Beispiel #1
0
def create_generators(args):
    """
    Create generators for training and validation.

    Args
        args: parseargs object containing configuration for generators.
        preprocess_image: Function that preprocesses an image for the network.
    """
    common_args = {
        'batch_size': args.batch_size,
        'phi': args.phi,
    }

    # create random transform generator for augmenting training data
    if args.random_transform:
        misc_effect = MiscEffect()
        visual_effect = VisualEffect()
    else:
        misc_effect = None
        visual_effect = None

    if args.dataset_type == 'pascal':
        from generators.pascal import PascalVocGenerator
        train_generator = PascalVocGenerator(args.pascal_path,
                                             'trainval',
                                             skip_difficult=True,
                                             misc_effect=misc_effect,
                                             visual_effect=visual_effect,
                                             **common_args)

        validation_generator = PascalVocGenerator(args.pascal_path,
                                                  'val',
                                                  skip_difficult=True,
                                                  shuffle_groups=False,
                                                  **common_args)
    elif args.dataset_type == 'csv':
        from generators.csv_ import CSVGenerator
        train_generator = CSVGenerator(args.annotations_path,
                                       args.classes_path,
                                       misc_effect=misc_effect,
                                       visual_effect=visual_effect,
                                       **common_args)

        if args.val_annotations_path:
            validation_generator = CSVGenerator(args.val_annotations_path,
                                                args.classes_path,
                                                shuffle_groups=False,
                                                **common_args)
        else:
            validation_generator = None
    else:
        raise ValueError('Invalid data type received: {}'.format(
            args.dataset_type))

    return train_generator, validation_generator
Beispiel #2
0
def main(args=None):
    if len(sys.argv) is 3:
        model_path = str(sys.argv[1])
        dataset_path = str(sys.argv[2])
    else:
        print(
            "Pass model path and dataset path in respectively as command line argument"
        )
        exit()

    from generators.pascal import PascalVocGenerator
    from model import efficientdet
    import os

    os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    phi = 4
    weighted_bifpn = False
    common_args = {
        'batch_size': 1,
        'phi': phi,
    }
    test_generator = PascalVocGenerator(dataset_path,
                                        'test',
                                        shuffle_groups=False,
                                        skip_truncated=False,
                                        skip_difficult=True,
                                        **common_args)
    model_path = model_path
    input_shape = (test_generator.image_size, test_generator.image_size)
    anchors = test_generator.anchors
    num_classes = test_generator.num_classes()
    model, prediction_model = efficientdet(phi=phi,
                                           num_classes=num_classes,
                                           weighted_bifpn=weighted_bifpn)
    prediction_model.load_weights(model_path, by_name=True)
    average_precisions = evaluate(test_generator,
                                  prediction_model,
                                  visualize=False)
    # compute per class average precision
    total_instances = []
    precisions = []
    for label, (average_precision,
                num_annotations) in average_precisions.items():
        print('{:.0f} instances of class'.format(num_annotations),
              test_generator.label_to_name(label),
              'with average precision: {:.4f}'.format(average_precision))
        total_instances.append(num_annotations)
        precisions.append(average_precision)
    mean_ap = sum(precisions) / sum(x > 0 for x in total_instances)
    print('mAP: {:.4f}'.format(mean_ap))
Beispiel #3
0
def create_generators(train=False):

    train_generator = PascalVocGenerator(image_dir=cfg.IMAGE_DIR,
                                         annotation_dir=cfg.ANNOTATION_DIR,
                                         text_file=cfg.TRAIN_TEXT,
                                         skip_difficult=True,
                                         classes=cfg.CLASSES,
                                         multi_scale=cfg.MULTI_SCALE,
                                         **cfg.COMMON_ARGS)

    validation_generator = PascalVocGenerator(
        image_dir=cfg.IMAGE_DIR,
        annotation_dir=cfg.ANNOTATION_DIR,
        text_file=cfg.VAL_TEXT,
        skip_difficult=True,
        classes=cfg.CLASSES,
        shuffle_groups=False,
        **cfg.COMMON_ARGS,
        train_data=False)

    return train_generator, validation_generator
Beispiel #4
0
def create_generators(args):
    """
    Create generators for training and validation.

    Args
        args: parseargs object containing configuration for generators.
        preprocess_image: Function that preprocesses an image for the network.
    """
    common_args = {
        'batch_size': args.batch_size,
        'phi': args.phi,
        'detect_text': args.detect_text,
        'detect_quadrangle': args.detect_quadrangle
    }

    # create random transform generator for augmenting training data
    if args.random_transform:
        misc_effect = MiscEffect()
        visual_effect = VisualEffect()
    else:
        misc_effect = None
        visual_effect = None

    if args.dataset_type == 'pascal':
        from generators.pascal import PascalVocGenerator
        train_generator = PascalVocGenerator(
            args.pascal_path,
            'trainval',
            skip_difficult=True,
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            image_extension=".png",
            **common_args
        )

        validation_generator = PascalVocGenerator(
            args.pascal_path,
            'val',
            skip_difficult=True,
            shuffle_groups=False,
            image_extension=".png",
            **common_args
        )
    elif args.dataset_type == 'csv':
        from generators.csv_ import CSVGenerator
        train_generator = CSVGenerator(
            args.annotations_path,
            args.classes_path,
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            **common_args
        )

        if args.val_annotations_path:
            validation_generator = CSVGenerator(
                args.val_annotations_path,
                args.classes_path,
                shuffle_groups=False,
                **common_args
            )
        else:
            validation_generator = None
    elif args.dataset_type == 'coco':
        # import here to prevent unnecessary dependency on cocoapi
        from generators.coco import CocoGenerator
        train_generator = CocoGenerator(
            args.coco_path,
            'train2017',
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            group_method='random',
            **common_args
        )

        validation_generator = CocoGenerator(
            args.coco_path,
            'val2017',
            shuffle_groups=False,
            **common_args
        )
    else:
        raise ValueError('Invalid data type received: {}'.format(args.dataset_type))

    return train_generator, validation_generator
Beispiel #5
0
if __name__ == '__main__':
    from generators.pascal import PascalVocGenerator
    from model import efficientdet
    import os

    os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    phi = 1
    weighted_bifpn = False
    common_args = {
        'batch_size': 1,
        'phi': phi,
    }
    test_generator = PascalVocGenerator('datasets/VOC2007',
                                        'test',
                                        shuffle_groups=False,
                                        skip_truncated=False,
                                        skip_difficult=True,
                                        **common_args)
    model_path = 'checkpoints/2019-12-03/pascal_05_0.6283_1.1975_0.8029.h5'
    input_shape = (test_generator.image_size, test_generator.image_size)
    anchors = test_generator.anchors
    num_classes = test_generator.num_classes()
    model, prediction_model = efficientdet(phi=phi,
                                           num_classes=num_classes,
                                           weighted_bifpn=weighted_bifpn)
    prediction_model.load_weights(model_path, by_name=True)
    average_precisions = evaluate(test_generator,
                                  prediction_model,
                                  visualize=False)
    # compute per class average precision
    total_instances = []
Beispiel #6
0
def main():

    generator = PascalVocGenerator(cfg.IMAGE_DIR,
                                   cfg.ANNOTATION_DIR,
                                   cfg.TEST_TEXT,
                                   classes=cfg.CLASSES,
                                   skip_difficult=True,
                                   train_data=False)

    num_classes = generator.num_classes()
    classes = list(generator.classes.keys())
    colors = [
        np.random.randint(0, 256, 3).tolist() for i in range(num_classes)
    ]
    model = centernet(num_classes,
                      score_threshold=cfg.SCORE_THRESHOLD,
                      nms=cfg.NMS,
                      flip_test=cfg.FLIP_TEST,
                      training=False)
    model.load_weights(model_path, by_name=True, skip_mismatch=True)

    for i in range(10):
        image = generator.load_image(i)
        #cv2.imwrite("./results/{}_o.jpg".format(i), image)
        src_image = image.copy()

        c = np.array([image.shape[1] / 2., image.shape[0] / 2.],
                     dtype=np.float32)
        s = max(image.shape[0], image.shape[1]) * 1.0

        tgt_w = generator.input_size
        tgt_h = generator.input_size
        image = generator.preprocess_image(image,
                                           c,
                                           s,
                                           tgt_w=tgt_w,
                                           tgt_h=tgt_h)

        if cfg.FLIP_TEST:
            flipped_image = image[:, ::-1]
            inputs = np.stack([image, flipped_image], axis=0)
        else:
            inputs = np.expand_dims(image, axis=0)

        detections = model.predict_on_batch(inputs)[0]

        scores = detections[:, 4]

        indices = np.where(scores > cfg.SCORE_THRESHOLD)[0]

        detections = detections[indices]
        detections_copy = detections.copy()
        detections = detections.astype(np.float64)
        trans = get_affine_transform(c, s, (tgt_w // 4, tgt_h // 4), inv=1)

        for j in range(detections.shape[0]):
            detections[j, 0:2] = affine_transform(detections[j, 0:2], trans)
            detections[j, 2:4] = affine_transform(detections[j, 2:4], trans)

        detections[:, [0, 2]] = np.clip(detections[:, [0, 2]], 0,
                                        src_image.shape[1])
        detections[:, [1, 3]] = np.clip(detections[:, [1, 3]], 0,
                                        src_image.shape[0])

        for detection in detections:
            xmin = int(round(detection[0]))
            ymin = int(round(detection[1]))
            xmax = int(round(detection[2]))
            ymax = int(round(detection[3]))
            score = '{:.4f}'.format(detection[4])
            class_id = int(detection[5])
            color = colors[class_id]
            class_name = classes[class_id]
            label = '-'.join([class_name, score])
            ret, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
                                            0.5, 1)

            cv2.rectangle(src_image, (xmin, ymin), (xmax, ymax), color, 1)
            cv2.rectangle(src_image, (xmin, ymax - ret[1] - baseline),
                          (xmin + ret[0], ymax), color, -1)
            cv2.putText(src_image, label, (xmin, ymax - baseline),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
        #cv2.imwrite("./results/{}_r.jpg".format(i), src_image)
        cv2.imshow('image', src_image)
        cv2.waitKey(0)
Beispiel #7
0
        self.crop_prob = crop_prob
        self.translate_prob = translate_prob

    def __call__(self, image, boxes):
        image, boxes = rotate(image, boxes, prob=self.rotate_prob)
        image, boxes = crop(image, boxes, prob=self.crop_prob)
        image, boxes = translate(image, boxes, prob=self.translate_prob)
        return image, boxes


if __name__ == '__main__':
    from generators.pascal import PascalVocGenerator

    train_generator = PascalVocGenerator('datasets/VOC0712',
                                         'trainval',
                                         skip_difficult=True,
                                         anchors_path='voc_anchors_416.txt',
                                         batch_size=1)
    misc_effect = MiscEffect()
    for i in range(train_generator.size()):
        image = train_generator.load_image(i)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        annotations = train_generator.load_annotations(i)
        boxes = annotations['bboxes']
        for box in boxes.astype(np.int32):
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]),
                          (0, 0, 255), 2)
        src_image = image.copy()
        cv2.namedWindow('src_image', cv2.WINDOW_NORMAL)
        cv2.imshow('src_image', src_image)
        image, boxes = misc_effect(image, boxes)
    from generators.pascal import PascalVocGenerator
    from model import efficientdet
    import os

    os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    phi = 1
    weighted_bifpn = False
    common_args = {
        'batch_size': 1,
        'phi': phi,
    }
    test_generator = PascalVocGenerator(
        'datasets/VOC2007',
        'test',
        shuffle_groups=False,
        skip_truncated=False,
        skip_difficult=True,
        **common_args
    )
    model_path = 'checkpoints/2019-12-03/pascal_05_0.6283_1.1975_0.8029.h5'
    input_shape = (test_generator.image_size, test_generator.image_size)
    anchors = test_generator.anchors
    num_classes = test_generator.num_classes()
    model, prediction_model = efficientdet(phi=phi, num_classes=num_classes, weighted_bifpn=weighted_bifpn)
    prediction_model.load_weights(model_path, by_name=True)
    average_precisions = evaluate(test_generator, prediction_model, visualize=False)
    # compute per class average precision
    total_instances = []
    precisions = []
    for label, (average_precision, num_annotations) in average_precisions.items():
        print('{:.0f} instances of class'.format(num_annotations), test_generator.label_to_name(label),
Beispiel #9
0
                              border_value=self.border_value)
        image, boxes = flipx(image, boxes, prob=self.flip_prob)
        image, boxes = crop(image, boxes, prob=self.crop_prob)
        image, boxes = translate(image,
                                 boxes,
                                 prob=self.translate_prob,
                                 border_value=self.border_value)
        return image, boxes


if __name__ == '__main__':
    from generators.pascal import PascalVocGenerator

    train_generator = PascalVocGenerator('datasets/VOC0712',
                                         'trainval',
                                         skip_difficult=True,
                                         batch_size=1,
                                         shuffle_groups=False)
    misc_effect = MiscEffect()
    for i in range(train_generator.size()):
        image = train_generator.load_image(i)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        annotations = train_generator.load_annotations(i)
        boxes = annotations['bboxes']
        for box in boxes.astype(np.int32):
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]),
                          (0, 0, 255), 2)
        src_image = image.copy()
        # cv2.namedWindow('src_image', cv2.WINDOW_NORMAL)
        cv2.imshow('src_image', src_image)
        # image, boxes = misc_effect(image, boxes)
Beispiel #10
0
from generators.pascal import PascalVocGenerator
from models.resnet import centernet
import cv2
import os
import numpy as np
import time
from generators.utils import affine_transform, get_affine_transform
import os.path as osp

os.environ['CUDA_VISIBLE_DEVICES'] = '0'
generator = PascalVocGenerator(
    'datasets/VOC2007',
    'test',
    shuffle_groups=False,
    skip_truncated=False,
    skip_difficult=True,
)
model_path = 'checkpoints/2019-11-10/pascal_81_1.5415_3.0741_0.6860_0.7057_0.7209_0.7290.h5'
num_classes = generator.num_classes()
classes = list(generator.classes.keys())
flip_test = True
nms = True
keep_resolution = False
score_threshold = 0.1
colors = [np.random.randint(0, 256, 3).tolist() for i in range(num_classes)]
model, prediction_model, debug_model = centernet(
    num_classes=num_classes,
    nms=nms,
    flip_test=flip_test,
    freeze_bn=True,
    score_threshold=score_threshold)
    hm_pred, wh_pred, reg_pred, hm_true, wh_true, reg_true, reg_mask, indices = args
    hm_loss = focal_loss(hm_pred, hm_true)
    wh_loss = 0.1 * reg_l1_loss(wh_pred, wh_true, indices, reg_mask)
    reg_loss = reg_l1_loss(reg_pred, reg_true, indices, reg_mask)
    total_loss = hm_loss + wh_loss + reg_loss
    return total_loss


if __name__ == '__main__':
    from generators.pascal import PascalVocGenerator
    from models.resnet import centernet
    import numpy as np

    generator = PascalVocGenerator('datasets/VOC0712',
                                   'train',
                                   skip_difficult=True,
                                   shuffle_groups=False,
                                   batch_size=1)

    model, prediction_model, debug_model = centernet(num_classes=20)
    debug_model.load_weights(
        'checkpoints/2019-11-06/pascal_31_1.0370_10.7204.h5',
        by_name=True,
        skip_mismatch=True)
    sess = tf.Session()
    for inputs, targets in generator:
        image_input, hm_true, wh_true, reg_true, reg_mask, indices = inputs
        hm_pred, wh_pred, reg_pred = debug_model.predict(image_input)
        np.save('debug/1106/hm_true', hm_true)
        np.save('debug/1106/wh_true', wh_true)
        np.save('debug/1106/reg_true', reg_true)
def create_generators(args):
    """
    Create generators for training and validation.

    Args
        args: parseargs object containing configuration for generators.
        preprocess_image: Function that preprocesses an image for the network.
    """
    common_args = {
        "batch_size": args.batch_size,
        "phi": args.phi,
        "detect_text": args.detect_text,
        "detect_quadrangle": args.detect_quadrangle,
    }

    # create random transform generator for augmenting training data
    if args.random_transform:
        misc_effect = MiscEffect()
        visual_effect = VisualEffect()
    else:
        misc_effect = None
        visual_effect = None

    if args.dataset_type == "pascal":
        from generators.pascal import PascalVocGenerator

        train_generator = PascalVocGenerator(
            args.pascal_path,
            "trainval",
            skip_difficult=True,
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            **common_args,
        )

        validation_generator = PascalVocGenerator(
            args.pascal_path,
            "val",
            skip_difficult=True,
            shuffle_groups=False,
            **common_args,
        )
    elif args.dataset_type == "csv":
        from generators.csv_ import CSVGenerator

        train_generator = CSVGenerator(
            args.annotations_path,
            args.classes_path,
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            **common_args,
        )

        if args.val_annotations_path:
            validation_generator = CSVGenerator(
                args.val_annotations_path,
                args.classes_path,
                shuffle_groups=False,
                **common_args,
            )
        else:
            validation_generator = None
    elif args.dataset_type == "coco":
        # import here to prevent unnecessary dependency on cocoapi
        from generators.coco import CocoGenerator

        train_generator = CocoGenerator(
            args.coco_path,
            "train2017",
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            group_method="random",
            **common_args,
        )

        validation_generator = CocoGenerator(args.coco_path,
                                             "val2017",
                                             shuffle_groups=False,
                                             **common_args)
    else:
        raise ValueError("Invalid data type received: {}".format(
            args.dataset_type))

    return train_generator, validation_generator
Beispiel #13
0
from generators.pascal import PascalVocGenerator
from models.resnet import centernet
import cv2
import os
import numpy as np
import time
from generators.utils import affine_transform, get_affine_transform
import os.path as osp

os.environ['CUDA_VISIBLE_DEVICES'] = '0'
generator = PascalVocGenerator(
    r'D:\datasets\voc_dataset',
    'trainval',
    shuffle_groups=False,
    skip_truncated=False,
    skip_difficult=True,
)
model_path = r'C:\work\keras-CenterNet\checkpoints\2021-04-21\pascal_01_153.2941_16.5124.h5'
num_classes = generator.num_classes()
classes = list(generator.classes.keys())
flip_test = True
nms = True
keep_resolution = False
score_threshold = 0.1
colors = [np.random.randint(0, 256, 3).tolist() for i in range(num_classes)]
model, prediction_model, debug_model = centernet(num_classes=num_classes,
                                                 nms=nms,
                                                 flip_test=flip_test,
                                                 freeze_bn=True,
                                                 score_threshold=score_threshold)
prediction_model.load_weights(model_path, by_name=True, skip_mismatch=True)
    from generators.csv import CSVGenerator
    from model import efficientdet
    import os

    os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    phi = 1
    weighted_bifpn = False
    common_args = {
        'batch_size': 1,
        'phi': phi,
    }
    test_generator = PascalVocGenerator(
        'datasets/config_folder/dataset/test.csv',
        'datasets/config_folder/dataset/classes.csv',
        base_dir="D:/Study\Masters Data/Masters Thesis/HSU/EfficientDet-master",
        detect_quadrangle=False,
        detect_text=False,
        **kwargs)
    model_path = 'checkpoints/2020-06-21 (MD B1)/csv_100_0.1140_0.7599.h5'
    input_shape = (test_generator.image_size, test_generator.image_size)
    anchors = test_generator.anchors
    num_classes = test_generator.num_classes()
    model, prediction_model = efficientdet(phi=phi,
                                           num_classes=num_classes,
                                           weighted_bifpn=weighted_bifpn)
    prediction_model.load_weights(model_path, by_name=True)
    average_precisions = evaluate(test_generator,
                                  prediction_model,
                                  visualize=False)
    # compute per class average precision