Beispiel #1
0
def breed_loop(N, data, gdata, save_interval):
  ffts = []
  min_errs = []
  for n in range(N):
    # print("Generation:", n)
    errors, goal = gen.fit_all(data, gdata)   
    new_data = np.zeros(np.shape(data))
    for i in range(len(data)//2): 
      if goal:
        print("Goal!")

      r = np.arange(len(errors))
      i1, i2 = np.random.choice(r, 2, p=errors)
      cross1, cross2 = gen.crossover(data[i1], data[i2])
      
      cross1, cross2 = gen.mutate(cross1, get_temp(n+1)), gen.mutate(cross2, get_temp(n+1))
      # cross1, cross2 = gen.mutate(cross1, .5), gen.mutate(cross2, .5)
      new_data[i], new_data[i+(len(data)//2)] = cross1, cross2

      if n % save_interval == 0 and i == 0:
        play_fft(cross1)
    
    data = new_data
    if n % 25 == 0:
        print(f'min error {np.amin(errors)}')
        min_errs.append(np.amin(errors))
  
  return ffts, min_errs
Beispiel #2
0
def main():

    pop_size = 1000
    max_runs = 50

    mutate_ratio = 0.2

    # Which data set to use.
    mode = 1

    random.seed()

    pop = []

    # Create a random population of trees.
    for i in range(pop_size):
        pop.append(ExprTree(mode))

    print "Population created."

    for tree in pop:
        print tree

    for i in range(max_runs):

        print "Beginning crossover " + str(i) + ":"

        # Crossover and mutate population.
        genetic.mutate(pop, mutate_ratio, mode)
        pop = genetic.crossover(pop, mode)

        print "Crossover " + str(i) + " complete."
def main():
    map_size = 100
    p_type = 10  # dont get when we will use it
    max_route_length = 150
    population_size = 30
    number_of_each_new_generation = 10
    number_of_couples = int(
        (population_size - number_of_each_new_generation) / 2)
    probability = 0.05

    the_map = initialize(p_type, map_size)
    population = create_starting_population(max_route_length, population_size,
                                            the_map)
    last_distance = 1000000000

    for i in range(0, 100):
        scores = score_population(population, the_map)
        new_population = []

        best = population[np.argmin(scores)]
        number_of_moves = len(best)
        distance = fitness(best, the_map)

        if distance != last_distance:
            print(
                'Iteration %i: Best so far is %i steps for a distance of %f' %
                (i, number_of_moves, distance))
            plot_best(the_map, best, i)

        for j in range(0, number_of_couples):
            new_route1, new_route2 = crossover(
                population[pick_breeder(scores)],
                population[pick_breeder(scores)])
            new_population.extend([new_route1, new_route2])

        # mutate the current members of new_population
        for j in range(0, len(new_population)):
            new_population[j] = mutate(new_population[j], probability, the_map)

        new_population.append(population[np.argmin(scores)])
        while len(new_population) < population_size:
            new_population.append(create_new_member(max_route_length, the_map))

        population = new_population[::]  # copy a values
Beispiel #4
0
                                  new_population)
    print('Generation calculation time : ', time.time() - calculation_time)
    best_outputs.append(np.max(fitness))

    print('Number of creatures with best fitness : ',
          (fitness == np.max(fitness)).sum())

    # The best result in the current generation.
    print("Best result : ", best_outputs[-1])

    # Selecting the best parents for mating.
    parents = genetic.select_mating_pool(new_population, fitness, n_parents)

    # Generating next generation.
    offspring_crossover = genetic.crossover(
        parents,
        offspring_size=(population_shape[0] - parents.shape[0], n_features))

    # Adding some variations to the offspring using mutation.
    offspring_mutation = genetic.mutation(offspring_crossover, n_mutations)

    # Creating the new population based on the parents and offspring.
    new_population[0:parents.shape[0], :] = parents
    new_population[parents.shape[0]:, :] = offspring_mutation

# Getting the best solution after finishing all generations.
# At first, the fitness is calculated for each solution in the final generation.
fitness = genetic.pop_fitness(X_train, X_test, y_train, y_test, new_population)
# Then return the index of that solution corresponding to the best fitness.
best_match_idx = np.where(fitness == np.max(fitness))[0]
best_match_idx = best_match_idx[0]
Beispiel #5
0
######################################################################
# GA Program #3: Simulates crossover events between 2 chromosomes
######################################################################
import sys, os
sys.path.append(os.path.join(os.path.dirname(os.getcwd()), 'src'))

import genetic as g
c1 = g.Chromosome([0]*50, [1,2,3,4])          # integer chromosome
c2 = g.Chromosome(['A']*50, ['A','B','C','D'])  # alphabet chromosome
print('INITIAL CHROMOSOMES ==================================')
print('Integer chromosome sequence: ' + str(c1.sequence))
print('Alphabet chromosome sequence: ' + str(c2.sequence))
for x in range(10, 50, 10):
    print()
    (g1, g2) = g.crossover(c1, c2, x)
    print('Crossover at base ' + str(x))
    print('Integer chromosome sequence: ' + str(g1.sequence))
    print('Alphabet chromosome sequence: ' + str(g2.sequence))
Beispiel #6
0
######################################################################
# GA Program #3: Simulates crossover events between 2 chromosomes
######################################################################
import sys, os
sys.path.append(os.path.join(os.path.dirname(os.getcwd()), 'copads'))

import genetic as g
c1 = g.Chromosome([0] * 50, [1, 2, 3, 4])  # integer chromosome
c2 = g.Chromosome(['A'] * 50, ['A', 'B', 'C', 'D'])  # alphabet chromosome
print('INITIAL CHROMOSOMES ==================================')
print('Integer chromosome sequence: ' + str(c1.sequence))
print('Alphabet chromosome sequence: ' + str(c2.sequence))
for x in range(10, 50, 10):
    print()
    (g1, g2) = g.crossover(c1, c2, x)
    print('Crossover at base ' + str(x))
    print('Integer chromosome sequence: ' + str(g1.sequence))
    print('Alphabet chromosome sequence: ' + str(g2.sequence))
Beispiel #7
0
    list_fitness.append(fitness)
    list_objective.append(objective)
    list_inputs.append(pop_inputs.tolist())
    list_other_metrics.append(other_metrics)

    # top performance ANN model in the population are selected for mating.
    parents = genetic.mating_pool(pop_inputs, objective.copy(),
                                  num_parents_mating)
    print("Parents")
    print(parents)
    parents = numpy.asarray(parents)

    # Crossover to generate the next geenration of solutions
    offspring_crossover = genetic.crossover(
        parents,
        offspring_size=(int(num_parents_mating / 2), pop_inputs.shape[1]))
    print("Crossover")
    print(offspring_crossover)

    # Mutation for population variation
    offspring_mutation = genetic.mutation(offspring_crossover,
                                          sol_per_pop,
                                          num_parents_mating,
                                          mutation_percent=mutation_percent)

    print("Mutation")
    print(offspring_mutation)

    # New population for generation g+1
    pop_inputs[0:len(offspring_crossover), :] = offspring_crossover
Beispiel #8
0
def crossover(i, j):
    return [frombin(i) for i in genetic.crossover(tobin(i), tobin(j))]
while iter < MAX_NUM_ITER:
    print('Generación Numero: ', iter)

    poblacionDecimal = genetic.poblacionEnDecimal(poblacion, ORDEN_MATRIZ,
                                                  BITS_GEN)
    #print(poblacionDecimal)

    poblacionFit = genetic.poblacionFitness(poblacionDecimal, OBJETIVO)
    print('Fitness de la Poblacion: ', poblacionFit)

    poblacionEmparejada = genetic.generaParejas(poblacionFit, poblacion,
                                                N_BITS)
    #print(poblacionEmparejada)

    poblacionCruzada = genetic.crossover(PUNTOS_CROSSOVER, poblacionEmparejada)
    #print(poblacionCruzada)

    poblacionNueva = genetic.mutacion(FACTOR_MUTACION, NUM_BITS_MUTADOS,
                                      poblacionCruzada)
    #print(poblacionNueva)

    poblacion = poblacionNueva

    print('Mejor fitness: ', min(poblacionFit))
    print('Peor fitness: ', max(poblacionFit))
    promedio = sum(poblacionFit) / len(poblacionFit)
    print('Promedio: ', promedio)

    if min(poblacionFit) == 0:
        posicion = poblacionFit.index(min(poblacionFit))