Beispiel #1
0
 def testBootstrapCI(self):
   ''' test a line plot with confidence intervals from bootstrapping '''    
   fig,ax = getFigAx(1, name=sys._getframe().f_code.co_name[4:], **figargs) # use test method name as title
   assert fig.__class__.__name__ == 'MyFigure'
   assert fig.axes_class.__name__ == 'MyAxes'
   assert not isinstance(ax,(list,tuple)) # should return a "naked" axes
   # settings
   varlist = [self.var1, self.var2]
   nbins = 15
   # add regular histogram for comparison
   bins, ptchs = ax.histogram(varlist, bins=nbins, legend=2, alpha=0.5, rwidth=0.8, histtype='bar')
   # histtype = 'bar' | 'barstacked' | 'step' | 'stepfilled'
   assert len(ptchs) == 2
   assert len(bins) == nbins
   vmin = np.min([var.min() for var in varlist])
   vmax = np.max([var.max() for var in varlist])
   #print bins[0], vmin; print bins[-1], vmax
   assert bins[0] == vmin and bins[-1] == vmax
   # add bootstrap plot with errorbars    
   support = np.linspace(vmin, vmax, 100)
   fitvars = [var.fitDist(dist=self.dist,lflatten=True, lbootstrap=True, nbs=1000) for var in varlist] 
   ax.bootPlot(fitvars[0], support=support, errorscale=0.5, linewidth=2, lsmooth=False,
               percentiles=None, lvar=True, lvarBand=False, lmean=True, reset_color=True)
   ax.bootPlot(fitvars[1], support=support, errorscale=0.5, linewidth=2, lsmooth=False,
               percentiles=(0.25,0.75), lvar=False, lvarBand=False, lmedian=True, reset_color=False)  
   # add the actual distribution
   ax.linePlot(self.distVar, support=support, linewidth=1, marker='^')
   # add statistical info
   pstr = "p-values for '{:s}':\n".format(self.dist)
   for var in varlist:
     pstr += '   {:<9s}   {:3.2f}\n'.format(var.name, var.kstest(dist=self.dist, asVar=False))
   pstr += '   2-samples   {:3.2f}\n'.format(kstest(varlist[0], varlist[1], lflatten=True))
   ax.addLabel(label=pstr, loc=1, lstroke=False, lalphabet=True, size=None, prop=None)
Beispiel #2
0
 def testBasicHistogram(self):
   ''' a simple bar plot of two normally distributed samples '''    
   fig,ax = getFigAx(1, name=sys._getframe().f_code.co_name[4:], **figargs) # use test method name as title
   assert fig.__class__.__name__ == 'MyFigure'
   assert fig.axes_class.__name__ == 'MyAxes'
   assert not isinstance(ax,(list,tuple)) # should return a "naked" axes
   # settings
   varlist = [self.var1, self.var2]
   nbins = 15
   # create regular histogram
   bins, ptchs = ax.histogram(varlist, bins=nbins, legend=2, alpha=0.5, rwidth=0.8, histtype='bar')
   # histtype = 'bar' | 'barstacked' | 'step' | 'stepfilled'
   assert len(ptchs) == 2
   assert len(bins) == nbins
   vmin = np.min([var.min() for var in varlist])
   vmax = np.max([var.max() for var in varlist])
   #print bins[0], vmin; print bins[-1], vmax
   assert bins[0] == vmin and bins[-1] == vmax
   # add a KDE plot
   support = np.linspace(vmin, vmax, 100)
   kdevars = [var.kde(lflatten=True, lbootstrap=True, nbs=10) for var in varlist]
   # N.B.: the bootstrapping is just to test bootstrap tolerance in regular plotting methods
   ax.linePlot(kdevars, support=support, linewidth=2)
   # add label
   pval = kstest(varlist[0], varlist[1], lflatten=True) 
   pstr = 'p-value = {:3.2f}'.format(pval)
   ax.addLabel(label=pstr, loc=1, lstroke=False, lalphabet=True, size=None, prop=None)
Beispiel #3
0
 def testBootstrapCI(self):
   ''' test a line plot with confidence intervals from bootstrapping '''    
   fig,ax = getFigAx(1, name=sys._getframe().f_code.co_name[4:], **figargs) # use test method name as title
   assert fig.__class__.__name__ == 'MyFigure'
   assert fig.axes_class.__name__ == 'MyAxes'
   assert not isinstance(ax,(list,tuple)) # should return a "naked" axes
   # settings
   varlist = [self.var1, self.var2]
   nbins = 15
   # add regular histogram for comparison
   bins, ptchs = ax.histogram(varlist, bins=nbins, legend=2, alpha=0.5, rwidth=0.8, histtype='bar')
   # histtype = 'bar' | 'barstacked' | 'step' | 'stepfilled'
   assert len(ptchs) == 2
   assert len(bins) == nbins
   vmin = np.min([var.min() for var in varlist])
   vmax = np.max([var.max() for var in varlist])
   #print bins[0], vmin; print bins[-1], vmax
   assert bins[0] == vmin and bins[-1] == vmax
   # add bootstrap plot with errorbars    
   support = np.linspace(vmin, vmax, 100)
   fitvars = [var.fitDist(dist=self.dist,lflatten=True, lbootstrap=True, nbs=1000) for var in varlist] 
   ax.bootPlot(fitvars[0], support=support, errorscale=0.5, linewidth=2, lsmooth=False,
               percentiles=None, lvar=True, lvarBand=False, lmean=True, reset_color=True)
   ax.bootPlot(fitvars[1], support=support, errorscale=0.5, linewidth=2, lsmooth=False,
               percentiles=(0.25,0.75), lvar=False, lvarBand=False, lmedian=True, reset_color=False)  
   # add the actual distribution
   ax.linePlot(self.distVar, support=support, linewidth=1, marker='^')
   # add statistical info
   pstr = "p-values for '{:s}':\n".format(self.dist)
   for var in varlist:
     pstr += '   {:<9s}   {:3.2f}\n'.format(var.name, var.kstest(dist=self.dist, asVar=False))
   pstr += '   2-samples   {:3.2f}\n'.format(kstest(varlist[0], varlist[1], lflatten=True))
   ax.addLabel(label=pstr, loc=1, lstroke=False, lalphabet=True, size=None, prop=None)
Beispiel #4
0
 def testBasicHistogram(self):
   ''' a simple bar plot of two normally distributed samples '''    
   fig,ax = getFigAx(1, name=sys._getframe().f_code.co_name[4:], **figargs) # use test method name as title
   assert fig.__class__.__name__ == 'MyFigure'
   assert fig.axes_class.__name__ == 'MyAxes'
   assert not isinstance(ax,(list,tuple)) # should return a "naked" axes
   # settings
   varlist = [self.var1, self.var2]
   nbins = 15
   # create regular histogram
   bins, ptchs = ax.histogram(varlist, bins=nbins, legend=2, alpha=0.5, rwidth=0.8, histtype='bar')
   # histtype = 'bar' | 'barstacked' | 'step' | 'stepfilled'
   assert len(ptchs) == 2
   assert len(bins) == nbins
   vmin = np.min([var.min() for var in varlist])
   vmax = np.max([var.max() for var in varlist])
   #print bins[0], vmin; print bins[-1], vmax
   assert bins[0] == vmin and bins[-1] == vmax
   # add a KDE plot
   support = np.linspace(vmin, vmax, 100)
   kdevars = [var.kde(lflatten=True, lbootstrap=True, nbs=10) for var in varlist]
   # N.B.: the bootstrapping is just to test bootstrap tolerance in regular plotting methods
   ax.linePlot(kdevars, support=support, linewidth=2)
   # add label
   pval = kstest(varlist[0], varlist[1], lflatten=True) 
   pstr = 'p-value = {:3.2f}'.format(pval)
   ax.addLabel(label=pstr, loc=1, lstroke=False, lalphabet=True, size=None, prop=None)
Beispiel #5
0
 def testSamplePlot(self):
     """ test a line and band plot showing the mean/median and given percentiles """
     fig, ax = getFigAx(1, name=sys._getframe().f_code.co_name[4:], **figargs)  # use test method name as title
     assert fig.__class__.__name__ == "MyFigure"
     assert fig.axes_class.__name__ == "MyAxes"
     assert not isinstance(ax, (list, tuple))  # should return a "naked" axes
     # settings
     varlist = [self.var1, self.var2]
     nbins = 15
     # add regular histogram for comparison
     bins, ptchs = ax.histogram(varlist, bins=nbins, legend=2, alpha=0.5, rwidth=0.8, histtype="bar")
     # histtype = 'bar' | 'barstacked' | 'step' | 'stepfilled'
     assert len(ptchs) == 2
     assert len(bins) == nbins
     vmin = np.min([var.min() for var in varlist])
     vmax = np.max([var.max() for var in varlist])
     # print bins[0], vmin; print bins[-1], vmax
     assert bins[0] == vmin and bins[-1] == vmax
     # add bootstrap plot with errorbars
     support = np.linspace(vmin, vmax, 100)
     fitvars = [var.fitDist(dist=self.dist, lflatten=True, lbootstrap=True, nbs=1000) for var in varlist]
     # add the actual distribution
     ax.linePlot(self.distVar, support=support, linewidth=1, marker="^")
     # add simple sample (using bootstrap axis as sample
     ax.samplePlot(
         fitvars[0],
         support=support,
         linewidth=2,
         lsmooth=False,
         sample_axis="bootstrap",
         percentiles=(0.05, 0.95),
         lmedian=True,
         reset_color=True,
     )
     # replicate axis and add random noise to mean
     rndfit = fitvars[1].insertAxis(axis="sample", iaxis=0, length=100)
     rndfit.data_array += np.random.randn(*rndfit.shape) / 100.0
     ax.samplePlot(
         rndfit,
         support=support,
         linewidth=2,
         lsmooth=False,
         bootstrap_axis="bootstrap",
         sample_axis=("no_axis", "sample"),
         percentiles=(0.25, 0.75),
         lmean=True,
         reset_color=False,
     )
     # add statistical info
     pstr = "p-values for '{:s}':\n".format(self.dist)
     for var in varlist:
         pstr += "   {:<9s}   {:3.2f}\n".format(var.name, var.kstest(dist=self.dist, asVar=False))
     pstr += "   2-samples   {:3.2f}\n".format(kstest(varlist[0], varlist[1], lflatten=True))
     ax.addLabel(label=pstr, loc=1, lstroke=False, lalphabet=True, size=None, prop=None)
Beispiel #6
0
 def testSamplePlot(self):
   ''' test a line and band plot showing the mean/median and given percentiles '''    
   fig,ax = getFigAx(1, name=sys._getframe().f_code.co_name[4:], **figargs) # use test method name as title
   assert fig.__class__.__name__ == 'MyFigure'
   assert fig.axes_class.__name__ == 'MyAxes'
   assert not isinstance(ax,(list,tuple)) # should return a "naked" axes
   # settings
   varlist = [self.var1, self.var2]
   nbins = 15
   # add regular histogram for comparison
   bins, ptchs = ax.histogram(varlist, bins=nbins, legend=2, alpha=0.5, rwidth=0.8, histtype='bar')
   # histtype = 'bar' | 'barstacked' | 'step' | 'stepfilled'
   assert len(ptchs) == 2
   assert len(bins) == nbins
   vmin = np.min([var.min() for var in varlist])
   vmax = np.max([var.max() for var in varlist])
   #print bins[0], vmin; print bins[-1], vmax
   assert bins[0] == vmin and bins[-1] == vmax
   # add bootstrap plot with errorbars    
   support = np.linspace(vmin, vmax, 100)
   fitvars = [var.fitDist(dist=self.dist,lflatten=True, lbootstrap=True, nbs=1000) for var in varlist]
   # add the actual distribution
   ax.linePlot(self.distVar, support=support, linewidth=1, marker='^')
   # add simple sample (using bootstrap axis as sample 
   ax.samplePlot(fitvars[0], support=support, linewidth=2, lsmooth=False, 
                 sample_axis='bootstrap', percentiles=(0.05,0.95), lmedian=True, reset_color=True)
   # replicate axis and add random noise to mean
   rndfit = fitvars[1].insertAxis(axis='sample',iaxis=0,length=100)
   rndfit.data_array += np.random.randn(*rndfit.shape)/100. 
   ax.samplePlot(rndfit, support=support, linewidth=2, lsmooth=False, 
                 bootstrap_axis='bootstrap', sample_axis=('no_axis','sample'),
                 percentiles=(0.25,0.75), lmean=True, reset_color=False)  
   # add statistical info
   pstr = "p-values for '{:s}':\n".format(self.dist)
   for var in varlist:
     pstr += '   {:<9s}   {:3.2f}\n'.format(var.name, var.kstest(dist=self.dist, asVar=False))
   pstr += '   2-samples   {:3.2f}\n'.format(kstest(varlist[0], varlist[1], lflatten=True))
   ax.addLabel(label=pstr, loc=1, lstroke=False, lalphabet=True, size=None, prop=None)