Beispiel #1
0
def make_ga_grid(data, hybrid):
    # init ga
    estimator = genetic_algorithm.GeneticAlgorithm()
    param_grid = {
        "hybrid": [hybrid],
        "input_size": [data.shape[1] - 1],
        "hidden_layer_size": HIDDEN_LAYER_SIZES,
        "output_size": OUTPUT_SIZE,
        "population_size": [5],
        "selection_size": [3],
        "learning_rate": LEARNING_RATES,
        "epochs": [5],
        "generations": [2],
        "cases": [["mse", "l2", "l1"]],
        "verbose": [0],  # ****** REMEMBER TO TOGGLE VERBOSITY ******
    }
    if hybrid is True:
        print("\n\n***** Training Hybrid GA *****\n\n")
    else:
        print("\n\n***** Training GA *****\n\n")
    return cross_validate_on_data(estimator, param_grid, data)
Beispiel #2
0
gridX = 100
gridY = 100
gridZ = 100
thickness = 5
occ_grid = None
objectives = []
no_of_objectives = 5
obstacles_per_axis = 3
starting_point = Point(0,0,0)

if __name__ == "__main__":
    # Create a 3D Occupancy Grid
    print '\033[94m Generating random occupancy grid and objectives... \033[0m'
    occ_grid, objectives, starting_point = mapPseudoRandomizer(gridX, gridY, gridZ, thickness, obstacles_per_axis, no_of_objectives)

    alg = ga.GeneticAlgorithm(500, 0.00001, 5, 2, 40)

    print '\033[94m Generating random initial solutions... \033[0m'
    paths = alg.initialRandomSolutions(starting_point, objectives)

    max_generations = 25000 # We should better wait for convergence

    for p in range(len(paths)):
        paths[p].fitness = alg.fitness(paths[p].points, occ_grid)

    max_p = max(paths, key=lambda x:x.fitness)

    max_f = 0
    count = 0

    for i in range(max_generations):
Beispiel #3
0
#######################################################
#######################################################

save.create_directory(SAVING_DIRECTORY)
save.create_directory(SCORE_DIRECTORY)
save.create_directory(IMAGES_DIRECTORY)

# == INIT GAME ==
pygame.init()  # Initializing library
screen = pygame.display.set_mode(SIZE_SCREEN)  # Initializing screen
FPSCLOCK = pygame.time.Clock()  # Refreshing screen rate

# == INIT NNA, GA AND POPULATION ==
neuralNetwork = nna.ArtificialNeuralNetwork(INPUTS_SIZE, HIDDEN_LAYER_SIZE,
                                            OUTPUTS_SIZE)
geneticAlgorithm = ga.GeneticAlgorithm(CROSSOVER_PROBABILITY,
                                       MUTATION_PROBABILITY, MUTATION_P_STEP)
performance_FF = [[], [], []]  # best, mean, stdev

population_in_all_epochs = []
population_array = []
for i in range(POPULATION_SIZE):
    population_array.append(neuralNetwork.initialize_random_weights())

population_in_all_epochs.append(population_array)


def init_new_map(walls, init_position):
    environment = env.Environment(screen, COLOR_ENVIROMENT, walls)
    robot = rb.Robot(screen, 2 * ROBOT_RADIUS, MAX_VELOCITY,
                     MAX_DISTANCE_SENSOR)
    robot.position = init_position
Beispiel #4
0
##
# Texts used to build Corpus:
#  Alice’s Adventures in Wonderland, by Lewis Carroll
#  The Republic, by Plato
#  Siddhartha, by Herman Hesse
## 
##############################

texts = ['https://www.gutenberg.org/files/11/11-0.txt',
		 'http://www.gutenberg.org/cache/epub/1497/pg1497.txt',
		 'http://www.gutenberg.org/cache/epub/2500/pg2500.txt']


messages = ["fqjcb rwjwj vnjax bnkhj whxcq nawjv nfxdu mbvnu ujbbf nnc", 
			"oczmz vmzor jocdi bnojv dhvod igdaz admno ojbzo rcvot jprvi oviyv aozmo cvooj ziejt dojig toczr dnzno jahvi fdiyv xcdzq zoczn zxjiy", 
			"ejitp spawa qleji taiul rtwll rflrl laoat wsqqj atgac kthls iraoa twlpl qjatw jufrh lhuts qataq itats aittk stqfj cae", 
			"iyhqz ewqin azqej shayz niqbe aheum hnmnj jaqii yuexq ayqkn jbeuq iihed yzhni ifnun sayiz yudhe sqshu qesqa iluym qkque aqaqm oejjs hqzyu jdzqa diesh niznj jayzy uiqhq vayzq shsnj jejjz nshna hnmyt isnae sqfun dqzew qiead zevqi zhnjq shqze udqai jrmtq uishq ifnun siiqa suoij qqfni syyle iszhn bhmei squih nimnx hsead shqmr udquq uaqeu iisqe jshnj oihyy snaxs hqihe lsilu ymhni tyz"]

# initialize the corpus
corp = Corpus(texts, is_url=True)
# or alternatively, load the corpus from pickle files
#corp = Corpus(load=True)

for i, message in enumerate(messages):
	sec = time.time()

	model = GA.GeneticAlgorithm(message, corp, "./results/", "results" + str(i))

	model.train(epochs=1e3)

	print("Time " + str(i) + ": " + str((time.time() - sec)))
Beispiel #5
0
from taems import TaemsTree
import genetic_algorithm
import tabu_search
import simulated_annealing
import ant_colony_optimization

if __name__ == "__main__":
    [alternative, pt, rt, dt] = loader.load_file("./Input/", "alternative_1.txt")
    tree = TaemsTree.load_from_file("./Input/example_large.taems")

    test = 2
    if test == 0:
        ga_solutions = []

        ga = genetic_algorithm.GeneticAlgorithm(200, 0.1, 0.3)
        for i in range(1000):
            [best_sol, iteration] = ga.optimize(tree, alternative, pt, rt, dt, 50)
            print([i, best_sol.total_tardiness, iteration])
            ga_solutions.append([best_sol, iteration])

        f = open("Results/ga_results.txt", "w")
        for i in range(1000):
            f.write(str(ga_solutions[i][0].total_tardiness) + " " + str(ga_solutions[i][1]) + "\n")
        f.close()
    elif test == 1:
        tabu_solutions = []

        tabu = tabu_search.TabuSearch(10)
        for i in range(1000):
            [best_sol, iteration] = tabu.optimize(tree, alternative, pt, rt, dt, 100)
Beispiel #6
0
LIM_m_y, LIM_M_y = -1, 1
if FITNESS_FUNCTION.__name__ == "Rosenbrock":
    LIM_m_x, LIM_M_x = -2, 2
    LIM_m_y, LIM_M_y = -1, 3
else:  # Rastrigin
    LIM_m_x, LIM_M_x = -5, 5
    LIM_m_y, LIM_M_y = -5, 5
x_range_list = np.linspace(LIM_m_x, LIM_M_x, 200)
y_range_list = np.linspace(LIM_m_y, LIM_M_y, 200)

# ===  MAIN  ===
Pi, Po, Z = 0, 1, 2
X, Y = 0, 1

# INITS
geneticAlgorithm = ga.GeneticAlgorithm(FITNESS_FUNCTION, MUTATION_PROBABILITY,
                                       MUTATION_P_STEP)
FF_results = [[], [], []]  # best, media,stdev

# INIT DATASET
dataset = geneticAlgorithm.initialize_population(POPULATION_SIZE, x_range_list,
                                                 y_range_list)
plot.PlottingResults(dataset, x_range_list, y_range_list, FITNESS_FUNCTION)

best, media, stdev = geneticAlgorithm.calculate_fitness(dataset)
FF_results[0].append(best)
FF_results[1].append(media)
FF_results[2].append(stdev)

copied_dataset = np.array(deepcopy(dataset))
for i in range(1, GENETIC_EPOCHS + 1):
    parents = geneticAlgorithm.select_parents(copied_dataset, PARENTS_NUMBER)
Beispiel #7
0
group = 500
jump = 250
start = 0
end = 0
while True:
    if start == 0:
        start = 1
    else:
        start = start + jump
    if start >= len(path):
        break
    end = start + group
    if end >= len(path):
        end = len(path) - 1
    gen_path = path[start:end].copy()
    gen = genetic_algorithm.GeneticAlgorithm(gen_path, df_cities, path[start-1], path[end-1], prime_cities)
    selected_path = gen.calculate()
    a = total_distance(df_cities, path[start - 1:end + 1], prime_cities)
    b = total_distance(df_cities, [path[start - 1]] + gen_path + [path[end]], prime_cities)
    print(a)
    print(b)
    if a > b:
        path[start:end] = selected_path
    if end == len(path) - 2:
        break
print('Total distance genetic algorithm ' + "is {:,}".format(total_distance(df_cities, path, prime_cities)))
path = opt2(df_cities, path, True, 3, prime_cities)
print('Total distance with 2-opt ' + "is {:,}".format(total_distance(df_cities, path, prime_cities)))
pd.DataFrame({'Path': path}).to_csv('path.csv', index=False)