Beispiel #1
0
def _init_basemap(border_colour):
    """Initializes basemap.

    :param border_colour: Colour (in any format accepted by matplotlib) of
        political borders.
    :return: narr_row_limits: length-2 numpy array of (min, max) NARR rows to
        plot.
    :return: narr_column_limits: length-2 numpy array of (min, max) NARR columns
        to plot.
    :return: axes_object: Instance of `matplotlib.axes._subplots.AxesSubplot`.
    :return: basemap_object: Instance of `mpl_toolkits.basemap.Basemap`.
    """

    (narr_row_limits, narr_column_limits
    ) = nwp_plotting.latlng_limits_to_rowcol_limits(
        min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG,
        min_longitude_deg=MIN_LONGITUDE_DEG,
        max_longitude_deg=MAX_LONGITUDE_DEG,
        model_name=nwp_model_utils.NARR_MODEL_NAME)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=border_colour)
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=border_colour)
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=border_colour)
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lat_deg=-90., upper_right_lat_deg=90.,
        parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lng_deg=0., upper_right_lng_deg=360.,
        meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    return narr_row_limits, narr_column_limits, axes_object, basemap_object
Beispiel #2
0
def _plot_fronts(actual_binary_matrix, predicted_binary_matrix, title_string,
                 annotation_string, output_file_name):
    """Plots actual and predicted fronts.

    M = number of rows in grid
    N = number of columns in grid

    :param actual_binary_matrix: M-by-N numpy array.  If
        actual_binary_matrix[i, j] = 1, there is an actual front passing through
        grid cell [i, j].
    :param predicted_binary_matrix: Same but for predicted fronts.
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits,
     narr_column_limits) = nwp_plotting.latlng_limits_to_rowcol_limits(
         min_latitude_deg=MIN_LATITUDE_DEG,
         max_latitude_deg=MAX_LATITUDE_DEG,
         min_longitude_deg=MIN_LONGITUDE_DEG,
         max_longitude_deg=MAX_LONGITUDE_DEG,
         model_name=nwp_model_utils.NARR_MODEL_NAME)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1],
        resolution_string='i')

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    this_colour_map_object, this_colour_norm_object = _get_colour_map(True)
    this_matrix = actual_binary_matrix[0, narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]
    nwp_plotting.plot_subgrid(
        field_matrix=this_matrix,
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        colour_map=this_colour_map_object,
        min_value_in_colour_map=this_colour_norm_object.boundaries[0],
        max_value_in_colour_map=this_colour_norm_object.boundaries[-1],
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        opacity=ACTUAL_FRONT_OPACITY)

    this_colour_map_object, this_colour_norm_object = _get_colour_map(False)
    this_matrix = predicted_binary_matrix[0, narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]
    nwp_plotting.plot_subgrid(
        field_matrix=this_matrix,
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        colour_map=this_colour_map_object,
        min_value_in_colour_map=this_colour_norm_object.boundaries[0],
        max_value_in_colour_map=this_colour_norm_object.boundaries[-1],
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        opacity=PREDICTED_FRONT_OPACITY)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(axes_object=axes_object,
                                 annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
def _run(top_narr_dir_name, top_front_line_dir_name, top_wpc_bulletin_dir_name,
         first_time_string, last_time_string, pressure_level_mb,
         thermal_field_name, thermal_colour_map_name,
         max_thermal_prctile_for_colours, first_letter_label, letter_interval,
         output_dir_name):
    """Plots predictors on full NARR grid.

    This is effectively the main method.

    :param top_narr_dir_name: See documentation at top of file.
    :param top_front_line_dir_name: Same.
    :param top_wpc_bulletin_dir_name: Same.
    :param first_time_string: Same.
    :param last_time_string: Same.
    :param pressure_level_mb: Same.
    :param thermal_field_name: Same.
    :param thermal_colour_map_name: Same.
    :param max_thermal_prctile_for_colours: Same.
    :param first_letter_label: Same.
    :param letter_interval: Same.
    :param output_dir_name: Same.
    :raises: ValueError: if
        `thermal_field_name not in VALID_THERMAL_FIELD_NAMES`.
    """

    # Check input args.
    if top_wpc_bulletin_dir_name in ['', 'None']:
        top_wpc_bulletin_dir_name = None

    if first_letter_label in ['', 'None']:
        first_letter_label = None

    if thermal_field_name not in VALID_THERMAL_FIELD_NAMES:
        error_string = (
            '\n{0:s}\nValid thermal fields (listed above) do not include '
            '"{1:s}".'
        ).format(str(VALID_THERMAL_FIELD_NAMES), thermal_field_name)

        raise ValueError(error_string)

    thermal_colour_map_object = pyplot.cm.get_cmap(thermal_colour_map_name)

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=output_dir_name)

    first_time_unix_sec = time_conversion.string_to_unix_sec(
        first_time_string, DEFAULT_TIME_FORMAT)
    last_time_unix_sec = time_conversion.string_to_unix_sec(
        last_time_string, DEFAULT_TIME_FORMAT)

    valid_times_unix_sec = time_periods.range_and_interval_to_list(
        start_time_unix_sec=first_time_unix_sec,
        end_time_unix_sec=last_time_unix_sec,
        time_interval_sec=NARR_TIME_INTERVAL_SEC, include_endpoint=True)

    # Read metadata for NARR grid.
    narr_latitude_matrix_deg, narr_longitude_matrix_deg = (
        nwp_model_utils.get_latlng_grid_point_matrices(
            model_name=nwp_model_utils.NARR_MODEL_NAME)
    )

    narr_rotation_cos_matrix, narr_rotation_sin_matrix = (
        nwp_model_utils.get_wind_rotation_angles(
            latitudes_deg=narr_latitude_matrix_deg,
            longitudes_deg=narr_longitude_matrix_deg,
            model_name=nwp_model_utils.NARR_MODEL_NAME)
    )

    narr_row_limits, narr_column_limits = (
        nwp_plotting.latlng_limits_to_rowcol_limits(
            min_latitude_deg=MIN_LATITUDE_DEG,
            max_latitude_deg=MAX_LATITUDE_DEG,
            min_longitude_deg=MIN_LONGITUDE_DEG,
            max_longitude_deg=MAX_LONGITUDE_DEG,
            model_name=nwp_model_utils.NARR_MODEL_NAME)
    )

    narr_rotation_cos_matrix = narr_rotation_cos_matrix[
        narr_row_limits[0]:(narr_row_limits[1] + 1),
        narr_column_limits[0]:(narr_column_limits[1] + 1)
    ]

    narr_rotation_sin_matrix = narr_rotation_sin_matrix[
        narr_row_limits[0]:(narr_row_limits[1] + 1),
        narr_column_limits[0]:(narr_column_limits[1] + 1)
    ]

    # Do plotting.
    narr_field_names = [
        processed_narr_io.U_WIND_GRID_RELATIVE_NAME,
        processed_narr_io.V_WIND_GRID_RELATIVE_NAME,
        thermal_field_name
    ]

    this_letter_label = None

    for this_time_unix_sec in valid_times_unix_sec:
        this_file_name = fronts_io.find_file_for_one_time(
            top_directory_name=top_front_line_dir_name,
            file_type=fronts_io.POLYLINE_FILE_TYPE,
            valid_time_unix_sec=this_time_unix_sec)

        print 'Reading data from: "{0:s}"...'.format(this_file_name)
        this_polyline_table = fronts_io.read_polylines_from_file(this_file_name)

        if top_wpc_bulletin_dir_name is None:
            this_high_low_table = None
        else:
            this_file_name = wpc_bulletin_io.find_file(
                top_directory_name=top_wpc_bulletin_dir_name,
                valid_time_unix_sec=this_time_unix_sec)

            print 'Reading data from: "{0:s}"...'.format(this_file_name)
            this_high_low_table = wpc_bulletin_io.read_highs_and_lows(
                this_file_name)

        this_predictor_matrix = None

        for this_field_name in narr_field_names:
            this_file_name = processed_narr_io.find_file_for_one_time(
                top_directory_name=top_narr_dir_name,
                field_name=this_field_name,
                pressure_level_mb=pressure_level_mb,
                valid_time_unix_sec=this_time_unix_sec)

            print 'Reading data from: "{0:s}"...'.format(this_file_name)
            this_field_matrix = processed_narr_io.read_fields_from_file(
                this_file_name
            )[0][0, ...]

            this_field_matrix = utils.fill_nans(this_field_matrix)
            this_field_matrix = this_field_matrix[
                narr_row_limits[0]:(narr_row_limits[1] + 1),
                narr_column_limits[0]:(narr_column_limits[1] + 1)
            ]

            if this_field_name in [processed_narr_io.TEMPERATURE_NAME,
                                   processed_narr_io.WET_BULB_THETA_NAME]:
                this_field_matrix -= ZERO_CELSIUS_IN_KELVINS

            if this_field_name == processed_narr_io.SPECIFIC_HUMIDITY_NAME:
                this_field_matrix = this_field_matrix * KG_TO_GRAMS

            this_field_matrix = numpy.expand_dims(this_field_matrix, axis=-1)

            if this_predictor_matrix is None:
                this_predictor_matrix = this_field_matrix + 0.
            else:
                this_predictor_matrix = numpy.concatenate(
                    (this_predictor_matrix, this_field_matrix), axis=-1)

        u_wind_index = narr_field_names.index(
            processed_narr_io.U_WIND_GRID_RELATIVE_NAME)
        v_wind_index = narr_field_names.index(
            processed_narr_io.V_WIND_GRID_RELATIVE_NAME)

        (this_predictor_matrix[..., u_wind_index],
         this_predictor_matrix[..., v_wind_index]
        ) = nwp_model_utils.rotate_winds_to_earth_relative(
            u_winds_grid_relative_m_s01=this_predictor_matrix[
                ..., u_wind_index],
            v_winds_grid_relative_m_s01=this_predictor_matrix[
                ..., v_wind_index],
            rotation_angle_cosines=narr_rotation_cos_matrix,
            rotation_angle_sines=narr_rotation_sin_matrix)

        this_title_string = time_conversion.unix_sec_to_string(
            this_time_unix_sec, NICE_TIME_FORMAT)

        if pressure_level_mb == 1013:
            this_title_string += ' at surface'
        else:
            this_title_string += ' at {0:d} mb'.format(pressure_level_mb)

        this_default_time_string = time_conversion.unix_sec_to_string(
            this_time_unix_sec, DEFAULT_TIME_FORMAT)

        this_output_file_name = '{0:s}/predictors_{1:s}.jpg'.format(
            output_dir_name, this_default_time_string)

        if first_letter_label is not None:
            if this_letter_label is None:
                this_letter_label = first_letter_label
            else:
                this_letter_label = chr(
                    ord(this_letter_label) + letter_interval
                )

        _plot_one_time(
            predictor_matrix=this_predictor_matrix,
            predictor_names=narr_field_names,
            front_polyline_table=this_polyline_table,
            high_low_table=this_high_low_table,
            thermal_colour_map_object=thermal_colour_map_object,
            max_thermal_prctile_for_colours=max_thermal_prctile_for_colours,
            narr_row_limits=narr_row_limits,
            narr_column_limits=narr_column_limits,
            title_string=this_title_string, letter_label=this_letter_label,
            output_file_name=this_output_file_name)

        print '\n'
Beispiel #4
0
def _plot_predictions(predicted_label_matrix, title_string, annotation_string,
                      output_file_name):
    """Plots predicted front locations.

    :param predicted_label_matrix: See doc for `target_matrix` in
        `machine_learning_utils.write_gridded_predictions`.
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits,
     narr_column_limits) = nwp_plotting.latlng_limits_to_rowcol_limits(
         min_latitude_deg=MIN_LATITUDE_DEG,
         max_latitude_deg=MAX_LATITUDE_DEG,
         min_longitude_deg=MIN_LONGITUDE_DEG,
         max_longitude_deg=MAX_LONGITUDE_DEG,
         model_name=nwp_model_utils.NARR_MODEL_NAME)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    this_matrix = predicted_label_matrix[0, narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]
    front_plotting.plot_narr_grid(
        frontal_grid_matrix=this_matrix,
        axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_narr_grid=narr_row_limits[0],
        first_column_in_narr_grid=narr_column_limits[0],
        opacity=1.)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(axes_object=axes_object,
                                 annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
def _plot_one_time(valid_time_string, pressure_level_mb, title_string,
                   annotation_string, narr_rotation_cos_matrix,
                   narr_rotation_sin_matrix):
    """Plots WPC fronts and NARR fields at one time.

    M = number of grid rows in the full NARR
    N = number of grid columns in the full NARR

    :param valid_time_string: Valid time (format "yyyy-mm-dd-HH").
    :param pressure_level_mb: Pressure level (millibars).
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Annotation (will be placed above and left of
        figure).
    :param narr_rotation_cos_matrix: M-by-N numpy array of cosines for wind-
        rotation angles.
    :param narr_rotation_sin_matrix: M-by-N numpy array of sines for wind-
        rotation angles.
    """

    narr_row_limits, narr_column_limits = (
        nwp_plotting.latlng_limits_to_rowcol_limits(
            min_latitude_deg=MIN_LATITUDE_DEG,
            max_latitude_deg=MAX_LATITUDE_DEG,
            min_longitude_deg=MIN_LONGITUDE_DEG,
            max_longitude_deg=MAX_LONGITUDE_DEG,
            model_name=nwp_model_utils.NARR_MODEL_NAME))

    valid_time_unix_sec = time_conversion.string_to_unix_sec(
        valid_time_string, DEFAULT_TIME_FORMAT)

    front_file_name = fronts_io.find_file_for_one_time(
        top_directory_name=TOP_FRONT_DIR_NAME,
        file_type=fronts_io.POLYLINE_FILE_TYPE,
        valid_time_unix_sec=valid_time_unix_sec)

    print 'Reading data from: "{0:s}"...'.format(front_file_name)
    front_line_table = fronts_io.read_polylines_from_file(front_file_name)

    num_narr_fields = len(NARR_FIELD_NAMES)
    narr_matrix_by_field = [numpy.array([])] * num_narr_fields

    for j in range(num_narr_fields):
        this_file_name = processed_narr_io.find_file_for_one_time(
            top_directory_name=TOP_NARR_DIRECTORY_NAME,
            field_name=NARR_FIELD_NAMES[j],
            pressure_level_mb=pressure_level_mb,
            valid_time_unix_sec=valid_time_unix_sec)

        print 'Reading data from: "{0:s}"...'.format(this_file_name)
        narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file(
            this_file_name)[0][0, ...]

        narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j])
        narr_matrix_by_field[j] = narr_matrix_by_field[j][narr_row_limits[0]:(
            narr_row_limits[1] +
            1), narr_column_limits[0]:(narr_column_limits[1] + 1)]

        if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME:
            narr_matrix_by_field[j] = (narr_matrix_by_field[j] -
                                       ZERO_CELSIUS_IN_KELVINS)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            continue

        min_colour_value = numpy.percentile(narr_matrix_by_field[j],
                                            MIN_COLOUR_PERCENTILE)
        max_colour_value = numpy.percentile(narr_matrix_by_field[j],
                                            MAX_COLOUR_PERCENTILE)

        nwp_plotting.plot_subgrid(
            field_matrix=narr_matrix_by_field[j],
            model_name=nwp_model_utils.NARR_MODEL_NAME,
            axes_object=axes_object,
            basemap_object=basemap_object,
            colour_map=THERMAL_COLOUR_MAP_OBJECT,
            min_value_in_colour_map=min_colour_value,
            max_value_in_colour_map=max_colour_value,
            first_row_in_full_grid=narr_row_limits[0],
            first_column_in_full_grid=narr_column_limits[0])

        plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=narr_matrix_by_field[j],
            colour_map=THERMAL_COLOUR_MAP_OBJECT,
            colour_min=min_colour_value,
            colour_max=max_colour_value,
            orientation='horizontal',
            extend_min=True,
            extend_max=True,
            fraction_of_axis_length=0.9)

    this_cos_matrix = narr_rotation_cos_matrix[narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]

    this_sin_matrix = narr_rotation_sin_matrix[narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]

    u_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.U_WIND_GRID_RELATIVE_NAME)
    v_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.V_WIND_GRID_RELATIVE_NAME)

    narr_matrix_by_field[u_wind_index], narr_matrix_by_field[v_wind_index] = (
        nwp_model_utils.rotate_winds_to_earth_relative(
            u_winds_grid_relative_m_s01=narr_matrix_by_field[u_wind_index],
            v_winds_grid_relative_m_s01=narr_matrix_by_field[v_wind_index],
            rotation_angle_cosines=this_cos_matrix,
            rotation_angle_sines=this_sin_matrix))

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index],
        v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index],
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH,
        empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        fill_empty_barb=False,
        colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    num_fronts = len(front_line_table.index)

    for i in range(num_fronts):
        this_front_type_string = front_line_table[
            front_utils.FRONT_TYPE_COLUMN].values[i]

        if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
            this_colour = WARM_FRONT_COLOUR
        else:
            this_colour = COLD_FRONT_COLOUR

        front_plotting.plot_front_with_markers(
            line_latitudes_deg=front_line_table[
                front_utils.LATITUDES_COLUMN].values[i],
            line_longitudes_deg=front_line_table[
                front_utils.LONGITUDES_COLUMN].values[i],
            axes_object=axes_object,
            basemap_object=basemap_object,
            front_type_string=front_line_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            marker_colour=this_colour)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(axes_object=axes_object,
                                 annotation_string=annotation_string)

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=OUTPUT_DIR_NAME)
    figure_file_name = '{0:s}/fronts_{1:04d}mb_{2:s}.jpg'.format(
        OUTPUT_DIR_NAME, pressure_level_mb, valid_time_string)

    print 'Saving figure to: "{0:s}"...'.format(figure_file_name)
    pyplot.savefig(figure_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=figure_file_name,
                                      output_file_name=figure_file_name)
    return figure_file_name
def _plot_predictions_one_time(
        output_file_name, title_string, annotation_string,
        predicted_label_matrix=None, class_probability_matrix=None,
        plot_warm_colour_bar=True, plot_cold_colour_bar=True):
    """Plots predictions (objects or probability grid) for one valid time.

    :param output_file_name: Path to output file (figure will be saved here).
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param predicted_label_matrix: See doc for `target_matrix` in
        `machine_learning_utils.write_gridded_predictions`.
    :param class_probability_matrix:
        [used iff `predicted_label_matrix is None`]
        See doc for `machine_learning_utils.write_gridded_predictions`.
    :param plot_warm_colour_bar: [used iff `predicted_label_matrix is None`]
        Boolean flag, indicating whether or not to plot colour bar for warm-
        front probability.
    :param plot_cold_colour_bar: Same but for cold-front probability.
    """

    (narr_row_limits, narr_column_limits
    ) = nwp_plotting.latlng_limits_to_rowcol_limits(
        min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG,
        min_longitude_deg=MIN_LONGITUDE_DEG,
        max_longitude_deg=MAX_LONGITUDE_DEG,
        model_name=nwp_model_utils.NARR_MODEL_NAME)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lat_deg=-90., upper_right_lat_deg=90.,
        parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lng_deg=0., upper_right_lng_deg=360.,
        meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    if class_probability_matrix is None:
        this_matrix = predicted_label_matrix[
            0, narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1)
        ]
        front_plotting.plot_narr_grid(
            frontal_grid_matrix=this_matrix, axes_object=axes_object,
            basemap_object=basemap_object,
            first_row_in_narr_grid=narr_row_limits[0],
            first_column_in_narr_grid=narr_column_limits[0],
            opacity=DETERMINISTIC_OPACITY)
    else:
        this_matrix = class_probability_matrix[
            0, narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1),
            front_utils.WARM_FRONT_INTEGER_ID
        ]
        prediction_plotting.plot_narr_grid(
            probability_matrix=this_matrix,
            front_string_id=front_utils.WARM_FRONT_STRING_ID,
            axes_object=axes_object, basemap_object=basemap_object,
            first_row_in_narr_grid=narr_row_limits[0],
            first_column_in_narr_grid=narr_column_limits[0],
            opacity=PROBABILISTIC_OPACITY)

        this_matrix = class_probability_matrix[
            0, narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1),
            front_utils.COLD_FRONT_INTEGER_ID
        ]
        prediction_plotting.plot_narr_grid(
            probability_matrix=this_matrix,
            front_string_id=front_utils.COLD_FRONT_STRING_ID,
            axes_object=axes_object, basemap_object=basemap_object,
            first_row_in_narr_grid=narr_row_limits[0],
            first_column_in_narr_grid=narr_column_limits[0],
            opacity=PROBABILISTIC_OPACITY)

        if plot_warm_colour_bar:
            (this_colour_map_object, this_colour_norm_object
            ) = prediction_plotting.get_warm_front_colour_map()[:2]
            plotting_utils.add_colour_bar(
                axes_object_or_list=axes_object,
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                values_to_colour=class_probability_matrix[
                    ..., front_utils.WARM_FRONT_INTEGER_ID],
                orientation='vertical', extend_min=True, extend_max=False,
                fraction_of_axis_length=LENGTH_FRACTION_FOR_PROB_COLOUR_BAR)
        
        if plot_cold_colour_bar:
            (this_colour_map_object, this_colour_norm_object
            ) = prediction_plotting.get_cold_front_colour_map()[:2]
            plotting_utils.add_colour_bar(
                axes_object_or_list=axes_object,
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                values_to_colour=class_probability_matrix[
                    ..., front_utils.COLD_FRONT_INTEGER_ID],
                orientation='vertical', extend_min=True, extend_max=False,
                fraction_of_axis_length=LENGTH_FRACTION_FOR_PROB_COLOUR_BAR)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(
        axes_object=axes_object, annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(
        input_file_name=output_file_name, output_file_name=output_file_name)
def _plot_observations_one_time(
        valid_time_string, title_string, annotation_string, output_file_name):
    """Plots observations (NARR predictors and WPC fronts) for one valid time.

    :param valid_time_string: Valid time (format "yyyy-mm-dd-HH").
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits, narr_column_limits
    ) = nwp_plotting.latlng_limits_to_rowcol_limits(
        min_latitude_deg=MIN_LATITUDE_DEG, max_latitude_deg=MAX_LATITUDE_DEG,
        min_longitude_deg=MIN_LONGITUDE_DEG,
        max_longitude_deg=MAX_LONGITUDE_DEG,
        model_name=nwp_model_utils.NARR_MODEL_NAME)

    valid_time_unix_sec = time_conversion.string_to_unix_sec(
        valid_time_string, INPUT_TIME_FORMAT)
    front_file_name = fronts_io.find_file_for_one_time(
        top_directory_name=TOP_FRONT_DIR_NAME,
        file_type=fronts_io.POLYLINE_FILE_TYPE,
        valid_time_unix_sec=valid_time_unix_sec)

    print 'Reading data from: "{0:s}"...'.format(front_file_name)
    front_line_table = fronts_io.read_polylines_from_file(front_file_name)

    num_narr_fields = len(NARR_FIELD_NAMES)
    narr_matrix_by_field = [numpy.array([])] * num_narr_fields

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            this_directory_name = TOP_NARR_WIND_DIR_NAME + ''
        else:
            this_directory_name = TOP_NARR_DIR_NAME + ''

        this_file_name = processed_narr_io.find_file_for_one_time(
            top_directory_name=this_directory_name,
            field_name=NARR_FIELD_NAMES[j], pressure_level_mb=PRESSURE_LEVEL_MB,
            valid_time_unix_sec=valid_time_unix_sec)

        print 'Reading data from: "{0:s}"...'.format(this_file_name)
        narr_matrix_by_field[j] = processed_narr_io.read_fields_from_file(
            this_file_name)[0][0, ...]

        narr_matrix_by_field[j] = utils.fill_nans(narr_matrix_by_field[j])
        narr_matrix_by_field[j] = narr_matrix_by_field[j][
            narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1)
        ]

        if NARR_FIELD_NAMES[j] == processed_narr_io.WET_BULB_THETA_NAME:
            narr_matrix_by_field[j] = (
                narr_matrix_by_field[j] - ZERO_CELSIUS_IN_KELVINS
            )

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lat_deg=-90., upper_right_lat_deg=90.,
        parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        bottom_left_lng_deg=0., upper_right_lng_deg=360.,
        meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    for j in range(num_narr_fields):
        if NARR_FIELD_NAMES[j] in WIND_FIELD_NAMES:
            continue

        min_colour_value = numpy.percentile(
            narr_matrix_by_field[j], MIN_COLOUR_PERCENTILE)
        max_colour_value = numpy.percentile(
            narr_matrix_by_field[j], MAX_COLOUR_PERCENTILE)

        nwp_plotting.plot_subgrid(
            field_matrix=narr_matrix_by_field[j],
            model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
            basemap_object=basemap_object, colour_map=THERMAL_COLOUR_MAP_OBJECT,
            min_value_in_colour_map=min_colour_value,
            max_value_in_colour_map=max_colour_value,
            first_row_in_full_grid=narr_row_limits[0],
            first_column_in_full_grid=narr_column_limits[0])

        plotting_utils.add_linear_colour_bar(
            axes_object_or_list=axes_object,
            values_to_colour=narr_matrix_by_field[j],
            colour_map=THERMAL_COLOUR_MAP_OBJECT, colour_min=min_colour_value,
            colour_max=max_colour_value, orientation='vertical',
            extend_min=True, extend_max=True,
            fraction_of_axis_length=LENGTH_FRACTION_FOR_THETA_COLOUR_BAR)

    u_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.U_WIND_EARTH_RELATIVE_NAME)
    v_wind_index = NARR_FIELD_NAMES.index(
        processed_narr_io.V_WIND_EARTH_RELATIVE_NAME)

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=narr_matrix_by_field[u_wind_index],
        v_wind_matrix_m_s01=narr_matrix_by_field[v_wind_index],
        model_name=nwp_model_utils.NARR_MODEL_NAME, axes_object=axes_object,
        basemap_object=basemap_object,
        first_row_in_full_grid=narr_row_limits[0],
        first_column_in_full_grid=narr_column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_COLOUR_WIND_SPEED_KT,
        colour_maximum_kt=MAX_COLOUR_WIND_SPEED_KT)

    num_fronts = len(front_line_table.index)
    for i in range(num_fronts):
        this_front_type_string = front_line_table[
            front_utils.FRONT_TYPE_COLUMN].values[i]
        if this_front_type_string == front_utils.WARM_FRONT_STRING_ID:
            this_colour = WARM_FRONT_COLOUR
        else:
            this_colour = COLD_FRONT_COLOUR

        front_plotting.plot_polyline(
            latitudes_deg=front_line_table[
                front_utils.LATITUDES_COLUMN].values[i],
            longitudes_deg=front_line_table[
                front_utils.LONGITUDES_COLUMN].values[i],
            basemap_object=basemap_object, axes_object=axes_object,
            front_type=front_line_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            line_width=FRONT_LINE_WIDTH, line_colour=this_colour)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(
        axes_object=axes_object, annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
Beispiel #8
0
def _plot_rapruc_one_example(
        full_storm_id_string, storm_time_unix_sec, top_tracking_dir_name,
        latitude_buffer_deg, longitude_buffer_deg, lead_time_seconds,
        field_name_grib1, output_dir_name, rap_file_name=None,
        ruc_file_name=None):
    """Plots RAP or RUC field for one example.

    :param full_storm_id_string: Full storm ID.
    :param storm_time_unix_sec: Valid time.
    :param top_tracking_dir_name: See documentation at top of file.
    :param latitude_buffer_deg: Same.
    :param longitude_buffer_deg: Same.
    :param lead_time_seconds: Same.
    :param field_name_grib1: Same.
    :param output_dir_name: Same.
    :param rap_file_name: Path to file with RAP analysis.
    :param ruc_file_name: [used only if `rap_file_name is None`]
        Path to file with RUC analysis.
    """

    tracking_file_name = tracking_io.find_file(
        top_tracking_dir_name=top_tracking_dir_name,
        tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2,
        source_name=tracking_utils.SEGMOTION_NAME,
        valid_time_unix_sec=storm_time_unix_sec,
        spc_date_string=
        time_conversion.time_to_spc_date_string(storm_time_unix_sec),
        raise_error_if_missing=True
    )

    print('Reading data from: "{0:s}"...'.format(tracking_file_name))
    storm_object_table = tracking_io.read_file(tracking_file_name)
    storm_object_table = storm_object_table.loc[
        storm_object_table[tracking_utils.FULL_ID_COLUMN] ==
        full_storm_id_string
    ]

    extrap_times_sec = numpy.array([0, lead_time_seconds], dtype=int)
    storm_object_table = soundings._create_target_points_for_interp(
        storm_object_table=storm_object_table,
        lead_times_seconds=extrap_times_sec
    )

    orig_latitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[0]
    )
    orig_longitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[0]
    )
    extrap_latitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values[1]
    )
    extrap_longitude_deg = (
        storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values[1]
    )

    if rap_file_name is None:
        grib_file_name = ruc_file_name
        model_name = nwp_model_utils.RUC_MODEL_NAME
    else:
        grib_file_name = rap_file_name
        model_name = nwp_model_utils.RAP_MODEL_NAME

    pathless_grib_file_name = os.path.split(grib_file_name)[-1]
    grid_name = pathless_grib_file_name.split('_')[1]

    host_name = socket.gethostname()

    if 'casper' in host_name:
        wgrib_exe_name = '/glade/work/ryanlage/wgrib/wgrib'
        wgrib2_exe_name = '/glade/work/ryanlage/wgrib2/wgrib2/wgrib2'
    else:
        wgrib_exe_name = '/condo/swatwork/ralager/wgrib/wgrib'
        wgrib2_exe_name = '/condo/swatwork/ralager/grib2/wgrib2/wgrib2'

    print('Reading field "{0:s}" from: "{1:s}"...'.format(
        field_name_grib1, grib_file_name
    ))
    main_field_matrix = nwp_model_io.read_field_from_grib_file(
        grib_file_name=grib_file_name, field_name_grib1=field_name_grib1,
        model_name=model_name, grid_id=grid_name,
        wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name
    )

    u_wind_name_grib1 = 'UGRD:{0:s}'.format(
        field_name_grib1.split(':')[-1]
    )
    u_wind_name_grib1 = u_wind_name_grib1.replace('2 m', '10 m')
    print('Reading field "{0:s}" from: "{1:s}"...'.format(
        u_wind_name_grib1, grib_file_name
    ))
    u_wind_matrix_m_s01 = nwp_model_io.read_field_from_grib_file(
        grib_file_name=grib_file_name, field_name_grib1=u_wind_name_grib1,
        model_name=model_name, grid_id=grid_name,
        wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name
    )

    v_wind_name_grib1 = 'VGRD:{0:s}'.format(
        u_wind_name_grib1.split(':')[-1]
    )
    print('Reading field "{0:s}" from: "{1:s}"...'.format(
        v_wind_name_grib1, grib_file_name
    ))
    v_wind_matrix_m_s01 = nwp_model_io.read_field_from_grib_file(
        grib_file_name=grib_file_name, field_name_grib1=v_wind_name_grib1,
        model_name=model_name, grid_id=grid_name,
        wgrib_exe_name=wgrib_exe_name, wgrib2_exe_name=wgrib2_exe_name
    )

    latitude_matrix_deg, longitude_matrix_deg = (
        nwp_model_utils.get_latlng_grid_point_matrices(
            model_name=model_name, grid_name=grid_name)
    )
    cosine_matrix, sine_matrix = nwp_model_utils.get_wind_rotation_angles(
        latitudes_deg=latitude_matrix_deg, longitudes_deg=longitude_matrix_deg,
        model_name=model_name
    )
    u_wind_matrix_m_s01, v_wind_matrix_m_s01 = (
        nwp_model_utils.rotate_winds_to_earth_relative(
            u_winds_grid_relative_m_s01=u_wind_matrix_m_s01,
            v_winds_grid_relative_m_s01=v_wind_matrix_m_s01,
            rotation_angle_cosines=cosine_matrix,
            rotation_angle_sines=sine_matrix)
    )

    min_plot_latitude_deg = (
        min([orig_latitude_deg, extrap_latitude_deg]) - latitude_buffer_deg
    )
    max_plot_latitude_deg = (
        max([orig_latitude_deg, extrap_latitude_deg]) + latitude_buffer_deg
    )
    min_plot_longitude_deg = (
        min([orig_longitude_deg, extrap_longitude_deg]) - longitude_buffer_deg
    )
    max_plot_longitude_deg = (
        max([orig_longitude_deg, extrap_longitude_deg]) + longitude_buffer_deg
    )

    row_limits, column_limits = nwp_plotting.latlng_limits_to_rowcol_limits(
        min_latitude_deg=min_plot_latitude_deg,
        max_latitude_deg=max_plot_latitude_deg,
        min_longitude_deg=min_plot_longitude_deg,
        max_longitude_deg=max_plot_longitude_deg,
        model_name=model_name, grid_id=grid_name
    )

    main_field_matrix = main_field_matrix[
        row_limits[0]:(row_limits[1] + 1),
        column_limits[0]:(column_limits[1] + 1)
    ]
    u_wind_matrix_m_s01 = u_wind_matrix_m_s01[
        row_limits[0]:(row_limits[1] + 1),
        column_limits[0]:(column_limits[1] + 1)
    ]
    v_wind_matrix_m_s01 = v_wind_matrix_m_s01[
        row_limits[0]:(row_limits[1] + 1),
        column_limits[0]:(column_limits[1] + 1)
    ]

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=model_name, grid_id=grid_name,
        first_row_in_full_grid=row_limits[0],
        last_row_in_full_grid=row_limits[1],
        first_column_in_full_grid=column_limits[0],
        last_column_in_full_grid=column_limits[1]
    )

    plotting_utils.plot_coastlines(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_countries(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_states_and_provinces(
        basemap_object=basemap_object, axes_object=axes_object,
        line_colour=BORDER_COLOUR
    )
    plotting_utils.plot_parallels(
        basemap_object=basemap_object, axes_object=axes_object,
        num_parallels=NUM_PARALLELS
    )
    plotting_utils.plot_meridians(
        basemap_object=basemap_object, axes_object=axes_object,
        num_meridians=NUM_MERIDIANS
    )

    min_colour_value = numpy.nanpercentile(
        main_field_matrix, 100. - MAX_COLOUR_PERCENTILE
    )
    max_colour_value = numpy.nanpercentile(
        main_field_matrix, MAX_COLOUR_PERCENTILE
    )

    nwp_plotting.plot_subgrid(
        field_matrix=main_field_matrix,
        model_name=model_name, grid_id=grid_name,
        axes_object=axes_object, basemap_object=basemap_object,
        colour_map_object=COLOUR_MAP_OBJECT, min_colour_value=min_colour_value,
        max_colour_value=max_colour_value,
        first_row_in_full_grid=row_limits[0],
        first_column_in_full_grid=column_limits[0]
    )

    nwp_plotting.plot_wind_barbs_on_subgrid(
        u_wind_matrix_m_s01=u_wind_matrix_m_s01,
        v_wind_matrix_m_s01=v_wind_matrix_m_s01,
        model_name=model_name, grid_id=grid_name,
        axes_object=axes_object, basemap_object=basemap_object,
        first_row_in_full_grid=row_limits[0],
        first_column_in_full_grid=column_limits[0],
        plot_every_k_rows=PLOT_EVERY_KTH_WIND_BARB,
        plot_every_k_columns=PLOT_EVERY_KTH_WIND_BARB,
        barb_length=WIND_BARB_LENGTH, empty_barb_radius=EMPTY_WIND_BARB_RADIUS,
        fill_empty_barb=True, colour_map=WIND_COLOUR_MAP_OBJECT,
        colour_minimum_kt=MIN_WIND_SPEED_KT, colour_maximum_kt=MAX_WIND_SPEED_KT
    )

    orig_x_metres, orig_y_metres = basemap_object(
        orig_longitude_deg, orig_latitude_deg
    )
    axes_object.plot(
        orig_x_metres, orig_y_metres, linestyle='None',
        marker=ORIGIN_MARKER_TYPE, markersize=ORIGIN_MARKER_SIZE,
        markeredgewidth=ORIGIN_MARKER_EDGE_WIDTH,
        markerfacecolor=MARKER_COLOUR, markeredgecolor=MARKER_COLOUR
    )

    extrap_x_metres, extrap_y_metres = basemap_object(
        extrap_longitude_deg, extrap_latitude_deg
    )
    axes_object.plot(
        extrap_x_metres, extrap_y_metres, linestyle='None',
        marker=EXTRAP_MARKER_TYPE, markersize=EXTRAP_MARKER_SIZE,
        markeredgewidth=EXTRAP_MARKER_EDGE_WIDTH,
        markerfacecolor=MARKER_COLOUR, markeredgecolor=MARKER_COLOUR
    )

    plotting_utils.plot_linear_colour_bar(
        axes_object_or_matrix=axes_object, data_matrix=main_field_matrix,
        colour_map_object=COLOUR_MAP_OBJECT,
        min_value=min_colour_value, max_value=max_colour_value,
        orientation_string='vertical'
    )

    output_file_name = '{0:s}/{1:s}_{2:s}.jpg'.format(
        output_dir_name, full_storm_id_string.replace('_', '-'),
        time_conversion.unix_sec_to_string(
            storm_time_unix_sec, FILE_NAME_TIME_FORMAT
        )
    )

    print('Saving figure to: "{0:s}"...'.format(output_file_name))
    pyplot.savefig(
        output_file_name, dpi=FIGURE_RESOLUTION_DPI,
        pad_inches=0, bbox_inches='tight'
    )
    pyplot.close()
Beispiel #9
0
def _plot_fronts(front_line_table, ternary_front_matrix, title_string,
                 annotation_string, output_file_name):
    """Plots one set of WPC fronts (either before or after dilation).

    :param front_line_table: See doc for `fronts_io.write_polylines_to_file`.
    :param ternary_front_matrix: numpy array created by
        `machine_learning_utils.dilate_ternary_target_images`.
    :param title_string: Title (will be placed above figure).
    :param annotation_string: Text annotation (will be placed in top left of
        figure).
    :param output_file_name: Path to output file (figure will be saved here).
    """

    (narr_row_limits,
     narr_column_limits) = nwp_plotting.latlng_limits_to_rowcol_limits(
         min_latitude_deg=MIN_LATITUDE_DEG,
         max_latitude_deg=MAX_LATITUDE_DEG,
         min_longitude_deg=MIN_LONGITUDE_DEG,
         max_longitude_deg=MAX_LONGITUDE_DEG,
         model_name=nwp_model_utils.NARR_MODEL_NAME)

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    this_matrix = ternary_front_matrix[0, narr_row_limits[0]:(
        narr_row_limits[1] + 1), narr_column_limits[0]:(narr_column_limits[1] +
                                                        1)]
    front_plotting.plot_narr_grid(
        frontal_grid_matrix=this_matrix,
        axes_object=axes_object,
        first_row_in_narr_grid=narr_row_limits[0],
        first_column_in_narr_grid=narr_column_limits[0],
        basemap_object=basemap_object,
        opacity=FRONT_LINE_OPACITY)

    num_fronts = len(front_line_table.index)
    for i in range(num_fronts):
        front_plotting.plot_polyline(
            latitudes_deg=front_line_table[
                front_utils.LATITUDES_COLUMN].values[i],
            longitudes_deg=front_line_table[
                front_utils.LONGITUDES_COLUMN].values[i],
            basemap_object=basemap_object,
            axes_object=axes_object,
            front_type=front_line_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            line_width=FRONT_LINE_WIDTH)

    pyplot.title(title_string)
    plotting_utils.annotate_axes(axes_object=axes_object,
                                 annotation_string=annotation_string)

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)
def _plot_one_time(predicted_region_table,
                   title_string,
                   letter_label,
                   output_file_name,
                   class_probability_matrix=None,
                   predicted_label_matrix=None,
                   plot_wf_colour_bar=True,
                   plot_cf_colour_bar=True):
    """Plots predictions at one time.

    Either `class_probability_matrix` or `predicted_label_matrix` will be
    plotted -- not both.

    M = number of rows in NARR grid
    N = number of columns in NARR grid

    :param predicted_region_table: Subset of pandas DataFrame returned by
        `object_eval.read_predictions_and_obs`, containing predicted fronts at
        only one time.
    :param title_string: Title (will be placed above figure).
    :param letter_label: Letter label.  If this is "a", the label "(a)" will be
        printed at the top left of the figure.
    :param output_file_name: Path to output file.
    :param class_probability_matrix: M-by-N-by-3 numpy array of class
        probabilities.
    :param predicted_label_matrix: M-by-N numpy array of predicted labels
        (integers in `front_utils.VALID_INTEGER_IDS`).
    :param plot_wf_colour_bar: Boolean flag.  If True, will plot colour bar for
        warm-front probability.
    :param plot_cf_colour_bar: Boolean flag.  If True, will plot colour bar for
        cold-front probability.
    """

    narr_row_limits, narr_column_limits = (
        nwp_plotting.latlng_limits_to_rowcol_limits(
            min_latitude_deg=MIN_LATITUDE_DEG,
            max_latitude_deg=MAX_LATITUDE_DEG,
            min_longitude_deg=MIN_LONGITUDE_DEG,
            max_longitude_deg=MAX_LONGITUDE_DEG,
            model_name=nwp_model_utils.NARR_MODEL_NAME))

    _, axes_object, basemap_object = nwp_plotting.init_basemap(
        model_name=nwp_model_utils.NARR_MODEL_NAME,
        first_row_in_full_grid=narr_row_limits[0],
        last_row_in_full_grid=narr_row_limits[1],
        first_column_in_full_grid=narr_column_limits[0],
        last_column_in_full_grid=narr_column_limits[1])

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lat_deg=-90.,
                                  upper_right_lat_deg=90.,
                                  parallel_spacing_deg=PARALLEL_SPACING_DEG)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  bottom_left_lng_deg=0.,
                                  upper_right_lng_deg=360.,
                                  meridian_spacing_deg=MERIDIAN_SPACING_DEG)

    if class_probability_matrix is None:
        this_matrix = predicted_label_matrix[narr_row_limits[0]:(
            narr_row_limits[1] +
            1), narr_column_limits[0]:(narr_column_limits[1] + 1)]

        front_plotting.plot_narr_grid(
            frontal_grid_matrix=this_matrix,
            axes_object=axes_object,
            basemap_object=basemap_object,
            first_row_in_narr_grid=narr_row_limits[0],
            first_column_in_narr_grid=narr_column_limits[0],
            opacity=0.25)
    else:
        this_wf_probability_matrix = class_probability_matrix[
            narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1),
            front_utils.WARM_FRONT_INTEGER_ID]
        this_wf_probability_matrix[numpy.isnan(
            this_wf_probability_matrix)] = 0.

        prediction_plotting.plot_narr_grid(
            probability_matrix=this_wf_probability_matrix,
            front_string_id=front_utils.WARM_FRONT_STRING_ID,
            axes_object=axes_object,
            basemap_object=basemap_object,
            first_row_in_narr_grid=narr_row_limits[0],
            first_column_in_narr_grid=narr_column_limits[0],
            opacity=0.5)

        this_cf_probability_matrix = class_probability_matrix[
            narr_row_limits[0]:(narr_row_limits[1] + 1),
            narr_column_limits[0]:(narr_column_limits[1] + 1),
            front_utils.COLD_FRONT_INTEGER_ID]
        this_cf_probability_matrix[numpy.isnan(
            this_cf_probability_matrix)] = 0.

        prediction_plotting.plot_narr_grid(
            probability_matrix=this_cf_probability_matrix,
            front_string_id=front_utils.COLD_FRONT_STRING_ID,
            axes_object=axes_object,
            basemap_object=basemap_object,
            first_row_in_narr_grid=narr_row_limits[0],
            first_column_in_narr_grid=narr_column_limits[0],
            opacity=0.5)

        if plot_wf_colour_bar:
            this_colour_map_object, this_colour_norm_object = (
                prediction_plotting.get_warm_front_colour_map()[:2])

            plotting_utils.add_colour_bar(
                axes_object_or_list=axes_object,
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                values_to_colour=this_wf_probability_matrix,
                orientation='horizontal',
                extend_min=True,
                extend_max=False,
                fraction_of_axis_length=0.9)

        if plot_cf_colour_bar:
            this_colour_map_object, this_colour_norm_object = (
                prediction_plotting.get_cold_front_colour_map()[:2])

            plotting_utils.add_colour_bar(
                axes_object_or_list=axes_object,
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                values_to_colour=this_cf_probability_matrix,
                orientation='horizontal',
                extend_min=True,
                extend_max=False,
                fraction_of_axis_length=0.9)

    narr_latitude_matrix_deg, narr_longitude_matrix_deg = (
        nwp_model_utils.get_latlng_grid_point_matrices(
            model_name=nwp_model_utils.NARR_MODEL_NAME))

    num_objects = len(predicted_region_table.index)

    for i in range(num_objects):
        these_rows = predicted_region_table[
            object_eval.ROW_INDICES_COLUMN].values[i]
        these_columns = predicted_region_table[
            object_eval.COLUMN_INDICES_COLUMN].values[i]

        front_plotting.plot_polyline(
            latitudes_deg=narr_latitude_matrix_deg[these_rows, these_columns],
            longitudes_deg=narr_longitude_matrix_deg[these_rows,
                                                     these_columns],
            axes_object=axes_object,
            basemap_object=basemap_object,
            front_type=predicted_region_table[
                front_utils.FRONT_TYPE_COLUMN].values[i],
            line_width=4)

    # predicted_object_matrix = object_eval.regions_to_images(
    #     predicted_region_table=predicted_region_table,
    #     num_grid_rows=num_grid_rows, num_grid_columns=num_grid_columns)
    #
    # this_matrix = predicted_object_matrix[
    #     0,
    #     narr_row_limits[0]:(narr_row_limits[1] + 1),
    #     narr_column_limits[0]:(narr_column_limits[1] + 1)
    # ]
    #
    # front_plotting.plot_narr_grid(
    #     frontal_grid_matrix=this_matrix, axes_object=axes_object,
    #     basemap_object=basemap_object,
    #     first_row_in_narr_grid=narr_row_limits[0],
    #     first_column_in_narr_grid=narr_column_limits[0], opacity=1.)

    pyplot.title(title_string)
    if letter_label is not None:
        plotting_utils.annotate_axes(
            axes_object=axes_object,
            annotation_string='({0:s})'.format(letter_label))

    print 'Saving figure to: "{0:s}"...'.format(output_file_name)
    pyplot.savefig(output_file_name, dpi=FIGURE_RESOLUTION_DPI)
    pyplot.close()

    imagemagick_utils.trim_whitespace(input_file_name=output_file_name,
                                      output_file_name=output_file_name)