Beispiel #1
0
def empirical_frechet_var_bubble(n_samples, theta, dim, n_expectation=1000):
    """Variance of the empirical Fréchet mean for a bubble distribution.

    Draw n_sampless from a bubble distribution, computes its empirical
    Fréchet mean and the square distance to the asymptotic mean. This
    is repeated n_expectation times to compute an approximation of its
    expectation (i.e. its variance) by sampling.

    The bubble distribution is an isotropic distributions on a Riemannian
    hyper sub-sphere of radius 0 < theta < Pi around the north pole of the
    sphere of dimension dim.

    Parameters
    ----------
    n_samples : int
        Number of samples to draw.
    theta: float
        Radius of the bubble distribution.
    dim : int
        Dimension of the sphere (embedded in R^{dim+1}).
    n_expectation: int, optional (defaults to 1000)
        Number of computations for approximating the expectation.

    Returns
    -------
    tuple (variance, std-dev on the computed variance)
    """
    if dim <= 1:
        raise ValueError(
            'Dim > 1 needed to draw a uniform sample on sub-sphere.')
    var = []
    sphere = Hypersphere(dim=dim)
    bubble = Hypersphere(dim=dim - 1)

    north_pole = gs.zeros(dim + 1)
    north_pole[dim] = 1.0
    for _ in range(n_expectation):
        # Sample n points from the uniform distribution on a sub-sphere
        # of radius theta (i.e cos(theta) in ambient space)
        # TODO (nina): Add this code as a method of hypersphere
        data = gs.zeros((n_samples, dim + 1), dtype=gs.float64)
        directions = bubble.random_uniform(n_samples)
        directions = gs.to_ndarray(directions, to_ndim=2)

        for i in range(n_samples):
            for j in range(dim):
                data[i, j] = gs.sin(theta) * directions[i, j]
            data[i, dim] = gs.cos(theta)

        # TODO (nina): Use FrechetMean here
        current_mean = _adaptive_gradient_descent(data,
                                                  metric=sphere.metric,
                                                  max_iter=32,
                                                  init_point=north_pole)
        var.append(sphere.metric.squared_dist(north_pole, current_mean))
    return gs.mean(var), 2 * gs.std(var) / gs.sqrt(n_expectation)
Beispiel #2
0
def empirical_frechet_var_bubble(n_samples, theta, dim, n_expectation=1000):
    """Variance of the empirical Fréchet mean for a bubble distribution.

    Draw n_sampless from a bubble distribution, computes its empirical
    Fréchet mean and the square distance to the asymptotic mean. This
    is repeated n_expectation times to compute an approximation of its
    expectation (i.e. its variance) by sampling.

    The bubble distribution is an isotropic distributions on a Riemannian
    hyper sub-sphere of radius 0 < theta < Pi around the north pole of the
    sphere of dimension dim.

    Parameters
    ----------
    n_samples : int
        Number of samples to draw.
    theta: float
        Radius of the bubble distribution.
    dim : int
        Dimension of the sphere (embedded in R^{dim+1}).
    n_expectation: int, optional (defaults to 1000)
        Number of computations for approximating the expectation.

    Returns
    -------
    tuple (variance, std-dev on the computed variance)
    """
    if dim <= 1:
        raise ValueError(
            "Dim > 1 needed to draw a uniform sample on sub-sphere.")
    var = []
    sphere = Hypersphere(dim=dim)
    bubble = Hypersphere(dim=dim - 1)

    north_pole = gs.zeros(dim + 1)
    north_pole[dim] = 1.0
    for _ in range(n_expectation):
        # Sample n points from the uniform distribution on a sub-sphere
        # of radius theta (i.e cos(theta) in ambient space)
        # TODO (nina): Add this code as a method of hypersphere
        last_col = gs.cos(theta) * gs.ones(n_samples)
        last_col = last_col[:, None] if (n_samples > 1) else last_col

        directions = bubble.random_uniform(n_samples)
        rest_col = gs.sin(theta) * directions
        data = gs.concatenate([rest_col, last_col], axis=-1)

        estimator = FrechetMean(sphere.metric,
                                max_iter=32,
                                method="adaptive",
                                init_point=north_pole)
        estimator.fit(data)
        current_mean = estimator.estimate_
        var.append(sphere.metric.squared_dist(north_pole, current_mean))
    return gs.mean(var), 2 * gs.std(var) / gs.sqrt(n_expectation)
Beispiel #3
0
def empirical_frechet_var_bubble(n_samples, theta, dim, n_expectation=1000):
    """Variance of the empirical Fréchet mean for a bubble distribution.

    Draw n_sampless from a bubble distribution, computes its empirical
    Fréchet mean and the square distance to the asymptotic mean. This
    is repeated n_expectation times to compute an approximation of its
    expectation (i.e. its variance) by sampling.

    The bubble distribution is an isotropic distributions on a Riemannian
    hyper sub-sphere of radius 0 < theta < Pi around the north pole of the
    sphere of dimension dim.

    Parameters
    ----------
    n_samples: number of samples to draw
    theta: radius of the bubble distribution
    dim: dimension of the sphere (embedded in R^{dim+1})
    n_expectation: number of computations for approximating the expectation

    Returns
    -------
    tuple (variance, std-dev on the computed variance)
    """
    assert dim > 1, "Dim > 1 needed to draw a uniform sample on sub-sphere"
    var = []
    sphere = Hypersphere(dimension=dim)
    bubble = Hypersphere(dimension=dim - 1)

    north_pole = gs.zeros(dim + 1)
    north_pole[dim] = 1.0
    for k in range(n_expectation):
        # Sample n points from the uniform distribution on a sub-sphere
        # of radius theta (i.e cos(theta) in ambient space)
        # TODO(nina): Add this code as a method of hypersphere
        data = gs.zeros((n_samples, dim + 1), dtype=gs.float64)
        directions = bubble.random_uniform(n_samples)

        for i in range(n_samples):
            for j in range(dim):
                data[i, j] = gs.sin(theta) * directions[i, j]
            data[i, dim] = gs.cos(theta)

        current_mean = sphere.metric.adaptive_gradientdescent_mean(
            data, n_max_iterations=64, init_points=[north_pole])
        var.append(sphere.metric.squared_dist(north_pole, current_mean))
    return gs.mean(var), 2 * gs.std(var) / gs.sqrt(n_expectation)