Beispiel #1
0
def real_if_close(a,tol=100):
    """
    If complex input returns a real array if complex parts are close to zero.

    "Close to zero" is defined as `tol` * (machine epsilon of the type for
    `a`).

    Parameters
    ----------
    a : array_like
        Input array.
    tol : float
        Tolerance in machine epsilons for the complex part of the elements
        in the array.

    Returns
    -------
    out : ndarray
        If `a` is real, the type of `a` is used for the output.  If `a`
        has complex elements, the returned type is float.

    See Also
    --------
    real, imag, angle

    Notes
    -----
    Machine epsilon varies from machine to machine and between data types
    but Python floats on most platforms have a machine epsilon equal to
    2.2204460492503131e-16.  You can use 'np.finfo(np.float).eps' to print
    out the machine epsilon for floats.

    Examples
    --------
    >>> np.finfo(np.float).eps
    2.2204460492503131e-16

    >>> np.real_if_close([2.1 + 4e-14j], tol=1000)
    array([ 2.1])
    >>> np.real_if_close([2.1 + 4e-13j], tol=1000)
    array([ 2.1 +4.00000000e-13j])

    """
    a = asanyarray(a)
    if not issubclass(a.dtype.type, _nx.complexfloating):
        return a
    if tol > 1:
        import getlimits
        f = getlimits.finfo(a.dtype.type)
        tol = f.eps * tol
    if _nx.allclose(a.imag, 0, atol=tol):
        a = a.real
    return a
Beispiel #2
0
def real_if_close(a, tol=100):
    """
    If complex input returns a real array if complex parts are close to zero.

    "Close to zero" is defined as `tol` * (machine epsilon of the type for
    `a`).

    Parameters
    ----------
    a : array_like
        Input array.
    tol : float
        Tolerance in machine epsilons for the complex part of the elements
        in the array.

    Returns
    -------
    out : ndarray
        If `a` is real, the type of `a` is used for the output.  If `a`
        has complex elements, the returned type is float.

    See Also
    --------
    real, imag, angle

    Notes
    -----
    Machine epsilon varies from machine to machine and between data types
    but Python floats on most platforms have a machine epsilon equal to
    2.2204460492503131e-16.  You can use 'np.finfo(np.float).eps' to print
    out the machine epsilon for floats.

    Examples
    --------
    >>> np.finfo(np.float).eps
    2.2204460492503131e-16

    >>> np.real_if_close([2.1 + 4e-14j], tol=1000)
    array([ 2.1])
    >>> np.real_if_close([2.1 + 4e-13j], tol=1000)
    array([ 2.1 +4.00000000e-13j])

    """
    a = asanyarray(a)
    if not issubclass(a.dtype.type, _nx.complexfloating):
        return a
    if tol > 1:
        import getlimits
        f = getlimits.finfo(a.dtype.type)
        tol = f.eps * tol
    if _nx.allclose(a.imag, 0, atol=tol):
        a = a.real
    return a
Beispiel #3
0
def real_if_close(a, tol=100):
    """If a is a complex array, return it as a real array if the imaginary
    part is close enough to zero.

    "Close enough" is defined as tol*(machine epsilon of a's element type).
    """
    a = asanyarray(a)
    if not issubclass(a.dtype.type, _nx.complexfloating):
        return a
    if tol > 1:
        import getlimits
        f = getlimits.finfo(a.dtype.type)
        tol = f.eps * tol
    if _nx.allclose(a.imag, 0, atol=tol):
        a = a.real
    return a
def real_if_close(a,tol=100):
    """If a is a complex array, return it as a real array if the imaginary
    part is close enough to zero.

    "Close enough" is defined as tol*(machine epsilon of a's element type).
    """
    a = asanyarray(a)
    if not issubclass(a.dtype.type, _nx.complexfloating):
        return a
    if tol > 1:
        import getlimits
        f = getlimits.finfo(a.dtype.type)
        tol = f.eps * tol
    if _nx.allclose(a.imag, 0, atol=tol):
        a = a.real
    return a
Beispiel #5
0
def _getmaxmin(t):
    import getlimits
    f = getlimits.finfo(t)
    return f.max, f.min
Beispiel #6
0
def _getmaxmin(t):
    import getlimits
    f = getlimits.finfo(t)
    return f.max, f.min