Exponent is all 0's
				eZ=0
		elif dec_expX == (pow(2,we)-1): #Exponent is all 1's
				eZ =1
		else: #Not a special case
				eZ=2;

		#Check mantissa
		if eZ != 2: #Only do if a special case

				count0s =0
				for i in range(wf):
						if bin_strX[we+i+1]=='0':
								count0s = count0s+1

				if count0s == wf: #All bits in mantissa are 0's
						mZ=0
				elif count0s == 1 and bin_strX[wf-1]=='1': #Special case of mantissa is all zeros except the last bit
						mZ=1
				else:
						mZ=2;

				#Report on special cases
				if eZ==0:
						if mZ==0:#Value is zero:
								return 0.0
						elif mZ ==1:	#Logical TRUE, or could be a denormalised number but unlikely as they shouldn't be getting created in any case
								return "TRUE"
						else: #mZ==2 : Denormalized number
								print '\033[1;41mError, denormalized values are not part of the accepted format for hydra\033[1;m'
								return "XXXXXXXXX"
				else: #eZ==1:
						if mZ==0:#Value is infinity
								if sign == '0':
										return "+INF"
								else:
										return "-INF"
						else: #mZ==1 or 2: value is not a number
								return "NAN"


		#If not a special case continue as normal
		#Determine exponent
		expX=dec_expX-bias

		#Multiply out of scientific notation
		mantissaX=bin_strX[we+1:] 

		bin_value ="1"+ mantissaX #Mantissa with the implied one added on in front

		if expX>=wf:#Add zeros onto the end
				for i in range(expX-wf):
						bin_value=bin_value+"0"

		elif expX<wf and expX>0: #Place the point in the correct location, all bits already present
				bin_value = bin_value[0:expX+1]+"."+bin_value[expX+1:]
		
		elif expX<0: #Add zeros and the point infront of the value
				for i in range(int(abs(expX)-1)):
						bin_value = "0"+bin_value
				bin_value = "0."+bin_value
		elif expX==0:
				bin_value=bin_value[0]+"."+bin_value[1:]
	
		#Convert binary to decimal
		float_value = gf.bin_to_dec(bin_value)
		if sign == '0':
				return float_value
		else:
				return "-"+str('%25.18g' %float_value)
Beispiel #3
0
def custom_floating_point_inverter(fpX, wf, we):

    bias = pow(2, we - 1) - 1

    #Convert to binary
    bin_strX = gf.hex_to_bin(fpX)
    print "Bin_str", bin_strX

    #Get sign
    sign = bin_strX[0]
    print "sign: ", sign

    #Handle special cases:
    #eZ >> exponent is; 0[all zeros], 1[all 1's], 2[non-special case]
    #mZ >> mantissa is; 0[all zeros], 1[non-special case]

    #Check exponent
    dec_expX = gf.bin_to_dec(bin_strX[1:we + 1])
    if dec_expX == 0:  #Exponent is all 0's
        eZ = 0
    elif dec_expX == (pow(2, we) - 1):  #Exponent is all 1's
        eZ = 1
    else:  #Not a special case
        eZ = 2

    #Check mantissa
    if eZ != 2:  #Only do if a special case
        count0s = 0
        for i in range(wf):
            if bin_strX[1 + we + i] == '0':
                count0s = count0s + 1

        if count0s == wf:  #All bits in mantissa are 0's
            mZ = 0
        else:
            mZ = 1

        #Report on special cases
        if eZ == 0:
            if mZ == 0:  #Value is zero:
                return 0.0
            else:  #mZ==1 : Denormalized number
                print '\033[1;41mError, denormalized values are not part of the accepted format for hydra\033[1;m'
                return "XXXXXXXXX"
        else:  #eZ==1:
            if mZ == 0:  #Value is infinity
                if sign == '0':
                    return "+INF"
                else:
                    return "-INF"
            else:  #mZ==1: value is not a number
                return "NAN"

    #If not a special case continue as normal
    #Determine exponent
    print "exp bits: ", bin_strX[1:we + 1]
    expX = int(dec_expX - bias)
    print "expX: ", expX

    #Multiply out of scientific notation
    print "mant bits: ", bin_strX[we + 1:]
    mantissaX = bin_strX[we + 1:]

    bin_value = "1" + mantissaX  #Mantissa with the implied one added on in front

    if expX >= wf:  #Add zeros onto the end
        for i in range(expX - wf):
            bin_value = bin_value + "0"

    elif expX < wf and expX > 0:  #Place the point in the correct location, all bits already present
        bin_value = bin_value[0:expX + 1] + "." + bin_value[expX + 1:]

    elif expX < 0:  #Add zeros and the point infront of the value
        for i in range(int(abs(expX) - 1)):
            bin_value = "0" + bin_value
        bin_value = "0." + bin_value
    elif expX == 0:
        bin_value = bin_value[0] + "." + bin_value[1:]

    #Convert binary to decimal
    float_value = gf.bin_to_dec(bin_value)
    if sign == '0':
        return float_value
    else:
        return "-" + str(float_value)