Beispiel #1
0
def main(img_dir):
    img = get_img(img_dir).astype('float32')
    img /= 255.
    # Getting model:
    model_file = open('Data/Model/model.json', 'r')
    model = model_file.read()
    model_file.close()
    model = model_from_json(model)
    # Getting weights
    model.load_weights("Data/Model/weights.h5")
    Y = predict(model, img)
    name = 'segmentated.jpg'
    save_img(Y, name)
    print('Segmentated image saved as ' + name)
Beispiel #2
0
 def image_preprocess(self, img_dir):
     img = get_img(img_dir)
     X = np.zeros((1, 64, 64, 3), dtype='float64')
     X[0] = img
     return X
Beispiel #3
0
# Arda Mavi
import sys
import numpy as np
from get_dataset import get_img
from scipy.misc import imresize
from database_process import get_data
from keras.models import model_from_json

image_size = 64
channel_size = 1
num_class = 10 # Default value

def predict(model, X):
    Y = model.predict(X)
    Y = np.argmax(Y, axis=1)
    Y = get_data('SELECT char FROM "id_char" WHERE id={0}'.format(Y[0]))
    return Y

if __name__ == '__main__':
    img_dir = sys.argv[1]
    img = 1-np.array(get_img(img_dir)).astype('float32')/255.
    img = img.reshape(1, image_size, image_size, channel_size)
    # Getting model:
    model_file = open('Data/Model/model.json', 'r')
    model = model_file.read()
    model_file.close()
    model = model_from_json(model)
    # Getting weights
    model.load_weights("Data/Model/weights.h5")
    print('Class:', predict(model, img)[0][0])
Beispiel #4
0
from keras.models import Sequential
from keras.models import model_from_json


def predict(model, X):
    return model.predict(X)


if __name__ == '__main__':
    import sys
    img_dir = sys.argv[1]
    from get_dataset import get_img
    img = get_img(img_dir)
    import numpy as np
    X = np.zeros((1, 64, 64, 3), dtype='float64')
    X[0] = img
    # Getting model:
    model_file = open('Data/Model/model.json', 'r')
    model = model_file.read()
    model_file.close()
    model = model_from_json(model)
    # Getting weights
    model.load_weights("Data/Model/weights.h5")
    print(
        "\n\n<<--------------------------------------------------------------------->>\n\n"
    )
    print(
        "                           Let me think ...                             "
    )
    print(
        "\n\n<<--------------------------------------------------------------------->>\n\n"