Beispiel #1
0
def geocode(fp):
    """
    The geocode takes a .csv file of addresses, and geocodes the text in the column
    named 'addr' into point features
    
    Args:
        fp (string): filepath of the address .csv file
        
    Returns:
        points (geodataframe): geodataframe of the locations as point features
    """

    from geopandas.tools import geocode

    # Read the data
    data = pd.read_csv(fp, sep=';')

    # Geocode addresses using the provider Nominatim.
    # A custom "application name" is needed as the user_agent parameter!
    geo = geocode(data['addr'],
                  provider='nominatim',
                  user_agent='qmslup_group9',
                  timeout=4)

    points = geo.join(data)

    return points
Beispiel #2
0
def ShortestPath(orig_address, dest_address):
    """
    This function takes a two addresses in as an input (origin and destination). The addresses should be strings. Then it calculates he quickest route from origin to destination by driving and presents  that on a map. Please note that the function only works in Helsinki because the network data is heavy, that's why it might be slow. 
    """
    #retrieve the driving network from Helsinki. I first did this with bike network data but none of the nodes I tried were connected to biking network so I changed that to driving for the sake of convenience.
    place_name = "Helsinki, Finland"
    graph = ox.graph_from_place(place_name, network_type="drive")

    #project the graph
    graph_proj = ox.project_graph(graph)

    #access projected nodes and edges
    nodes_proj, edges_proj = ox.graph_to_gdfs(graph_proj,
                                              nodes=True,
                                              edges=True)

    #create a dataframe with the addresses as an input
    d = {"id": [1, 2], "addr": [orig_address, dest_address]}
    data = pd.DataFrame(data=d)

    #geocode addresses so the dataframe becomes a geodataframe (with location information extracted by geocoding)
    geo = geocode(data["addr"],
                  provider="nominatim",
                  user_agent="SK",
                  timeout=4)

    #check CRS systems, they are different
    CRS(geo.crs).to_epsg()
    CRS(edges_proj.crs).to_epsg()

    #convert geo to same CRS system with projected network
    geo = geo.to_crs(epsg=32635)

    #make a tuple of the x and y coordinates by retrieving them from dataframe. Y is first because it is latitude infomation
    orig_xy = [geo["geometry"][0].y, geo["geometry"][0].x]
    dest_xy = [geo["geometry"][1].y, geo["geometry"][1].x]

    #find the nearest node to the origin and target point coordinates with euclidean distance
    orig_node = ox.get_nearest_node(graph_proj, orig_xy, method='euclidean')
    target_node = ox.get_nearest_node(graph_proj, dest_xy, method='euclidean')

    # Calculate the shortest path (using Djikstra's algorithm)
    route = nx.shortest_path(G=graph_proj,
                             source=orig_node,
                             target=target_node,
                             weight='time')

    # Plot the shortest path
    fig, ax = ox.plot_graph_route(graph_proj,
                                  route,
                                  origin_point=orig_xy,
                                  destination_point=dest_xy)

    #save and return figure
    output_fig = "outputs/shortest_path_from_" + orig_address + "_to_" + dest_address + ".png"
    plt.savefig(output_fig)
    return fig
Beispiel #3
0
def do_geocode(row, attempt=1, max_attempts=max_att):
    try:
        return geocode(row['Address'],provider='nominatim')
    except GeocoderTimedOut:
        time.sleep(sec)
        if attempt<=max_attempts:
            return do_geocode(row, attempt=attempt+1, max_attempts=max_att)
        raise idx
    return
Beispiel #4
0
def geocoder(row):
    try:
        point = geocode(row, provider='nominatim').geometry.iloc[0]
        return pd.Series({
            "Latitude": point.y,
            "Longitude": point.x,
            "geometry": point
        })
    except:
        return None
Beispiel #5
0
def my_geocoder(row):
    print(row)
    try:
        point = geocode(row, provider='nominatim').geometry.iloc[0]
        return pd.Series({
            'Latitude': point.y,
            'Longitude': point.x,
            'geometry': point
        })
    except:
        return None
Beispiel #6
0
def companies_geocoder(row):
    try:
        address_full = geocode(row,
                               provider='nominatim',
                               timeout=5,
                               scheme='http')
        address = address_full.address.iloc[
            0]  #Getting an adress line as a string
        point = address_full.geometry.iloc[0]
        return pd.Series({'Y': point.y, 'X': point.x, 'Address': address})
    except:
        return None
Beispiel #7
0
    def test_forward(self):
        with mock.patch('geopy.geocoders.googlev3.GoogleV3.geocode',
                        ForwardMock()) as m:
            g = geocode(self.locations, provider='googlev3', timeout=2)
            self.assertEqual(len(self.locations), m.call_count)

        n = len(self.locations)
        self.assertIsInstance(g, gpd.GeoDataFrame)
        expected = GeoSeries([Point(float(x) + 0.5, float(x)) for x in range(n)],
                             crs=from_epsg(4326))
        assert_geoseries_equal(expected, g['geometry'])
        tm.assert_series_equal(g['address'],
                               pd.Series(self.locations, name='address'))
Beispiel #8
0
    def test_forward(self):
        with mock.patch('geopy.geocoders.googlev3.GoogleV3.geocode',
                        ForwardMock()) as m:
            g = geocode(self.locations, provider='googlev3', timeout=2)
            self.assertEqual(len(self.locations), m.call_count)

        n = len(self.locations)
        self.assertIsInstance(g, gpd.GeoDataFrame)
        expected = GeoSeries([Point(float(x) + 0.5, float(x)) for x in range(n)],
                             crs=from_epsg(4326))
        assert_geoseries_equal(expected, g['geometry'])
        tm.assert_series_equal(g['address'],
                               pd.Series(self.locations, name='address'))
Beispiel #9
0
def geo_code(df):
    df_new = df.copy()
    address = df.Address + ', ' + df.City + ', ' + df.State + ' ' + df.Zip.map(
        str)
    try:
        geo = geocode(address, provider='arcgis')
    except:
        print('Error geocoding address. Aborting script')
        sys.exit()

    df_new['Longitude'] = geo.geometry.x
    df_new['Latitude'] = geo.geometry.y
    df_new['AddressFound'] = geo.address

    return df_new
Beispiel #10
0
def test_forward(locations, points):
    from geopy.geocoders import GeocodeFarm
    for provider in ['geocodefarm', GeocodeFarm]:
        with mock.patch('geopy.geocoders.GeocodeFarm.geocode',
                        ForwardMock()) as m:
            g = geocode(locations, provider=provider, timeout=2)
            assert len(locations) == m.call_count

        n = len(locations)
        assert isinstance(g, GeoDataFrame)
        expected = GeoSeries(
            [Point(float(x) + 0.5, float(x)) for x in range(n)],
            crs=from_epsg(4326))
        assert_geoseries_equal(expected, g['geometry'])
        assert_series_equal(g['address'], pd.Series(locations, name='address'))
Beispiel #11
0
def test_forward(locations, points):
    from geopy.geocoders import Photon

    for provider in ["photon", Photon]:
        with mock.patch("geopy.geocoders.Photon.geocode", ForwardMock()) as m:
            g = geocode(locations, provider=provider, timeout=2)
            assert len(locations) == m.call_count

        n = len(locations)
        assert isinstance(g, GeoDataFrame)
        expected = GeoSeries(
            [Point(float(x) + 0.5, float(x)) for x in range(n)],
            crs="EPSG:4326")
        assert_geoseries_equal(expected, g["geometry"])
        assert_series_equal(g["address"], pd.Series(locations, name="address"))
Beispiel #12
0
def geocode_locations(df: gpd.GeoDataFrame, loc_col: str):
    """
    Geocode location names into polygon coordinates
    Parameters
    ----------
    df: Geopandas DataFrame
    loc_col:str
    name of column in df which contains locations
    Returns
    -------

    """
    locations = geocode(df.loc[:, loc_col])
    df["geometry"] = locations.loc[:, "geometry"]
    df["address"] = locations.loc[:, "address"]
    return df
Beispiel #13
0
def test_forward(locations, points):
    from geopy.geocoders import GoogleV3
    for provider in ['googlev3', GoogleV3]:
        with mock.patch('geopy.geocoders.googlev3.GoogleV3.geocode',
                        ForwardMock()) as m:
            g = geocode(locations, provider=provider, timeout=2)
            assert len(locations) == m.call_count

        n = len(locations)
        assert isinstance(g, GeoDataFrame)
        expected = GeoSeries(
            [Point(float(x) + 0.5, float(x)) for x in range(n)],
            crs=from_epsg(4326))
        assert_geoseries_equal(expected, g['geometry'])
        assert_series_equal(g['address'],
                            pd.Series(locations, name='address'))
Beispiel #14
0
    def checkLocation(self,location):
        try:
            info = geocode(location, provider = 'nominatim') #get information about input location
            self.name = info['address'].loc[0] #get name of location
            self.long = info['geometry'].loc[0].x #get longitude of input location
            self.lat = info['geometry'].loc[0].y #get latitude of input location
            self.dist = []
            self.num = []
            i = 0
            try:
                while True:
                    self.dist.append(float(math.sqrt((self.data[i][6] - self.lat)**2 + (self.data[i][7] - self.long)**2))) #create list of distances
                    self.num.append(i)
                    i+=1
            except:
                self.dist,self.num = zip(*sorted(zip(self.dist,self.num))) #sort both list according to smallest distance

            if self.dist[0] < 5:
                return "LocationFound"
            else:
                return "TooFar"
            
        except:
            return "LocationNotFound"
Beispiel #15
0
 def test_openmapquest_forward(self):
     g = geocode(self.locations, provider='openmapquest', timeout=2)
     self.assertIsInstance(g, gpd.GeoDataFrame)
Beispiel #16
0
def test_bad_provider_forward():
    from geopy.exc import GeocoderNotFound
    with pytest.raises(GeocoderNotFound):
        geocode(['cambridge, ma'], 'badprovider')
Beispiel #17
0
def my_geocoder(row):
    try:
        point = geocode(row, provider='nominatim').geometry[0]
        return pd.Series({'Latitude': point.y, 'Longitude': point.x})
    except:
        return none
Beispiel #18
0
#Geocoder
from geopandas.tools import geocode

result = geocode("The Great Pyramid of Giza", provider="nominatim")
result

point = result.geometry.iloc[0]
print("Latitude:", point.y)
print("Longitude:", point.x)

universities = pd.read_csv("../input/geospatial-learn-course-data/top_universities.csv")
universities.head()

def my_geocoder(row):
    try:
        point = geocode(row, provider='nominatim').geometry.iloc[0]
        return pd.Series({'Latitude': point.y, 'Longitude': point.x, 'geometry': point})
    except:
        return None

universities[['Latitude', 'Longitude', 'geometry']] = universities.apply(lambda x: my_geocoder(x['Name']), axis=1)

print("{}% of addresses were geocoded!".format(
    (1 - sum(np.isnan(universities["Latitude"])) / len(universities)) * 100))

# Drop universities that were not successfully geocoded
universities = universities.loc[~np.isnan(universities["Latitude"])]
universities = gpd.GeoDataFrame(universities, geometry=universities.geometry)
universities.crs = {'init': 'epsg:4326'}
universities.head()
    * date: 12-01-21
    * description:This script fetch the lat and long nominatim open street API using the Addresses in the Address.csv
"""
import pandas as pd  # pip install pandas
from geopandas.tools import geocode  # follow https://geopandas.org/install.html
import geopy  # pip install geopy
import time

# changing the default user_agent name
geopy.geocoders.options.default_user_agent = "magdy"

# Reading the addresses csv file into dataframe
addresses = pd.read_csv('address.csv', usecols=["Address"])

# looping through the addresses and fitch the long and lat
for index, row in addresses.iterrows():
    try:
        print(row['Address'])
        # fetching each row (Address) from geopandas and using the open street map "nominatim" read 'https://nominatim.openstreetmap.org/ui/search.html'
        info = geocode(str(row['Address']), provider='nominatim')
        # Adding Lat and lon columns to the dataframe
        addresses.loc[int(index), 'Lon'] = info['geometry'].loc[0].x
        addresses.loc[int(index), 'Lat'] = info['geometry'].loc[0].y
    except TypeError:
        print("\nGeocoding information for " + row['Address'] +
              " is not found!\n")
    time.sleep(1)

    # Saving the dataframe to a csv file
    addresses.to_csv('addresses_with_lon_and_lat.csv')
Beispiel #20
0
@author: katel
"""
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, Polygon, LineString, MultiLineString, MultiPoint
from shapely.ops import nearest_points
from geopandas.tools import geocode

#Created a text file with the address for a rink about halfway between Jumbo and Itis
fp_rink = r'C:\Users\katel\Documents\AutoGIS\2018\Geo-Python-2018\AutoGIS\activity_locations.txt'

rink = pd.read_csv(fp_rink, sep=';')

geocoded_rink = geocode(rink['addr'],
                        provider='nominatim',
                        user_agent='autogis_student_78')

geocoded_rink = geocoded_rink.to_crs({'init': 'epsg:3879'})

#read in the shp of shopping center points created in the previous E
fp_sc = r'C:\Users\katel\Documents\AutoGIS\2018\Geo-Python-2018\AutoGIS\shopping_centers.shp'

shop_centers = gpd.read_file(fp_sc)

shop_centers = shop_centers.to_crs({'init': 'epsg:3879'})

unary_union = shop_centers.unary_union

nearest_geoms = nearest_points(geocoded_rink['geometry'][0], unary_union)
near_idx0 = nearest_geoms[0]
Beispiel #21
0
if __name__ == '__main__':
    data = load_data()
    analyze_data(data)
    data = cleanData(data)
    data.to_csv('cleaned_house_data.csv')
    data_engineer(data)
    model = build_model(data)
    predict(model)
    pass

    import geopandas
    boros = geopandas.read_file("cleaned_house_data4.csv", encoding='utf8')
    boro_locations = geopandas.tools.geocode(boros.address)
    boro_locations.to_file("geography.shp")

    from geopandas.tools import geocode
    key = 'delted'
    geo = geocode(boros['address'], api_key=key)

    with open('cleaned_house_data3.csv') as f:
        print(f)

    import pandas
    data = pandas.read_csv("cleaned_house_data4.csv", encoding='utf8')
    import googlemaps
    gmaps_key = googlemaps.Client(key='Deleted4Security')
    data['LAT'] = None
    data['LON'] = None
    for i in range(0, len(data), 1):
        geocode_result = gmaps_key.geocode(data['address'][i])
Beispiel #22
0
# Script #4
# Locator


# Retrieving the postcodes from our database
df=pd.read_excel(r".\3.Analyses\AllCompanyInfosSortedByPostCodeWithoutDuplicate.xls")
occurences=df["Postcode"].value_counts()
print(occurences.head(5))
postcodes=df["Postcode"]
postcodes = postcodes.drop_duplicates(keep = "last")
#postcodes=postcodes.head(3) #For small scale tests (ulrta useful to not waste time/not requiring a lot of same data again and again to nominatim (OpenStreetMap locator)
list_postcodes=postcodes.tolist()

#At the end also put the next line in try except so that a problem can be solved #edit: not necessary because you have to stay in front when you run it (at the begining at least)
geo = geocode("3000 belgium", provider='nominatim') #Prealloc before the loop
sleep(2) #timer

list_long_lat=list(range(0,len(list_postcodes))) #Preallocation of a list which will contain the coordinates of the different postcodes

for i,j in zip(list_postcodes,list(range(0,len(list_postcodes)))):
    k=5 #k seconds to wait in case of error
    if i%25==0:
        sleep(2)

    sleep(uniform(1.5,3))#1.5 à 3 sec break to time between requests ; PAY attention that it is forbidden to be below 1

    while True: #Will re-try indefinitely when encountering an error to process the request for the long&lat
        try:
            # do stuff
            geo = geocode(str(i) + " Belgium", provider='nominatim')  # Precise be so that the search will stay in Belgium
Beispiel #23
0
 def test_googlev3_forward(self):
     g = geocode(self.locations, provider='googlev3', timeout=2)
     self.assertIsInstance(g, gpd.GeoDataFrame)
Beispiel #24
0
   """Helper function to add a basemap for the plot"""

   xmin, xmax, ymin, ymax = ax.axis()

   basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, url=url)

   return basemap, extent
# Filepath

fp = "L3_data/addresses.txt"

# Read the data
data = pd.read_csv(fp, sep=';')
data.columns

# Geocode addresses from addr
geo = geocode(data["addr"], provider="nominatim", user_agent ="csc_user_tml")

# Merge geocoded locations back to original DataFrame
geo = geo.join(data)

# Reproject to Wen Mercator, background maps don't work without this
geo = geo.to_crs(epsg=3857)
# Plot the data with background map
geo.plot()

#Add basemap, zoom tells how detailed map we want
add_basemap(ax=ax, zoom=12)

import pandas as pd
import geopandas as gpd
from shapely.geometry import Point
from geopandas.tools import geocode

fp = r"addresses.txt"
data = pd.read_csv(fp, sep=';')
#data.head()

c = input("Adres Giriniz ");
geo = geocode(c, provider='nominatim')
print(geo.head())
def test_bad_provider_forward():
    from geopy.exc import GeocoderNotFound

    with pytest.raises(GeocoderNotFound):
        geocode(["cambridge, ma"], "badprovider")
Beispiel #27
0
 def test_bad_provider_forward(self):
     with self.assertRaises(ValueError):
         geocode(['cambridge, ma'], 'badprovider')
Beispiel #28
0
import pandas as pd
from geopandas.tools import geocode
import geopy

data = pd.read_csv(
    "/Users/karanveersingh/PycharmProjects/Sentiment_analyser/Sentiment_analyser/Dataset/Day4.csv"
)

for index, row in data.iterrows():
    try:
        # print(row['Location'])
        info = geocode(str(row['Location']), provider='Nominatim')
        data.loc[int(index), 'Address'] = info['address'].loc[0]
        data.loc[int(index), 'Longitude'] = info['geometry'].loc[0].x
        data.loc[int(index), 'Latitude'] = info['geometry'].loc[0].y
    except BaseException:
        pass
data = data.dropna()
# print(data)
data.to_csv(
    "/Users/karanveersingh/PycharmProjects/Sentiment_analyser/Sentiment_analyser/LocationInfo/loc4.csv"
)
Beispiel #29
0
 def test_nominatim(self):
     g = geocode(self.locations, provider='nominatim', timeout=2)
     self.assertIsInstance(g, gpd.GeoDataFrame)
Beispiel #30
0
                                     url=url)
    ax.imshow(basemap, extent=extent, interpolation='bilinear')
    # restore original x/y limits
    ax.axis((xmin, xmax, ymin, ymax))


# Filepath for addresses
fp = "L3_data/addresses.txt"

# Read the data
data = pd.read_csv(fp, sep=';')

#data.head()
#type(data)

#Geocode addresses with Nominatim backend
geo = geocode(data['addr'], provider='nominatim', user_agent='csc_user_fa')
geo.head()

#Merge geocoded locations back to the original dataframe
geo = geo.join(data)

#Reproject to webmercator
geo = geo.to_crs(epsg=3857)

#Plot points with background map
ax = geo.plot()

#Add basemap
add_basemap(ax=ax, zoom=10)
#Import database
city_for_locator_df = pd.read_csv(r".\Locations\city_listing_db.csv",
                                  index_col=0)

#Merge multiple rows regarding the same cities in order to realize as few requests as possible to Nominatim
city_for_locator_df.drop_duplicates(subset=['iso3', 'City/Town'],
                                    keep='first',
                                    inplace=True)

#Creating a col for longitude and one for the latitude
city_for_locator_df['long'] = np.nan
city_for_locator_df['lat'] = np.nan

#Preallocation before the loop
geo = geocode("Belgium",
              provider='nominatim',
              user_agent="air-pollution-worldwide")
long_and_lat = geo.to_crs('EPSG:4326')
sleep(2)  #timer

#'Massive' Requests to Nominatim, one for each city
for i in city_for_locator_df.index:
    print(i)

    try:
        geo = geocode(city_for_locator_df.at[i, 'Country'] + " " +
                      city_for_locator_df.at[i, 'City/Town'],
                      provider='nominatim',
                      user_agent="air-pollution-worldwide")

        # geo.to_crs({'init': 'epsg:3395'}) #Mercator projection
TS
"""

import pandas as pd
import geopandas as gpd
from geopandas.tools import geocode
from geopy.geocoders import Nominatim
from shapely.geometry import Point
import pycrs

#Filepath to addresses
fp = r"C:\Users\cscuser\Desktop\TS\ADDRESSES\addresses.txt"
data = pd.read_csv(fp, sep=';', encoding='utf8')

#Geocode the address
geo = geocode(data['addr'], provider='nominatim')

#------
#Add more control to geocoding
#------

geolocator = Nominatim()

#Create new columns for Point and geocoded addresses
data = data.assign(geometry=None, address=None)

#Iterate over the rows
for idx, row in data.iterrows():
    #Geocode the location
    location = geolocator.geocode(row['addr'])
    #If the location was found, then create a Point out of it
Beispiel #33
0
 def test_bad_provider_forward(self):
     with self.assertRaises(ValueError):
         geocode(['cambridge, ma'], 'badprovider')
Beispiel #34
0
op_alueet2018.index[op_alueet2018["id"] == 114404] # 48

op_new = op_alueet2018.drop(48, axis = 0)

op_new.to_file("/home/hertta/Documents/Gradu/oppilasalueet2018/schoolAreas2018.shp")


for key, row in ruudut_joined.iterrows():
    ruudut_joined.loc[key] = row 
    

import pandas as pd
from geopandas.tools import geocode
koulut_osoitteet = pd.read_csv("/home/hertsy/Documents/Gradu/oppilasalueet2018/koulut_osoitteet.csv", sep = ",", encoding = "UTF-8")
koulut_geocoded = geocode(koulut_osoitteet['address'], provider = 'Nominatim', user_agent="hertsy")



from geopy.geocoders import Nominatim
geolocator = Nominatim(user_agent="hertsy")
coordinates = []
for value in koulut_osoitteet['address']:
    location = geolocator.geocode(value)
    coordinates.append((location.latitude, location.longitude))
    
koulut_geocoded = gdp.read_file("/home/hertsy/Documents/Gradu/oppilasalueet2018/koulut_osoitteet_nom2.shp", encoding = "UTF-8")    
schoolareas = gdp.read_file("/home/hertsy/Documents/Gradu/oppilasalueet2018/schoolAreas2018.shp", encoding = "UTF-8") 
ruudut_final = gdp.read_file("/home/hertsy/Documents/Gradu/oppilasalueet2018/ruudut_kieli_final.shp", encoding = "UTF-8")

koulut_geocoded = koulut_geocoded.to_crs(schoolareas.crs)
Beispiel #35
0
# Import the x,y and intensity from 4.Locate (a dataframe there in a csv file)
locationsData = pd.read_csv(
    r".\4.Locate\LocationsAndIntensityWithAberations.csv")
x = locationsData["x"].tolist()
y = locationsData["y"].tolist()
intensity = locationsData["intensity"].tolist()
print("There are " + str(sum(intensity)) + " companies in total")
postcodes = locationsData["Postcode"].tolist()

## PART 2: Cleaning and correcting mislocations

# print(min(x)) #debug (purposes in case of mislocation)
# print(min(y))
#Computing coordinates of what Nominatim (OSM) returns for "Belgium", it will help us if it did not read the postcode
#edit: I did not require it because nominatim was totally accurate or completely not, but a good way if you decide to choose another locator is to think about a circle around the middle of Belgium and remove all data outside
geo = geocode("Belgium", provider='nominatim')
geo_mercator = geo.to_crs({'init': 'epsg:3395'})
x_belgium = geo_mercator.loc[0, "geometry"].x
y_belgium = geo_mercator.loc[0, "geometry"].y

#Remove aberrant locations
count = 0  #Number of postcodes
countCompanies = 0  #Number of companies affected
badlyLocatedPostcode = []  #Will store the badly located postcode
badlyLocatedIntensity = [
]  #Will store the number of companies at the badly located postcode

iterator = 0
end = len(x)
while iterator < end:
    #There are 2 types of error met : 1)Zipcode + Belgium = another place on Earth (usually the USA) ; 2)Zipcode + Belgium = Belgium for the interpreter, thus stacking points at the center of Belgium, we clean it and we'll re-add it later when sufficiently big
Beispiel #36
0
# Make a Table join to retrieve the id column from original shopping centers
# DataFrame similarly as in lesson materials
#
# Save the GeoDataFrame as a Shapefile called shopping_centers.shp
#==============================================================================

import pandas as pd
import geopandas as gpd
from shapely.geometry import Point

fpath = r"C:\Users\oyeda\Desktop\AUTOGIS\AUTOGIS_PERIOD2\assignment3\shopping_centres.txt"
data = pd.read_csv(fpath, sep=";", encoding='latin-1')

data.head(5)
from geopandas.tools import geocode
geoc = geocode(data['addre'], provider='nominatim')
geoc

from fiona.crs import from_epsg
geoc = geoc.to_crs(from_epsg(3879))
#it can also be done as below:
#geoc['geometry']= geoc['geometry'].to_crs(epsg=3879)
geoc.crs
geoc_join = geoc.join(data)
type(geoc)

fp = r"C:\Users\oyeda\Desktop\AUTOGIS\AUTOGIS_PERIOD2\assignment3\shopping_centres.shp"
geoc_join.to_file(fp)
#geoc_join.plot()

#==============================================================================
Beispiel #37
0
 def test_bad_provider_forward(self):
     from geopy.exc import GeocoderNotFound
     with pytest.raises(GeocoderNotFound):
         geocode(['cambridge, ma'], 'badprovider')