Beispiel #1
0
def test_raise_nonpoly(dfs):
    polydf, _ = dfs
    pointdf = polydf.copy()
    pointdf['geometry'] = pointdf.geometry.centroid

    with pytest.raises(TypeError):
        overlay(pointdf, polydf, how="union")
Beispiel #2
0
def test_overlay(dfs, how, use_sindex, expected_features):
    """
    Basic overlay test with small dummy example dataframes (from docs).
    Results obtained using QGIS 2.16 (Vector -> Geoprocessing Tools ->
    Intersection / Union / ...), saved to GeoJSON and pasted here
    """
    df1, df2 = dfs
    result = overlay(df1, df2, how=how, use_sindex=use_sindex)

    # construction of result
    if how == 'identity':
        expected = pd.concat([
            GeoDataFrame.from_features(expected_features['intersection']),
            GeoDataFrame.from_features(expected_features['difference'])
        ], ignore_index=True)
    else:
        expected = GeoDataFrame.from_features(expected_features[how])

    # TODO needed adaptations to result
    # if how == 'union':
    #     result = result.drop(['idx1', 'idx2'], axis=1).sort_values(['col1', 'col2']).reset_index(drop=True)
    # elif how in ('intersection', 'identity'):
    #     result = result.drop(['idx1', 'idx2'], axis=1)

    assert_geodataframe_equal(result, expected)

    # for difference also reversed
    if how == 'difference':
        result = overlay(df2, df1, how=how, use_sindex=use_sindex)
        expected = GeoDataFrame.from_features(
            expected_features['difference_inverse'])
        assert_geodataframe_equal(result, expected)
Beispiel #3
0
def test_preserve_crs(dfs, how):
    df1, df2 = dfs
    result = overlay(df1, df2, how=how)
    assert result.crs is None
    crs = {'init': 'epsg:4326'}
    df1.crs = crs
    df2.crs = crs
    result = overlay(df1, df2, how=how)
    assert result.crs == crs
Beispiel #4
0
    def test_union_no_index(self):
        # explicitly ignore indicies
        dfB = overlay(self.polydf, self.polydf2, how="union", use_sindex=False)
        self.assertEquals(dfB.shape, self.union_shape)

        # remove indicies from df
        self.polydf._sindex = None
        self.polydf2._sindex = None
        dfC = overlay(self.polydf, self.polydf2, how="union")
        self.assertEquals(dfC.shape, self.union_shape)
Beispiel #5
0
    def test_geometry_not_named_geometry(self):
        # Issue #306
        # Add points and flip names
        polydf3 = self.polydf.copy()
        polydf3 = polydf3.rename(columns={'geometry':'polygons'})
        polydf3 = polydf3.set_geometry('polygons')
        polydf3['geometry'] = self.pointdf.geometry.loc[0:4]
        self.assertTrue(polydf3.geometry.name == 'polygons')

        df = overlay(polydf3, self.polydf2, how="union")
        self.assertTrue(type(df) is GeoDataFrame)
        
        df2 = overlay(self.polydf, self.polydf2, how="union")
        self.assertTrue(df.geom_almost_equals(df2).all())
Beispiel #6
0
def test_empty_intersection(dfs):
    df1, df2 = dfs
    polys3 = GeoSeries([Polygon([(-1, -1), (-3, -1), (-3, -3), (-1, -3)]),
                        Polygon([(-3, -3), (-5, -3), (-5, -5), (-3, -5)])])
    df3 = GeoDataFrame({'geometry': polys3, 'col3': [1, 2]})
    expected = GeoDataFrame([], columns=['col1', 'col3', 'geometry'])
    result = overlay(df1, df3)
    assert_geodataframe_equal(result, expected, check_like=True)
Beispiel #7
0
def test_overlay_nybb(how):
    polydf = read_file(geopandas.datasets.get_path('nybb'))

    # construct circles dataframe
    N = 10
    b = [int(x) for x in polydf.total_bounds]
    polydf2 = GeoDataFrame(
            [{'geometry': Point(x, y).buffer(10000), 'value1': x + y,
              'value2': x - y}
             for x, y in zip(range(b[0], b[2], int((b[2]-b[0])/N)),
                             range(b[1], b[3], int((b[3]-b[1])/N)))],
            crs=polydf.crs)

    result = overlay(polydf, polydf2, how=how)

    cols = ['BoroCode', 'BoroName', 'Shape_Leng', 'Shape_Area',
            'value1', 'value2']
    if how == 'difference':
        cols = cols[:-2]

    # expected result

    if how == 'identity':
        # read union one, further down below we take the appropriate subset
        expected = read_file(os.path.join(
            DATA, 'nybb_qgis', 'qgis-union.shp'))
    else:
        expected = read_file(os.path.join(
            DATA, 'nybb_qgis', 'qgis-{0}.shp'.format(how)))

    # The result of QGIS for 'union' contains incorrect geometries:
    # 24 is a full original circle overlapping with unioned geometries, and
    # 27 is a completely duplicated row)
    if how == 'union':
        expected = expected.drop([24, 27])
        expected.reset_index(inplace=True, drop=True)
    # Eliminate observations without geometries (issue from QGIS)
    expected = expected[expected.is_valid]
    expected.reset_index(inplace=True, drop=True)

    if how == 'identity':
        expected = expected[expected.BoroCode.notnull()].copy()

    # Order GeoDataFrames
    expected = expected.sort_values(cols).reset_index(drop=True)

    # TODO needed adaptations to result
    result = result.sort_values(cols).reset_index(drop=True)

    if how in ('union', 'identity'):
        # concat < 0.23 sorts, so changes the order of the columns
        # but at least we ensure 'geometry' is the last column
        assert result.columns[-1] == 'geometry'
        assert len(result.columns) == len(expected.columns)
        result = result.reindex(columns=expected.columns)

    assert_geodataframe_equal(result, expected, check_crs=False,
                              check_column_type=False,)
Beispiel #8
0
def test_geometry_not_named_geometry(dfs, how, other_geometry):
    # Issue #306
    # Add points and flip names
    df1, df2 = dfs
    df3 = df1.copy()
    df3 = df3.rename(columns={'geometry': 'polygons'})
    df3 = df3.set_geometry('polygons')
    if other_geometry:
        df3['geometry'] = df1.centroid.geometry
    assert df3.geometry.name == 'polygons'

    res1 = overlay(df1, df2, how=how)
    res2 = overlay(df3, df2, how=how)

    assert df3.geometry.name == 'polygons'

    if how == 'difference':
        # in case of 'difference', column names of left frame are preserved
        assert res2.geometry.name == 'polygons'
        if other_geometry:
            assert 'geometry' in res2.columns
            assert_geoseries_equal(res2['geometry'], df3['geometry'],
                                   check_series_type=False)
            res2 = res2.drop(['geometry'], axis=1)
        res2 = res2.rename(columns={'polygons': 'geometry'})
        res2 = res2.set_geometry('geometry')

    # TODO if existing column is overwritten -> geometry not last column
    if other_geometry and how == 'intersection':
        res2 = res2.reindex(columns=res1.columns)
    assert_geodataframe_equal(res1, res2)

    df4 = df2.copy()
    df4 = df4.rename(columns={'geometry': 'geom'})
    df4 = df4.set_geometry('geom')
    if other_geometry:
        df4['geometry'] = df2.centroid.geometry
    assert df4.geometry.name == 'geom'

    res1 = overlay(df1, df2, how=how)
    res2 = overlay(df1, df4, how=how)
    assert_geodataframe_equal(res1, res2)
Beispiel #9
0
def test_overlay(dfs_index, how, use_sindex):
    """
    Basic overlay test with small dummy example dataframes (from docs).
    Results obtained using QGIS 2.16 (Vector -> Geoprocessing Tools ->
    Intersection / Union / ...), saved to GeoJSON
    """
    df1, df2 = dfs_index
    result = overlay(df1, df2, how=how, use_sindex=use_sindex)

    # construction of result

    def _read(name):
        expected = read_file(
            os.path.join(DATA, 'polys', 'df1_df2-{0}.geojson'.format(name)))
        expected.crs = None
        return expected

    if how == 'identity':
        expected_intersection = _read('intersection')
        expected_difference = _read('difference')
        expected = pd.concat([
            expected_intersection,
            expected_difference
        ], ignore_index=True, sort=False)
        expected['col1'] = expected['col1'].astype(float)
    else:
        expected = _read(how)

    # TODO needed adaptations to result
    if how == 'union':
        result = result.sort_values(['col1', 'col2']).reset_index(drop=True)
    elif how == 'difference':
        result = result.reset_index(drop=True)

    assert_geodataframe_equal(result, expected, check_column_type=False)

    # for difference also reversed
    if how == 'difference':
        result = overlay(df2, df1, how=how, use_sindex=use_sindex)
        result = result.reset_index(drop=True)
        expected = _read('difference-inverse')
        assert_geodataframe_equal(result, expected, check_column_type=False)
Beispiel #10
0
    def test_union_non_numeric_index(self):
        import string
        letters = list(string.ascii_letters)

        polydf_alpha = self.polydf.copy()
        polydf2_alpha = self.polydf2.copy()
        polydf_alpha.index = letters[:len(polydf_alpha)]
        polydf2_alpha.index = letters[:len(polydf2_alpha)]
        df = overlay(polydf_alpha, polydf2_alpha, how="union")
        assert type(df) is GeoDataFrame
        assert df.shape == self.union_shape
        assert 'value1' in df.columns and 'Shape_Area' in df.columns
Beispiel #11
0
def test_correct_index(dfs):
    # GH883 - case where the index was not properly reset
    df1, df2 = dfs
    polys3 = GeoSeries([Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]),
                        Polygon([(-1, 1), (1, 1), (1, 3), (-1, 3)]),
                        Polygon([(3, 3), (5, 3), (5, 5), (3, 5)])])
    df3 = GeoDataFrame({'geometry': polys3, 'col3': [1, 2, 3]})
    i1 = Polygon([(1, 1), (1, 3), (3, 3), (3, 1), (1, 1)])
    i2 = Polygon([(3, 3), (3, 5), (5, 5), (5, 3), (3, 3)])
    expected = GeoDataFrame([[1, 1, i1], [3, 2, i2]],
                            columns=['col3', 'col2', 'geometry'])
    result = overlay(df3, df2)
    assert_geodataframe_equal(result, expected)
Beispiel #12
0
def raster_gt(box, gt):
    transform = rio.transform.from_bounds(*box.geometry.values[0].bounds, 768,
                                          768)
    species_encoding = {1001: 1, 1005: 2}
    inter = gpd.overlay(gt, box, how='intersection')
    shapes = ((row.geometry, species_encoding[row.Species])
              for _, row in inter.iterrows())
    rastered_shape = rio.features.rasterize(shapes=shapes,
                                            out_shape=(768, 768),
                                            transform=transform)
    rgb_mask = np.zeros((768, 768, 3))
    rgb_mask[:, :, 0] = rastered_shape == 1
    rgb_mask[:, :, 1] = rastered_shape == 2
    return rgb_mask
Beispiel #13
0
def build_mask(data, grid):
    dI = gpd.overlay(grid.df,
                     data.to_crs(epsg=grid.epsg),
                     how="intersection",
                     keep_geom_type=False)
    dO = gpd.overlay(grid.df,
                     data.to_crs(epsg=grid.epsg),
                     how="difference",
                     keep_geom_type=False)

    dataI = np.array(dI["geometry"][0].array_interface()["data"]).reshape(
        -1, 2)
    dataO = np.array(dO["geometry"][0].array_interface()["data"]).reshape(
        -1, 2)
    dataM = pd.DataFrame(np.vstack((dataI, dataO)), columns=["x", "y"])
    dataM["mask"] = np.nan
    dataM.iloc[:dataI.shape[0], 2] = True
    dataM.iloc[dataI.shape[0]:, 2] = False
    dataM = dataM.sort_values(["x", "y"])

    mask_array = dataM["mask"].values.astype(int).reshape(grid.nx, grid.ny).T

    return mask_array
Beispiel #14
0
def spatialSwathFilter(region,
                       h5files,
                       subgroup='//All_Data/ATMS-SDR-GEO_All/'):
    swathGroups = groupSwathFiles(h5files)

    geoms, sdrnames, geonames = [], [], []
    for sg in swathGroups:
        geoFile, sdrFile = sg

        geoBase = 'HDF5:"{0}":{1}{2}'

        lats = gdal.Open(geoBase.format(geoFile, subgroup,
                                        'Latitude')).ReadAsArray()
        lons = gdal.Open(geoBase.format(geoFile, subgroup,
                                        'Longitude')).ReadAsArray()
        view = gdal.Open(
            geoBase.format(geoFile, subgroup,
                           'SatelliteZenithAngle')).ReadAsArray()

        yp, xp = np.where(view < 50)
        minindex, maxindex = xp.min(), xp.max()
        lons = lons[:, minindex:maxindex]
        lats = lats[:, minindex:maxindex]

        wVerts = [(lons[i, 0], lats[i, 0]) for i in range(lats.shape[0])
                  if (lons[i, 0] > -200) and (lats[i, 0] > -200)][::-1]
        nVerts = [(lons[0, i], lats[0, i]) for i in range(lats.shape[1])
                  if (lons[0, i] > -200) and (lats[0, i] > -200)]
        eVerts = [(lons[i, -1], lats[i, -1]) for i in range(lats.shape[0])
                  if (lons[i, -1] > -200) and (lats[i, -1] > -200)]
        sVerts = [(lons[-1, i], lats[-1, i]) for i in range(lats.shape[1])
                  if (lons[-1, i] > -200) and (lats[-1, i] > -200)]
        sVerts.append(wVerts[0])

        verts = wVerts + nVerts + eVerts + sVerts
        geoms.append(geometry.Polygon(verts))
        sdrnames.append(sdrFile)
        geonames.append(geoFile)

    swathGeo = gpd.GeoDataFrame(pd.DataFrame({
        'sdr': sdrnames,
        'geo': geonames,
        'geometry': geoms
    }),
                                geometry=geoms)
    swathGeo.crs = {'init': 'epsg:4326'}

    intersection = gpd.overlay(region, swathGeo, how='intersection')

    return list(intersection.sdr), list(intersection.geo)
def clipMask(crs, shpFile, minX, maxX, minY, maxY, **kwargs):
    '''Clip a shapefile to extent
    For better performance first spatial join with intersect is computed, and then overlapping polygons are clipped with geopandas overlay
    New polygon area is calculated. Note that it assumes that crs is projected for area calculation

    :param minX:
    :param maxX
    :param minY:
    :param maxY:
    :param shpFile:
    :return:
    '''

    logger.info('Starting to clip polygon minX=%s, maxX=%s, minY=%s, maxY=%s',
                minX, maxX, minY, maxY)
    logger.info('Opening mask file: %s', shpFile)
    # create extent geodataframe

    start = time.time()

    # open mask shapefile
    masksShp = gp.read_file(shpFile)

    logger.info('Creating clip polygon from extent...')

    extent = gp.GeoSeries([
        Polygon([(minX, minY), (minX, maxY), (maxX, maxY), (maxX, minY),
                 (minX, minY)])
    ])
    dfExtent = gp.GeoDataFrame(geometry=extent)
    dfExtent.crs = crs

    logger.info('Intersecting Shapefile with extent...')
    # intersect with extent
    maskIntersect = gp.sjoin(masksShp, dfExtent, how='inner', op='intersects')

    #drop columns except geometry and Area
    maskIntersect.drop(maskIntersect.columns.difference(['geometry', 'Area']),
                       1,
                       inplace=True)
    #rename Area column to area_old
    maskIntersect.rename(columns={'Area': 'area_old'}, inplace=True)

    logger.info('Clip overlapping polygons...')
    maskClipped = gp.overlay(maskIntersect, dfExtent, how='intersection')

    logger.info('Total time used for clipping %s seconds',
                '{0:.3g}'.format(time.time() - start))

    return maskClipped
    def run(self, region: MultiPolygon, period: DateRange,
            granularity: TimeAggregation,
            pollutant: Pollutant) -> tuple[DataFrame, GeoDataFrame]:
        self._validate(region, period, granularity, pollutant)
        self._state = Status.RUNNING
        self._progress = 0

        # Generate data frame with random emission values per GNFR sector
        data = self._create_gnfr_table(pollutant)
        for sector in GNFR:
            data.loc[sector] = [random() * 100, random() * 18, random() * 22]
        # Add totals row at the bottom
        data.loc["Totals"] = data.sum(axis=0)

        self._progress = 50

        # Generate bogus grid with random emission values
        geo_data, _ = self._create_grid(region, .1, .1, snap=False)
        geo_data = overlay(geo_data,
                           GeoDataFrame({'geometry': [region]},
                                        crs="EPSG:4326"),
                           how='intersection')
        geo_data.insert(0, "Area [km²]",
                        geo_data.to_crs(epsg=8857).area /
                        10**6)  # Equal earth projection
        geo_data.insert(1, f"Total {pollutant.name} emissions [kg]",
                        [random() * 100 for _ in range(geo_data.shape[0])])
        geo_data.insert(2, "Umin [%]", 42)
        geo_data.insert(3, "Umax [%]", 42)
        geo_data.insert(4, "Number of values [1]", len(period))
        geo_data.insert(5, "Missing values [1]", 0)

        if granularity is TimeAggregation.YEARLY:
            headings = self._create_column_headings_per_year(period, pollutant)
        elif granularity is TimeAggregation.MONTHLY:
            headings = self._create_column_headings_per_month(
                period, pollutant)
        else:
            headings = [
                f"{day} {pollutant.name} emissions [kg]" for day in period
            ]
        for count, heading in enumerate(headings):
            geo_data.insert(6 + count, heading, [
                random() * 100 / len(headings)
                for _ in range(geo_data.shape[0])
            ])

        self._progress = 100
        self._state = Status.READY
        return self._create_result_tuple(data, geo_data)
Beispiel #17
0
def overlay():
    polys1 = geopandas.GeoSeries([Polygon([(0,0), (2,0), (2,2), (0,2)]),
                                  Polygon([(2,2), (4,2), (4,4), (2,4)])])
    polys2 = geopandas.GeoSeries([Polygon([(1,1), (3,1), (3,3), (1,3)]),
                                  Polygon([(3,3), (5,3), (5,5), (3,5)])])
    df1 = geopandas.GeoDataFrame({'geometry': polys1, 'df1':[1,2]})
    df2 = geopandas.GeoDataFrame({'geometry': polys2, 'df2':[1,2]})

    #原始叠加显示
    ax = df1.plot(color='red')
    df2.plot(ax=ax, color='green', alpha=0.5)
    plt.title('data')

    #联合
    res_union = geopandas.overlay(df1, df2, how='union')

    ax = res_union.plot(alpha=0.5, cmap='tab10')
    df1.plot(ax=ax, facecolor='none', edgecolor='k')
    df2.plot(ax=ax, facecolor='none', edgecolor='k')
    plt.title('union')

    #相交
    res_intersection = geopandas.overlay(df1, df2, how='intersection')

    ax = res_intersection.plot(alpha=0.5, cmap='tab10')
    df1.plot(ax=ax, facecolor='none', edgecolor='k')
    df2.plot(ax=ax, facecolor='none', edgecolor='k')
    plt.title('intersection')

    #交集取反
    res_symdiff = geopandas.overlay(df1, df2, how='symmetric_difference')

    ax = res_symdiff.plot(alpha=0.5, cmap='tab10')
    df1.plot(ax=ax, facecolor='none', edgecolor='k')
    df2.plot(ax=ax, facecolor='none', edgecolor='k')
    plt.title('symmetric_difference')
    plt.show()
Beispiel #18
0
def test_overlay_overlap(how):
    """
    Overlay test with overlapping geometries in both dataframes.
    Test files are created with::

        import geopandas
        from geopandas import GeoSeries, GeoDataFrame
        from shapely.geometry import Point, Polygon, LineString

        s1 = GeoSeries([Point(0, 0), Point(1.5, 0)]).buffer(1, resolution=2)
        s2 = GeoSeries([Point(1, 1), Point(2, 2)]).buffer(1, resolution=2)

        df1 = GeoDataFrame({'geometry': s1, 'col1':[1,2]})
        df2 = GeoDataFrame({'geometry': s2, 'col2':[1, 2]})

        ax = df1.plot(alpha=0.5)
        df2.plot(alpha=0.5, ax=ax, color='C1')

        df1.to_file('geopandas/geopandas/tests/data/df1_overlap.geojson',
                    driver='GeoJSON')
        df2.to_file('geopandas/geopandas/tests/data/df2_overlap.geojson',
                    driver='GeoJSON')

    and then overlay results are obtained from using  QGIS 2.16
    (Vector -> Geoprocessing Tools -> Intersection / Union / ...),
    saved to GeoJSON.
    """
    df1 = read_file(os.path.join(DATA, 'overlap', 'df1_overlap.geojson'))
    df2 = read_file(os.path.join(DATA, 'overlap', 'df2_overlap.geojson'))

    result = overlay(df1, df2, how=how)

    if how == 'identity':
        raise pytest.skip()

    expected = read_file(os.path.join(
        DATA, 'overlap', 'df1_df2_overlap-{0}.geojson'.format(how)))

    if how == 'union':
        # the QGIS result has the last row duplicated, so removing this
        expected = expected.iloc[:-1]

    # TODO needed adaptations to result
    result = result.reset_index(drop=True)
    if how == 'union':
        result = result.sort_values(['col1', 'col2']).reset_index(drop=True)

    assert_geodataframe_equal(result, expected, check_column_type=False,
                              check_less_precise=True)
Beispiel #19
0
def extract_tile_items(raster_features, labels, min_x, min_y, tile_width,
                       tile_height):
    """Extract label items that belong to the tile defined by the minimum
    horizontal pixel `min_x` (left tile limit), the minimum vertical pixel
    `min_y` (upper tile limit) and the sizes ̀tile_width` and `tile_height`
    measured as a pixel amount.

    The tile is cropped from the original image raster as follows:
      - horizontally, between `min_x` and `min_x+tile_width`
      - vertically, between `min_y` and `min_y+tile_height`

    This method takes care of original data projection (UTM 37S, Tanzania
    area), however this parameter may be changed if similar data on another
    projection is used.

    Parameters
    ----------
    raster_features : dict
        Raw image raster geographical features (`north`, `south`, `east` and
    `west` coordinates, `weight` and `height` measured in pixels)
    labels : geopandas.GeoDataFrame
        Raw image labels, as a set of geometries
    min_x : int
        Left tile limit, as a horizontal pixel index
    min_y : int
        Upper tile limit, as a vertical pixel index
    tile_width : int
        Tile width, measured in pixel
    tile_height : int
        Tile height, measured in pixel

    Returns
    -------
    geopandas.GeoDataFrame
        Set of ground-truth labels contained into the tile, characterized by
    their type (complete, unfinished or foundation) and their geometry

    """
    area = get_tile_footprint(raster_features, min_x, min_y, tile_width,
                              tile_height)
    bdf = gpd.GeoDataFrame(crs=fiona.crs.from_epsg(raster_features["srid"]),
                           geometry=[area])
    reproj_labels = labels.to_crs(epsg=raster_features["srid"])
    tile_items = gpd.sjoin(reproj_labels, bdf)
    if tile_items.shape[0] == 0:
        return tile_items[["condition", "geometry"]]
    tile_items = gpd.overlay(tile_items, bdf)
    tile_items = tile_items.explode()  # Manage MultiPolygons
    return tile_items[["condition", "geometry"]]
Beispiel #20
0
def test_overlay_overlap(how):
    """
    Overlay test with overlapping geometries in both dataframes.
    Test files are created with::

        import geopandas
        from geopandas import GeoSeries, GeoDataFrame
        from shapely.geometry import Point, Polygon, LineString

        s1 = GeoSeries([Point(0, 0), Point(1.5, 0)]).buffer(1, resolution=2)
        s2 = GeoSeries([Point(1, 1), Point(2, 2)]).buffer(1, resolution=2)

        df1 = GeoDataFrame({'geometry': s1, 'col1':[1,2]})
        df2 = GeoDataFrame({'geometry': s2, 'col2':[1, 2]})

        ax = df1.plot(alpha=0.5)
        df2.plot(alpha=0.5, ax=ax, color='C1')

        df1.to_file('geopandas/geopandas/tests/data/df1_overlap.geojson',
                    driver='GeoJSON')
        df2.to_file('geopandas/geopandas/tests/data/df2_overlap.geojson',
                    driver='GeoJSON')

    and then overlay results are obtained from using  QGIS 2.16
    (Vector -> Geoprocessing Tools -> Intersection / Union / ...),
    saved to GeoJSON.
    """
    df1 = read_file(os.path.join(DATA, 'overlap', 'df1_overlap.geojson'))
    df2 = read_file(os.path.join(DATA, 'overlap', 'df2_overlap.geojson'))

    result = overlay(df1, df2, how=how)

    if how == 'identity':
        raise pytest.skip()

    expected = read_file(os.path.join(
        DATA, 'overlap', 'df1_df2_overlap-{0}.geojson'.format(how)))

    if how == 'union':
        # the QGIS result has the last row duplicated, so removing this
        expected = expected.iloc[:-1]

    # TODO needed adaptations to result
    result = result.reset_index(drop=True)
    if how == 'union':
        result = result.sort_values(['col1', 'col2']).reset_index(drop=True)

    assert_geodataframe_equal(result, expected, check_column_type=False,
                              check_less_precise=True)
Beispiel #21
0
def test_non_overlapping(how):
    p1 = Polygon([(0, 0), (2, 0), (2, 2), (0, 2)])
    p2 = Polygon([(3, 3), (5, 3), (5, 5), (3, 5)])
    df1 = GeoDataFrame({"col1": [1], "geometry": [p1]})
    df2 = GeoDataFrame({"col2": [2], "geometry": [p2]})
    result = overlay(df1, df2, how=how)

    if how == "intersection":
        expected = GeoDataFrame(
            {
                "col1": np.array([], dtype="int64"),
                "col2": np.array([], dtype="int64"),
                "geometry": [],
            },
            index=pd.Index([], dtype="object"),
        )
    elif how == "union":
        expected = GeoDataFrame(
            {
                "col1": [1, np.nan],
                "col2": [np.nan, 2],
                "geometry": [p1, p2],
            }
        )
    elif how == "identity":
        expected = GeoDataFrame(
            {
                "col1": [1.0],
                "col2": [np.nan],
                "geometry": [p1],
            }
        )
    elif how == "symmetric_difference":
        expected = GeoDataFrame(
            {
                "col1": [1, np.nan],
                "col2": [np.nan, 2],
                "geometry": [p1, p2],
            }
        )
    elif how == "difference":
        expected = GeoDataFrame(
            {
                "col1": [1],
                "geometry": [p1],
            }
        )

    assert_geodataframe_equal(result, expected)
def get_user_data_by_vicinity():
    all_user_data_result = get_all_user_data()
    if not const.HTTP_ERROR:
        # Set the area proximity geodataframe
        df_wgs84 = pd.DataFrame({
            'id': [1],
            'latitude': [1.23],
            'longitude': [-0.213]
        })
        df_wgs84_geom = [
            Point(xy) for xy in zip(df_wgs84.longitude, df_wgs84.latitude)
        ]
        wgs84_crs = {'init': 'epsg:4326'}
        geo_df_wgs84 = gpd.GeoDataFrame(df_wgs84,
                                        crs=wgs84_crs,
                                        geometry=df_wgs84_geom)
        df_web_mercator = geo_df_wgs84.to_crs(epsg=3857)
        df_web_mercator['geometry'] = df_web_mercator.geometry.buffer(
            const.PROXIMITY)
        # Set the user data geodataframe
        all_user_df = pd.DataFrame.from_dict(all_user_data_result,
                                             orient='columns')
        all_user_df['longitude'] = pd.to_numeric(all_user_df['longitude'],
                                                 downcast='float')
        all_user_df['latitude'] = pd.to_numeric(all_user_df['latitude'],
                                                downcast='float')
        all_user_geom = [
            Point(xy)
            for xy in zip(all_user_df.longitude, all_user_df.latitude)
        ]
        all_user_geo_df = gpd.GeoDataFrame(all_user_df,
                                           crs=wgs84_crs,
                                           geometry=all_user_geom)
        all_user_geo_df_web_mercator = all_user_geo_df.to_crs(epsg=3857)
        # Overlay the user data geodataframe with the area proximity geodataframe to retrieve target users data
        target_users_gdf = gpd.overlay(all_user_geo_df_web_mercator,
                                       df_web_mercator,
                                       how='intersection')
        # Set the target users list
        target_users_id_list = []
        for index, row in target_users_gdf.iterrows():
            target_users_id_list.append(row['id_1'])
        target_users_item_list = []
        for user_item in all_user_data_result:
            if user_item['id'] in target_users_id_list:
                target_users_item_list.append(user_item)
        return target_users_item_list
    else:
        return all_user_data_result
def _generate_ground_truth(w, h, crop_size, annotation_polygon: Polygon,
                           pixel_annotation_value):
    """

    :param w:
    :param h:
    :param crop_size:
    :param annotation_polygon:
    :param pixel_annotation_value:
    :return:
    """

    patch_mask_polygon = Polygon([(w, h), (w + crop_size, h),
                                  (w + crop_size, h + crop_size),
                                  (w, h + crop_size)])
    patch_mask_polygon = gpd.GeoSeries(patch_mask_polygon)
    annotation_polygon = gpd.GeoSeries(annotation_polygon)

    # Get the intersection of the `patch mask and an annotation
    #
    # 'patch_mask' would fed into GeoDataFrame as dataset.
    gdf_mask = gpd.GeoDataFrame({
        'geometry': patch_mask_polygon,
        'patch_mask': pixel_annotation_value
    })

    gdf_curr_annotation = gpd.GeoDataFrame({'geometry': annotation_polygon})
    gdf_mask_curr_anno_diff = gpd.overlay(gdf_mask,
                                          gdf_curr_annotation,
                                          how='intersection')

    if not gdf_mask_curr_anno_diff.empty:
        # 'geom' work as boundary box
        mask_curr_anno_intersection_rasterized = \
            make_geocube(vector_data=gdf_mask_curr_anno_diff,
                         resolution=(1., 1.),
                         geom=json.dumps(mapping(box(w, h, w+crop_size, h+crop_size))),
                         fill=opt.pixel_anno_ignore)

        # TODO: refactor a transformation of geocube data to numpy array
        intersection_data = mask_curr_anno_intersection_rasterized.to_dict()
        intersection_data = intersection_data['data_vars']['patch_mask'][
            'data']
        patch_ground_truth = np.array(intersection_data)

        return patch_ground_truth

    return np.full((crop_size, crop_size),
                   pixel_annotation_value).astype(np.float)
Beispiel #24
0
def get_country_geometries(country_names=None, extent=None, resolution=10):
    """Returns a gpd GeoSeries of natural earth multipolygons of the
    specified countries, resp. the countries that lie within the specified
    extent. If no arguments are given, simply returns the whole natural earth
    dataset.
    Take heed: we assume WGS84 as the CRS unless the Natural Earth download
    utility from cartopy starts including the projection information. (They
    are saving a whopping 147 bytes by omitting it.) Same goes for UTF.

    Parameters:
        country_names (list, optional): list with ISO3 names of countries, e.g
            ['ZWE', 'GBR', 'VNM', 'UZB']
        extent (tuple, optional): (min_lon, max_lon, min_lat, max_lat) assumed
            to be in the same CRS as the natural earth data.
        resolution (float, optional): 10, 50 or 110. Resolution in m. Default:
            10m

    Returns:
        GeoDataFrame
    """
    resolution = nat_earth_resolution(resolution)
    shp_file = shapereader.natural_earth(resolution=resolution,
                                         category='cultural',
                                         name='admin_0_countries')
    nat_earth = gpd.read_file(shp_file, encoding='UTF-8')

    if not nat_earth.crs:
        nat_earth.crs = NE_CRS

    if country_names:
        if isinstance(country_names, str):
            country_names = [country_names]
        out = nat_earth[nat_earth.ISO_A3.isin(country_names)]

    elif extent:
        bbox = Polygon([
            (extent[0], extent[2]),
            (extent[0], extent[3]),
            (extent[1], extent[3]),
            (extent[1], extent[2])
        ])
        bbox = gpd.GeoSeries(bbox, crs=nat_earth.crs)
        bbox = gpd.GeoDataFrame({'geometry': bbox}, crs=nat_earth.crs)
        out = gpd.overlay(nat_earth, bbox, how="intersection")

    else:
        out = nat_earth

    return out
Beispiel #25
0
def test_correct_index(dfs):
    # GH883 - case where the index was not properly reset
    df1, df2 = dfs
    polys3 = GeoSeries([
        Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]),
        Polygon([(-1, 1), (1, 1), (1, 3), (-1, 3)]),
        Polygon([(3, 3), (5, 3), (5, 5), (3, 5)]),
    ])
    df3 = GeoDataFrame({"geometry": polys3, "col3": [1, 2, 3]})
    i1 = Polygon([(1, 1), (1, 3), (3, 3), (3, 1), (1, 1)])
    i2 = Polygon([(3, 3), (3, 5), (5, 5), (5, 3), (3, 3)])
    expected = GeoDataFrame([[1, 1, i1], [3, 2, i2]],
                            columns=["col3", "col2", "geometry"])
    result = overlay(df3, df2, keep_geom_type=True)
    assert_geodataframe_equal(result, expected)
Beispiel #26
0
def intersect_aois(shps):
    logger.info('Finding intersection among provided polygons...')
    logger.info('Reading: {}'.format(shps[0]))
    shp = gpd.read_file(shps[0])
    if len(shp) > 1:
        shp = dissolve_gdf(shp)
    for s in shps[1:]:
        logger.info('Reading: {}'.format(s))
        shp2 = gpd.read_file(s)
        if len(shp2) > 1:
            shp2 = dissolve_gdf(shp2)
        logger.info('Finding intersection...')
        shp = gpd.overlay(shp, shp2)

    return shp
def get_area_and_start_point():
    #! load crawl area
    area = gpd.read_file('../input/area_test.geojson')
    df_roads = gpd.read_file("../input/深圳市_osm路网_道路.geojson")
    df_nodes = gpd.read_file("../input/深圳市_osm路网_节点.geojson")

    roads = gpd.overlay(df_roads, area, how="intersection")
    nodes = gpd.overlay(df_nodes, area, how="intersection")

    if False:
        ax = map_visualize(roads, color='red', scale=0.1)
        nodes.plot(ax=ax, )
        ax.axis('off')

        ax = map_visualize(roads.set_geometry('start'), color='red', scale=0.1)
        ax.axis('off')

    roads.loc[:, 'start'] = roads.geometry.apply(
        lambda i: Point(i.xy[0][0], i.xy[1][0]))
    roads.loc[:, 'end'] = roads.geometry.apply(
        lambda i: Point(i.xy[0][-1], i.xy[1][-1]))
    roads.loc[:, 'start_bd_mc'] = roads.start.apply(
        lambda i: wgs_to_bd_mc(*i.coords[0]))
    return roads.start_bd_mc.values.tolist(), area.loc[0].geometry
Beispiel #28
0
def dist_cont(point_df,dist_list,outside,buff_res):
    if point_df.crs != outside.crs:
        print('Point df and Outside df are not the same CRS')
        return None
    # Making outside area out dissolved object
    out_cop = outside[['geometry']].copy()
    out_cop['Constant'] = 1
    out_cop = out_cop.dissolve('Constant')
    # Make sure points are inside area
    inside = point_df.within(out_cop['geometry'][1])
    point_cop = point_df[inside].copy()
    point_cop = point_df.copy()
    point_cop['Constant'] = 1 #Constant for dissolve
    point_cop = point_cop[['Constant','geometry']].copy()
    res_buffers = []
    for i,d in enumerate(dist_list):
        print(f'Doing buffer {d}')
        if i == 0:
            res = dissolve_buff(point_cop, d, buff_res)
            res_buffers.append(res.copy())
        else:
            res_new = dissolve_buff(point_cop, d, buff_res)
            res_buffonly = gpd.overlay(res_new, res, how='difference')
            res = res_new.copy()
            res_buffers.append( res_buffonly.copy() )
    # Now take the difference with the larger area
    print('Working on leftover difference now')
    leftover = gpd.overlay(out_cop, res, how='difference')
    res_buffers.append(leftover)
    for i,d in enumerate(dist_list):
        res_buffers[i]['Distance'] = str(d)
    res_buffers[-1]['Distance'] = 'Outside'
    # New geopandas DF
    comb_df = pd.concat(res_buffers)
    comb_df.reset_index(inplace=True, drop=True)
    return comb_df
Beispiel #29
0
def stackUnion(add, stack, thing, sliver_size=0.001):

    # Prepare to fail
    failures = []
    backup = stack.copy()

    # Ensure the geometries are all valid
    add = ensureValid(add)
    stack = ensureValid(stack)

    # Union the new layer to the overlay
    try:
        try:
            stack = gpd.overlay(add, stack, "union")
        except:
            stack = roundCoords(stack, 5)
            try:
                stack = gpd.overlay(add, stack, "union")
            except:
                add = roundCoords(add, 5)
                stack = gpd.overlay(ensureValid(add), ensureValid(stack),
                                    "union")

        # Round the coordinates
        stack = roundCoords(stack, 5)
        print(f"    Added {thing}{' '*(21-len(thing))}{now()}")

    except Exception as e:
        failures.append(thing)
        print(e)
        print(f"--- FAILED TO ADD {thing} ---------\n")
        return backup, failures

    # Return the new union
    stack = ensureValid(stack)
    return stack, failures
Beispiel #30
0
def overlay_grid_and_plants(gdf, grid, img_path):
    gdf_rd = gdf.to_crs(epsg=28992)
    #create new columns
    grid['id'] = range(len(grid))
    grid['area'] = np.nan
    #intersect data and grid
    intersect = gpd.overlay(grid, gdf_rd, how='intersection')
    #calculate area per grid cell and write area to column
    for ID in intersect.id:
        temp = intersect[intersect['id'] == ID]
        area = temp.geometry.area.sum()    
        grid.loc[ID, 'area'] = float(area)
    #write grid to file as output
    grid.to_file(os.path.dirname(img_path) + '/plant_area_grid.shp')
    return grid
Beispiel #31
0
def filter_map(gdf, bbox=[0, 0, 180, 90]):
    p1 = Point(bbox[0], bbox[3])
    p2 = Point(bbox[2], bbox[3])
    p3 = Point(bbox[2], bbox[1])
    p4 = Point(bbox[0], bbox[1])

    np1 = (p1.coords.xy[0][0], p1.coords.xy[1][0])
    np2 = (p2.coords.xy[0][0], p2.coords.xy[1][0])
    np3 = (p3.coords.xy[0][0], p3.coords.xy[1][0])
    np4 = (p4.coords.xy[0][0], p4.coords.xy[1][0])

    filter = gpd.GeoDataFrame(gpd.GeoSeries(Polygon([np1, np2, np3, np4])),
                              columns=['geometry'],
                              crs=gdf.crs)
    return gpd.overlay(gdf, filter, how='intersection')
Beispiel #32
0
def overlap_calc(_id, poly, grid_file, weight, service_type):
    value_dict = Counter()
    if type(poly.iloc[0][service_type]) != type(None):
        value = float(poly[service_type]) * weight
        intersect = gpd.overlay(grid_file, poly, how='intersection')
        intersect['overlapped'] = intersect.area
        intersect['percent'] = intersect['overlapped'] / intersect['area']
        intersect = intersect[intersect['percent'] >= 0.5]
        intersect_region = intersect['id']
        for intersect_id in intersect_region:
            try:
                value_dict[intersect_id] += value
            except:
                value_dict[intersect_id] = value
    return (_id, value_dict)
Beispiel #33
0
def test_correct_index(dfs):
    # GH883 - case where the index was not properly reset
    df1, df2 = dfs
    polys3 = GeoSeries([
        Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]),
        Polygon([(-1, 1), (1, 1), (1, 3), (-1, 3)]),
        Polygon([(3, 3), (5, 3), (5, 5), (3, 5)])
    ])
    df3 = GeoDataFrame({'geometry': polys3, 'col3': [1, 2, 3]})
    i1 = Polygon([(1, 1), (1, 3), (3, 3), (3, 1), (1, 1)])
    i2 = Polygon([(3, 3), (3, 5), (5, 5), (5, 3), (3, 3)])
    expected = GeoDataFrame([[1, 1, i1], [3, 2, i2]],
                            columns=['col3', 'col2', 'geometry'])
    result = overlay(df3, df2)
    assert_geodataframe_equal(result, expected)
Beispiel #34
0
def test_keep_geom_type_geometry_collection2():
    polys1 = [
        box(0, 0, 1, 1),
        box(1, 1, 3, 3).union(box(1, 3, 5, 5)),
    ]

    polys2 = [
        box(0, 0, 1, 1),
        box(3, 1, 4, 2).union(box(4, 1, 5, 4)),
    ]
    df1 = GeoDataFrame({"left": [0, 1], "geometry": polys1})
    df2 = GeoDataFrame({"right": [0, 1], "geometry": polys2})

    result1 = overlay(df1, df2, keep_geom_type=True)
    expected1 = GeoDataFrame(
        {
            "left": [0, 1],
            "right": [0, 1],
            "geometry": [box(0, 0, 1, 1), box(4, 3, 5, 4)],
        }
    )
    assert_geodataframe_equal(result1, expected1)

    result1 = overlay(df1, df2, keep_geom_type=False)
    expected1 = GeoDataFrame(
        {
            "left": [0, 1, 1],
            "right": [0, 0, 1],
            "geometry": [
                box(0, 0, 1, 1),
                Point(1, 1),
                GeometryCollection([box(4, 3, 5, 4), LineString([(3, 1), (3, 2)])]),
            ],
        }
    )
    assert_geodataframe_equal(result1, expected1)
Beispiel #35
0
def filter_poly(
    poly_pieces_path, markup_path,
    pieces_info_path, original_image_path,
    image_pieces_path, mask_pieces_path,
    pxl_size_threshold, pass_chance
):
    original_image = rs.open(original_image_path)
    geojson_markup = gp.read_file(markup_path)
    geojson_markup = geojson_markup.to_crs(original_image.crs)

    pieces_info = pd.read_csv(pieces_info_path)

    for i in tqdm(range(len(pieces_info))):
        poly_piece_name = pieces_info['piece_geojson'][i]
        start_x = pieces_info["start_x"][i]
        start_y = pieces_info["start_y"][i]

        x, y = original_image.transform * (start_x + 1, start_y + 1)
        filename, _ = os.path.splitext(poly_piece_name)

        try:
            poly_piece = gp.read_file(os.path.join(poly_pieces_path, poly_piece_name))
        except fiona.errors.DriverError:
            print('Polygon is not found.')
            remove_piece(
                filename, poly_pieces_path,
                image_pieces_path, mask_pieces_path
            )
            continue

        if random() < pass_chance:
            continue

        intersection = gp.overlay(geojson_markup, poly_piece, how='intersection')
        adjacency_list = compose_adjacency_list(intersection['geometry'])
        components = get_components(intersection['geometry'], adjacency_list)

        multi_polys = []
        for component in components:
            multi_polys.append(MultiPolygon(poly for poly in component))

        png_file = os.path.join(mask_pieces_path, filename + '.png')
        
        if len(multi_polys) == 0 or (imageio.imread(png_file)).sum() < 255 * pxl_size_threshold:
            remove_piece(
                filename, poly_pieces_path,
                image_pieces_path, mask_pieces_path
            )
Beispiel #36
0
def find_neighbors_in_shape_file(paths, existing_neighbors):
    """This function finds the neighbors in the shape file. Somehow, max-p cannot figure out the correct neighbors and
    some clusters are physically neighbors but they are not considered as neighbors. This is where this function comes
    in.
    :param folder_names = The names of all the folders created for output.
    :param existing_neighbors = The neighbors matrix that is created by using w and knn. The new neighbors are to be
                                added to this matrix.
    :
    """
    df = gpd.read_file(paths["parts_max_p"] + 'max_p_combined.shp')
    df["NEIGHBORS"] = None
    for index, cluster_number in df.iterrows():
        # get 'not disjoint' countries
        import pdb; pdb.set_trace()
        neighbors = df[~df.geometry.disjoint(cluster_number.geometry.buffer(0.005))].CL.tolist()
        df1 = df
        df1.crs = {'init': 'epsg:4326'}
        df1 = df1.to_crs({'init': 'epsg:32662'})
        df2 = cluster_number.to_frame().T
        df2 = gpd.GeoDataFrame(df2, geometry='geometry')
        df2.crs = {'init': 'epsg:4326'}
        df2 = df2.to_crs({'init': 'epsg:32662'})
        df2.geometry = df2.geometry.buffer(100)  # in m
        test = gpd.overlay(df1, df2, how='intersection')
        test['area'] = test['geometry'].area / 10 ** 6  # in km²
        test = test[test['area'] > 0.01]  # avoids that neighbors share only a point or a very small area
        neighbors2 = test.CL_1.tolist()
        neighbors = neighbors2
        # remove own name from the list
        neighbors = [cl_no for cl_no in neighbors if cluster_number.CL != cl_no]
        # add names of neighbors as NEIGHBORS value
        df.at[index, "NEIGHBORS"] = ','.join(str(n) for n in neighbors)

    # Making the w.neighbors dictionary for replacing it in max_p_algorithm_2.
    neighbors_corrected = dict()
    for index, row in df.iterrows():
        neighbors_for_one = row['NEIGHBORS'].split(',')
        neighbors_int = list()
        for neighbor in neighbors_for_one:
            if neighbor:
                neighbors_int.append(int(neighbor))
        neighbors_corrected[index] = neighbors_int
        for value in existing_neighbors[index]:
            if value not in neighbors_corrected[index]:
                neighbors_corrected[index].append(value)
        neighbors_corrected[index] = sorted(neighbors_corrected[index])

    return neighbors_corrected
Beispiel #37
0
def drawSectors(center, radius, sectors, start, steps):
    end = 360 + start  # end of circle in degrees

    # prepare parameters
    if start > end:
        start = start - 360
    else:
        pass

    step_angle_width = (end - start) / steps
    sector_width = (end - start) / sectors
    steps_per_sector = int(math.ceil(steps / sectors))

    features = []
    for x in xrange(0, int(sectors)):
        segment_vertices = []

        # first the center and first point
        segment_vertices.append(polar_point(center, 0, 0))
        segment_vertices.append(
            polar_point(center, start + x * sector_width, radius))

        # then the sector outline points
        for z in xrange(1, steps_per_sector):
            segment_vertices.append(
                (polar_point(center,
                             start + x * sector_width + z * step_angle_width,
                             radius)))

        # then again the center point to finish the polygon
        segment_vertices.append(
            polar_point(center, start + x * sector_width + sector_width,
                        radius))
        segment_vertices.append(polar_point(center, 0, 0))

        # create feature
        features.append(Polygon(segment_vertices))

    polys2 = gpd.GeoSeries(features)
    global df2
    df2 = gpd.GeoDataFrame({'geometry': polys2, 'id': range(sectors)})
    df2.to_file("./output/sectors.shp")

    global res  #shapefile
    res = gpd.overlay(
        df2, df1,
        how='intersection')  #res_union=gpd.overlay(df1,df2,how='union')
    res.to_file("./output/result.shp")
Beispiel #38
0
def image_to_walls(img):
    """From an image, retrieve the walls.

    Aimed at usage for the structure input images.

    Args:
        img (np.array): Input image from structure dataset.

    Returns:
        geodataframe with the walls as a single polygon.
    """
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    contours, _ = cv2.findContours(gray_img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    poly_list = [transform_contour_to_polygon(_contour) for _contour in contours]
    poly_list = [x for x in poly_list if x]

    rooms = gpd.GeoDataFrame(geometry=poly_list)

    rooms["area"] = rooms.area
    rooms = rooms.sort_values("area", ascending=False)
    rooms = rooms.tail(-1).reset_index(
        drop=True
    )  # drop the largest area area outside of the floor

    # find floors:
    floors = (
        gpd.GeoDataFrame(geometry=[rooms.unary_union]).explode().reset_index(drop=True)
    )

    # find best overlapping areas so they can be removed.
    best_matches = {}
    for i, _floor in floors.iterrows():
        _floor = _floor.geometry
        best_overlap = 0
        for j, _room in rooms.iterrows():
            _room = _room.geometry
            if _floor.intersects(_room):
                overlap = _floor.intersection(_floor).area / _floor.area * 100
                if overlap > best_overlap:
                    best_matches[i] = j
                    best_overlap = overlap
    rooms = rooms.drop(best_matches.values(), axis=0)

    res_union = gpd.overlay(floors, rooms, how="difference")

    res_union.geometry = res_union.scale(yfact=-1, origin=(0, 0))
    return res_union
Beispiel #39
0
def buffer_point_polygon_overlay(df,
                                 buff_dist=2000,
                                 method='difference',
                                 oid_fld='NewID',
                                 erase_shp_files=[]):
    """Generate <num_points> random points within a geometry.
    
    Parameters
    ---------------------------------
    df: a GeoPandas GeoDataFrame
        This is a GeoDataFrame which contains the point geometries.
    
    buff_dist: number of points to generate within the polygon
        See above.
        
    method: see GeoPandas overlay doc for how=keyword
    
    num_points_fld: field containing number of points to generate within associated geometry
    
    oid_fld: field containing value to assign each geometry created within a village
    
    erase_shp_files: list containing paths to additional shapefiles for which to erase from buffered household geometries
    
    Usage Notes
    ---------------------------------
    
    
    """

    # Replace the dataframe geometries with buffers
    df['geometry'] = df['geometry'].buffer(buff_dist)
    new_df = df.copy()

    # Iteratively erase the additional geometries
    for erase_shp in erase_shp_files:

        # load the new shape file and make sure it has the same spatial reference
        temp_df = gpd.read_file(erase_shp)
        print(temp_df.crs, df.crs)
        assert temp_df.crs['init'] == df.crs['init']

        # erase the geometry from the buffered point dataframe
        new_df = gpd.overlay(new_df, temp_df, how=method)

    # ensure same CRS
    new_df.crs = df.crs

    return new_df
Beispiel #40
0
def calculate_kde(clean_sur,years):
    contour_collection=[]
    for year in years:

        #get year data
        kdev = str_to_class("kdeclus"+(str(year)))
        year_data = str(kdev.objects.filter(surname=clean_sur).values('kde'))

        #prepare data
        idx = [int(x) for x in year_data.split(';')[0][21:].split(',')]
        kdx = [int(x) for x in year_data.split(';')[1][:-5].split(',')]

        #pd dataframe
        kdf = pd.DataFrame({'gid':idx,'val':kdx})
        kdf = kdf[(kdf['val'] <= level)]

        #add values to grid
        kde = pd.merge(gridc,kdf,on='gid',how='inner')
        coord = [[int(x[1]),int(x[0])] for x in (list(zip(kde.x,kde.y)))]
        cs,lbls = dbscan(coord,eps=2000)
        kde = kde.copy()
        kde['group'] = lbls
        kde = kde[(kde['group'] >= 0)]

        #group to concave points
        contourp = to_concave_points(kde,coord)

        #clip
        contours = gpd.GeoSeries([Polygon(contour) for contour in contourp if len(contour) >= 3])
        contours = gpd.GeoDataFrame({'geometry': contours})
        contours.crs = from_epsg(27700)
        clp_prj = gpd.overlay(uk,contours,how='intersection')

        #smooth and project
        clp_prj['geometry'] = clp_prj.geometry.buffer(10000,join_style=1).buffer(-10000,join_style=1)
        clp_prj['geometry'] = clp_prj['geometry'].to_crs(epsg=4326)

        #to json
        contourprj = clp_prj.to_json()

        #add to collection
        data = []
        data.append(year)
        data.append(contourprj)
        contour_collection.append(data)

    #return
    return(contour_collection)
    def allocate_population_to_raster(self):
        pop_shp = gpd.read_file(self.filepath.root_tmp_path + 'pop_shp.shp')

        in_rst_fn = self.filepath.root_work_path + 'dem_aggr_rst.tif'
        rst_shp = self.polygonize_raster_layer(in_rst_fn)
        # rst_shp = gpd.read_file(self.filepath.root_work_path + 'rst_shp.shp')

        res_intersection = gpd.overlay(rst_shp, pop_shp, how='intersection')
        # res_intersection.to_file(self.filepath.root_work_path + 'intersection_shp.shp')
        # res_intersection = gpd.read_file(self.filepath.root_work_path + 'intersection_shp.shp')

        original_size = pop_shp.area[0]
        res_intersection['TOT_P'] = res_intersection['TOT_P'] * (
            res_intersection.area / original_size)

        if in_rst_fn not in self.raster_metadata:
            self.load_raster_metadata(in_rst_fn)
        out_rst_fn = self.filepath.root_work_path + 'pop_rst.tif'
        with rasterio.open(out_rst_fn, 'w+',
                           **self.raster_metadata[in_rst_fn]) as out_rst:

            out_rst_data = out_rst.read(1)
            shapes = ((geom, value) for geom, value in zip(
                res_intersection.geometry, res_intersection.shape[0] * [0])
                      if features.is_valid_geom(geom))

            burned = features.rasterize(shapes=shapes,
                                        fill=0,
                                        out=out_rst_data,
                                        transform=out_rst.transform,
                                        all_touched=True,
                                        merge_alg=MergeAlg.replace)
            out_rst.write_band(1, burned)

            out_rst_data = out_rst.read(1)
            shapes = ((geom, value) for geom, value in zip(
                res_intersection.geometry, res_intersection.TOT_P)
                      if features.is_valid_geom(geom))

            burned = features.rasterize(shapes=shapes,
                                        fill=0,
                                        out=out_rst_data,
                                        transform=out_rst.transform,
                                        all_touched=True,
                                        merge_alg=MergeAlg.add)
            out_rst.write_band(1, burned)

        return
Beispiel #42
0
 def intersect_grid_with_habitat(self, grid_gdf, hab_gdf):
     """Returns list of geodataframes where grid_gdf intersects hab_gdf"""
     with open('missing_joins.txt', 'w+') as f:
         for _, grid_tile in grid_gdf.iterrows():
             tile = gpd.GeoDataFrame({'OrthoID': [grid_tile['OrthoID']], 'geometry': [grid_tile['geometry']]})
             tile.crs = {'init' :'epsg:32639'}
             gdf_sub = gpd.overlay(tile, hab_gdf, how='intersection')
             tile_folder = self.out_folder.joinpath(f'{grid_tile["OrthoID"]}')
             if not tile_folder.exists():
                 tile_folder.mkdir(parents=True, exist_ok=True)
             outfile = tile_folder.joinpath(f'{grid_tile["OrthoID"]}.shp')
             gdf_sub.crs = {'init' :'epsg:32639'}
             if not gdf_sub.empty:
                 gdf_sub.to_file(outfile)
             else:
                 f.write(grid_tile['OrthoID'] + '\n')
Beispiel #43
0
 def test_intersection(self):
     df = overlay(self.polydf, self.polydf2, how="intersection")
     assert df['BoroName'][0] is not None
     assert df.shape == (68, 7)
Beispiel #44
0
def test_geoseries_warning(dfs):
    df1, df2 = dfs
    # Issue #305
    with pytest.raises(NotImplementedError):
        overlay(df1, df2.geometry, how="union")
Beispiel #45
0
def test_duplicate_column_name(dfs):
    df1, df2 = dfs
    df2r = df2.rename(columns={'col2': 'col1'})
    res = overlay(df1, df2r, how="union")
    assert ('col1_1' in res.columns) and ('col1_2' in res.columns)
Beispiel #46
0
 def test_identity(self):
     df = overlay(self.polydf, self.polydf2, how="identity")
     assert df.shape == (154, 7)
Beispiel #47
0
def test_bad_how(dfs):
    df1, df2 = dfs
    with pytest.raises(ValueError):
        overlay(df1, df2, how="spandex")
Beispiel #48
0
 def test_duplicate_column_name(self):
     polydf2r = self.polydf2.rename(columns={'value2': 'Shape_Area'})
     df = overlay(self.polydf, polydf2r, how="union")
     self.assertTrue('Shape_Area_2' in df.columns and 'Shape_Area' in df.columns)
Beispiel #49
0
 def time_overlay(self, op):
     overlay(self.countries, self.capitals, how=op)
Beispiel #50
0
 def test_identity(self):
     df = overlay(self.polydf, self.polydf2, how="identity")
     self.assertEquals(df.shape, (154, 7))
Beispiel #51
0
 def test_symmetric_difference(self):
     df = overlay(self.polydf, self.polydf2, how="symmetric_difference")
     self.assertEquals(df.shape, (122, 7))
Beispiel #52
0
 def test_nonpoly(self):
     with pytest.raises(TypeError):
         overlay(self.pointdf, self.polydf, how="union")
Beispiel #53
0
 def test_intersection(self):
     df = overlay(self.polydf, self.polydf2, how="intersection")
     self.assertIsNotNone(df['BoroName'][0])
     self.assertEquals(df.shape, (68, 7))
Beispiel #54
0
 def test_symmetric_difference(self):
     df = overlay(self.polydf, self.polydf2, how="symmetric_difference")
     assert df.shape == (122, 7)
Beispiel #55
0
 def time_overlay(self, op):
     overlay(self.df1, self.df2, how=op)
Beispiel #56
0
 def test_difference(self):
     df = overlay(self.polydf, self.polydf2, how="difference")
     self.assertEquals(df.shape, (86, 7))
Beispiel #57
0
 def test_bad_how(self):
     with pytest.raises(ValueError):
         overlay(self.polydf, self.polydf, how="spandex")
Beispiel #58
0
 def test_difference(self):
     df = overlay(self.polydf, self.polydf2, how="difference")
     assert df.shape == (86, 7)
Beispiel #59
0
 def f():
     overlay(self.polydf, self.polydf2.geometry, how="union")
Beispiel #60
0
 def test_union(self):
     df = overlay(self.polydf, self.polydf2, how="union")
     self.assertTrue(type(df) is GeoDataFrame)
     self.assertEquals(df.shape, self.union_shape)
     self.assertTrue('value1' in df.columns and 'Shape_Area' in df.columns)