Beispiel #1
0
def _plot_3d_radar(training_option_dict,
                   output_dir_name,
                   pmm_flag,
                   diff_colour_map_object=None,
                   max_colour_percentile_for_diff=None,
                   full_id_strings=None,
                   storm_time_strings=None,
                   novel_radar_matrix=None,
                   novel_radar_matrix_upconv=None,
                   novel_radar_matrix_upconv_svd=None):
    """Plots results of novelty detection for 3-D radar fields.

    E = number of examples (storm objects)
    M = number of rows in spatial grid
    N = number of columns in spatial grid
    H = number of heights in spatial grid
    F = number of fields

    If `novel_radar_matrix` is the only matrix given, this method will plot the
    original (not reconstructed) radar fields.

    If `novel_radar_matrix_upconv` is the only matrix given, will plot
    upconvnet-reconstructed fields.

    If `novel_radar_matrix_upconv_svd` is the only matrix given, will plot
    upconvnet-and-SVD-reconstructed fields.

    If both `novel_radar_matrix_upconv` and `novel_radar_matrix_upconv_svd` are
    given, will plot novelty fields (upconvnet/SVD reconstruction minus
    upconvnet reconstruction).

    :param training_option_dict: See doc for `cnn.read_model_metadata`.
    :param output_dir_name: Name of output directory (figures will be saved
        here).
    :param pmm_flag: Boolean flag.  If True, the input matrices contain
        probability-matched means.
    :param diff_colour_map_object:
        [used only if both `novel_radar_matrix_upconv` and
        `novel_radar_matrix_upconv_svd` are given]

        See documentation at top of file.

    :param max_colour_percentile_for_diff: Same.
    :param full_id_strings: [optional and used only if `pmm_flag = False`]
        length-E list of full storm IDs.
    :param storm_time_strings: [optional and used only if `pmm_flag = False`]
        length-E list of storm times.
    :param novel_radar_matrix: E-by-M-by-N-by-H-by-F numpy array of original
        (not reconstructed) radar fields.
    :param novel_radar_matrix_upconv: E-by-M-by-N-by-H-by-F numpy array of
        upconvnet-reconstructed radar fields.
    :param novel_radar_matrix_upconv_svd: E-by-M-by-N-by-H-by-F numpy array of
        upconvnet-and-SVD-reconstructed radar fields.
    """

    if pmm_flag:
        have_storm_ids = False
    else:
        have_storm_ids = not (full_id_strings is None
                              or storm_time_strings is None)

    plot_difference = False

    if novel_radar_matrix is not None:
        plot_type_abbrev = 'actual'
        plot_type_verbose = 'actual'
        radar_matrix_to_plot = novel_radar_matrix
    else:
        if (novel_radar_matrix_upconv is not None
                and novel_radar_matrix_upconv_svd is not None):

            plot_difference = True
            plot_type_abbrev = 'novelty'
            plot_type_verbose = 'novelty'
            radar_matrix_to_plot = (novel_radar_matrix_upconv -
                                    novel_radar_matrix_upconv_svd)

        else:
            if novel_radar_matrix_upconv is not None:
                plot_type_abbrev = 'upconv'
                plot_type_verbose = 'upconvnet reconstruction'
                radar_matrix_to_plot = novel_radar_matrix_upconv
            else:
                plot_type_abbrev = 'upconv-svd'
                plot_type_verbose = 'upconvnet/SVD reconstruction'
                radar_matrix_to_plot = novel_radar_matrix_upconv_svd

    radar_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    radar_heights_m_agl = training_option_dict[trainval_io.RADAR_HEIGHTS_KEY]

    num_storms = novel_radar_matrix.shape[0]
    num_heights = novel_radar_matrix.shape[-2]
    num_panel_rows = int(numpy.floor(numpy.sqrt(num_heights)))

    for i in range(num_storms):
        if pmm_flag:
            this_title_string = 'Probability-matched mean'
            this_base_file_name = 'pmm'
        else:
            if have_storm_ids:
                this_title_string = 'Storm "{0:s}" at {1:s}'.format(
                    full_id_strings[i], storm_time_strings[i])

                this_base_file_name = '{0:s}_{1:s}'.format(
                    full_id_strings[i].replace('_', '-'),
                    storm_time_strings[i])
            else:
                this_title_string = 'Example {0:d}'.format(i + 1)
                this_base_file_name = 'example{0:06d}'.format(i)

        this_title_string += ' ({0:s})'.format(plot_type_verbose)

        for j in range(len(radar_field_names)):
            this_file_name = '{0:s}/{1:s}_{2:s}_{3:s}.jpg'.format(
                output_dir_name, this_base_file_name, plot_type_abbrev,
                radar_field_names[j].replace('_', '-'))

            if plot_difference:
                this_colour_map_object = diff_colour_map_object

                this_max_value = numpy.percentile(
                    numpy.absolute(radar_matrix_to_plot[i, ..., j]),
                    max_colour_percentile_for_diff)

                this_colour_norm_object = matplotlib.colors.Normalize(
                    vmin=-1 * this_max_value, vmax=this_max_value, clip=False)
            else:
                this_colour_map_object, this_colour_norm_object = (
                    radar_plotting.get_default_colour_scheme(
                        radar_field_names[j]))

            _, this_axes_object_matrix = (
                radar_plotting.plot_3d_grid_without_coords(
                    field_matrix=numpy.flip(radar_matrix_to_plot[i, ..., j],
                                            axis=0),
                    field_name=radar_field_names[j],
                    grid_point_heights_metres=radar_heights_m_agl,
                    ground_relative=True,
                    num_panel_rows=num_panel_rows,
                    font_size=FONT_SIZE_SANS_COLOUR_BARS,
                    colour_map_object=this_colour_map_object,
                    colour_norm_object=this_colour_norm_object))

            plotting_utils.plot_colour_bar(
                axes_object_or_matrix=this_axes_object_matrix,
                data_matrix=radar_matrix_to_plot[i, ..., j],
                colour_map_object=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation_string='horizontal',
                extend_min=True,
                extend_max=True)

            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
            print('Saving figure to: "{0:s}"...'.format(this_file_name))
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()
def _plot_saliency_for_3d_radar(
        radar_matrix, radar_saliency_matrix, model_metadata_dict,
        saliency_colour_map_object, max_colour_value_by_example,
        output_dir_name, storm_ids=None, storm_times_unix_sec=None):
    """Plots saliency for 3-D radar fields.

    E = number of examples
    M = number of rows in spatial grid
    N = number of columns in spatial grid
    H = number of heights in spatial grid
    F = number of fields

    If `storm_ids is None` and `storm_times_unix_sec is None`, will assume that
    the input matrices contain probability-matched means.

    :param radar_matrix: E-by-M-by-N-by-H-by-F numpy array of radar values
        (predictors).
    :param radar_saliency_matrix: E-by-M-by-N-by-H-by-F numpy array of saliency
        values.
    :param model_metadata_dict: See doc for `cnn.read_model_metadata`.
    :param saliency_colour_map_object: See doc for
        `_plot_saliency_for_2d3d_radar`.
    :param max_colour_value_by_example: Same.
    :param output_dir_name: Same.
    :param storm_ids: Same.
    :param storm_times_unix_sec: Same.
    """

    pmm_flag = storm_ids is None and storm_times_unix_sec is None
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]

    num_examples = radar_matrix.shape[0]
    num_fields = radar_matrix.shape[-1]
    num_heights = len(training_option_dict[trainval_io.RADAR_HEIGHTS_KEY])
    num_panel_rows = int(numpy.floor(numpy.sqrt(num_heights)))

    for i in range(num_examples):
        for k in range(num_fields):
            this_field_name = training_option_dict[
                trainval_io.RADAR_FIELDS_KEY][k]

            _, these_axes_objects = (
                radar_plotting.plot_3d_grid_without_coords(
                    field_matrix=numpy.flip(radar_matrix[i, ..., k], axis=0),
                    field_name=this_field_name,
                    grid_point_heights_metres=training_option_dict[
                        trainval_io.RADAR_HEIGHTS_KEY],
                    ground_relative=True, num_panel_rows=num_panel_rows,
                    font_size=FONT_SIZE_SANS_COLOUR_BARS)
            )

            saliency_plotting.plot_many_2d_grids_with_pm_signs(
                saliency_matrix_3d=numpy.flip(
                    radar_saliency_matrix[i, ..., k], axis=0),
                axes_objects_2d_list=these_axes_objects,
                colour_map_object=saliency_colour_map_object,
                max_absolute_colour_value=max_colour_value_by_example[i])

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(this_field_name)
            )

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=radar_matrix[i, ..., k],
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal', extend_min=True, extend_max=True)

            if pmm_flag:
                this_title_string = 'Probability-matched mean'
                this_file_name = '{0:s}/saliency_pmm_{1:s}.jpg'.format(
                    output_dir_name, this_field_name.replace('_', '-')
                )
            else:
                this_storm_time_string = time_conversion.unix_sec_to_string(
                    storm_times_unix_sec[i], TIME_FORMAT)

                this_title_string = 'Storm "{0:s}" at {1:s}'.format(
                    storm_ids[i], this_storm_time_string)

                this_file_name = '{0:s}/saliency_{1:s}_{2:s}_{3:s}.jpg'.format(
                    output_dir_name, storm_ids[i].replace('_', '-'),
                    this_storm_time_string, this_field_name.replace('_', '-')
                )

            this_title_string += ' (max absolute saliency = {0:.3f})'.format(
                max_colour_value_by_example[i])
            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)

            print 'Saving figure to file: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()
def _plot_saliency_for_2d3d_radar(
        list_of_input_matrices, list_of_saliency_matrices,
        training_option_dict, saliency_colour_map_object,
        max_colour_value_by_example, output_dir_name, storm_ids=None,
        storm_times_unix_sec=None):
    """Plots saliency for 2-D azimuthal-shear and 3-D reflectivity fields.

    E = number of examples (storm objects)

    If `storm_ids is None` and `storm_times_unix_sec is None`, will assume that
    the input matrices contain probability-matched means.

    :param list_of_input_matrices: See doc for
        `saliency_maps.read_standard_file`.
    :param list_of_saliency_matrices: Same.
    :param training_option_dict: Dictionary returned by
        `cnn.read_model_metadata`.
    :param saliency_colour_map_object: See documentation at top of file.
    :param max_colour_value_by_example: length-E numpy array with max value in
        colour scheme for each example.  Minimum value for [i]th example will be
        -1 * max_colour_value_by_example[i], since the colour scheme is
        zero-centered and divergent.
    :param output_dir_name: Name of output directory (figures will be saved
        here).
    :param storm_ids: length-E list of storm IDs (strings).
    :param storm_times_unix_sec: length-E numpy array of storm times.
    """

    pmm_flag = storm_ids is None and storm_times_unix_sec is None

    reflectivity_matrix_dbz = list_of_input_matrices[0]
    reflectivity_saliency_matrix = list_of_saliency_matrices[0]
    az_shear_matrix_s01 = list_of_input_matrices[1]
    az_shear_saliency_matrix = list_of_saliency_matrices[1]

    num_examples = reflectivity_matrix_dbz.shape[0]
    num_reflectivity_heights = len(
        training_option_dict[trainval_io.RADAR_HEIGHTS_KEY]
    )
    num_panel_rows_for_reflectivity = int(numpy.floor(
        numpy.sqrt(num_reflectivity_heights)
    ))

    az_shear_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    num_az_shear_fields = len(az_shear_field_names)
    plot_colour_bar_flags = numpy.full(num_az_shear_fields, False, dtype=bool)

    for i in range(num_examples):
        _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
            field_matrix=numpy.flip(reflectivity_matrix_dbz[i, ..., 0], axis=0),
            field_name=radar_utils.REFL_NAME,
            grid_point_heights_metres=training_option_dict[
                trainval_io.RADAR_HEIGHTS_KEY],
            ground_relative=True,
            num_panel_rows=num_panel_rows_for_reflectivity,
            font_size=FONT_SIZE_SANS_COLOUR_BARS)

        saliency_plotting.plot_many_2d_grids_with_pm_signs(
            saliency_matrix_3d=numpy.flip(
                reflectivity_saliency_matrix[i, ..., 0], axis=0),
            axes_objects_2d_list=these_axes_objects,
            colour_map_object=saliency_colour_map_object,
            max_absolute_colour_value=max_colour_value_by_example[i])

        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(radar_utils.REFL_NAME)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=reflectivity_matrix_dbz[i, ..., 0],
            colour_map=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        if pmm_flag:
            this_title_string = 'Probability-matched mean'
            this_file_name = '{0:s}/saliency_pmm_reflectivity.jpg'.format(
                output_dir_name)
        else:
            this_storm_time_string = time_conversion.unix_sec_to_string(
                storm_times_unix_sec[i], TIME_FORMAT)

            this_title_string = 'Storm "{0:s}" at {1:s}'.format(
                storm_ids[i], this_storm_time_string)

            this_file_name = (
                '{0:s}/saliency_{1:s}_{2:s}_reflectivity.jpg'
            ).format(
                output_dir_name, storm_ids[i].replace('_', '-'),
                this_storm_time_string
            )

        this_title_string += ' (max absolute saliency = {0:.3f})'.format(
            max_colour_value_by_example[i])
        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)

        print 'Saving figure to file: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()

        _, these_axes_objects = (
            radar_plotting.plot_many_2d_grids_without_coords(
                field_matrix=numpy.flip(az_shear_matrix_s01[i, ...], axis=0),
                field_name_by_panel=az_shear_field_names,
                panel_names=az_shear_field_names, num_panel_rows=1,
                plot_colour_bar_by_panel=plot_colour_bar_flags,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)
        )

        saliency_plotting.plot_many_2d_grids_with_pm_signs(
            saliency_matrix_3d=numpy.flip(
                az_shear_saliency_matrix[i, ...], axis=0),
            axes_objects_2d_list=these_axes_objects,
            colour_map_object=saliency_colour_map_object,
            max_absolute_colour_value=max_colour_value_by_example[i])

        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(
                radar_utils.LOW_LEVEL_SHEAR_NAME)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=az_shear_saliency_matrix[i, ...],
            colour_map=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        this_file_name = this_file_name.replace(
            '_reflectivity.jpg', '_azimuthal-shear.jpg')

        print 'Saving figure to file: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()
Beispiel #4
0
def _plot_bwo_for_2d3d_radar(
        list_of_optimized_matrices, training_option_dict,
        diff_colour_map_object, max_colour_percentile_for_diff,
        top_output_dir_name, pmm_flag, list_of_input_matrices=None,
        storm_ids=None, storm_times_unix_sec=None):
    """Plots BWO results for 2-D azimuthal-shear and 3-D reflectivity fields.

    E = number of examples (storm objects)
    T = number of input tensors to the model

    :param list_of_optimized_matrices: length-T list of numpy arrays, where the
        [i]th array is the optimized version of the [i]th input matrix to the
        model.
    :param training_option_dict: See doc for `cnn.read_model_metadata`.
    :param diff_colour_map_object: See documentation at top of file.
    :param max_colour_percentile_for_diff: Same.
    :param top_output_dir_name: Path to top-level output directory (figures will
        be saved here).
    :param pmm_flag: Boolean flag.  If True, `list_of_predictor_matrices`
        contains probability-matched means.
    :param list_of_input_matrices: Same as `list_of_optimized_matrices` but with
        non-optimized input matrices.
    :param storm_ids: [optional and used only if `pmm_flag = False`]
        length-E list of storm IDs (strings).
    :param storm_times_unix_sec: [optional and used only if `pmm_flag = False`]
        length-E numpy array of storm times.
    """

    before_optimization_dir_name = '{0:s}/before_optimization'.format(
        top_output_dir_name)
    after_optimization_dir_name = '{0:s}/after_optimization'.format(
        top_output_dir_name)
    difference_dir_name = '{0:s}/after_minus_before_optimization'.format(
        top_output_dir_name)

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=before_optimization_dir_name)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=after_optimization_dir_name)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=difference_dir_name)

    if pmm_flag:
        have_storm_ids = False
    else:
        have_storm_ids = not (storm_ids is None or storm_times_unix_sec is None)

    az_shear_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    num_az_shear_fields = len(az_shear_field_names)
    plot_colour_bar_flags = numpy.full(num_az_shear_fields, False, dtype=bool)

    num_storms = list_of_optimized_matrices[0].shape[0]

    for i in range(num_storms):
        print '\n'

        if pmm_flag:
            this_base_title_string = 'Probability-matched mean'
            this_base_pathless_file_name = 'pmm'
        else:
            if have_storm_ids:
                this_storm_time_string = time_conversion.unix_sec_to_string(
                    storm_times_unix_sec[i], TIME_FORMAT)

                this_base_title_string = 'Storm "{0:s}" at {1:s}'.format(
                    storm_ids[i], this_storm_time_string)

                this_base_pathless_file_name = '{0:s}_{1:s}'.format(
                    storm_ids[i].replace('_', '-'), this_storm_time_string)

            else:
                this_base_title_string = 'Example {0:d}'.format(i + 1)
                this_base_pathless_file_name = 'example{0:06d}'.format(i)

        this_reflectivity_matrix_dbz = numpy.flip(
            list_of_optimized_matrices[0][i, ..., 0], axis=0)

        this_num_heights = this_reflectivity_matrix_dbz.shape[-1]
        this_num_panel_rows = int(numpy.floor(
            numpy.sqrt(this_num_heights)
        ))

        _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
            field_matrix=this_reflectivity_matrix_dbz,
            field_name=radar_utils.REFL_NAME,
            grid_point_heights_metres=training_option_dict[
                trainval_io.RADAR_HEIGHTS_KEY],
            ground_relative=True, num_panel_rows=this_num_panel_rows,
            font_size=FONT_SIZE_SANS_COLOUR_BARS)

        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(radar_utils.REFL_NAME)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=this_reflectivity_matrix_dbz,
            colour_map=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        this_title_string = '{0:s} (after optimization)'.format(
            this_base_title_string)

        this_file_name = (
            '{0:s}/{1:s}_after-optimization_reflectivity.jpg'
        ).format(after_optimization_dir_name, this_base_pathless_file_name)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        print 'Saving figure to: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()

        this_az_shear_matrix_s01 = numpy.flip(
            list_of_optimized_matrices[1][i, ..., 0], axis=0)

        _, these_axes_objects = (
            radar_plotting.plot_many_2d_grids_without_coords(
                field_matrix=this_az_shear_matrix_s01,
                field_name_by_panel=az_shear_field_names, num_panel_rows=1,
                panel_names=az_shear_field_names,
                plot_colour_bar_by_panel=plot_colour_bar_flags,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)
        )

        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(
                radar_utils.LOW_LEVEL_SHEAR_NAME)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=this_az_shear_matrix_s01,
            colour_map=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        this_title_string = '{0:s} (after optimization)'.format(
            this_base_title_string)

        this_file_name = (
            '{0:s}/{1:s}_after-optimization_azimuthal-shear.jpg'
        ).format(after_optimization_dir_name, this_base_pathless_file_name)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        print 'Saving figure to: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()

        if list_of_input_matrices is None:
            continue

        this_reflectivity_matrix_dbz = numpy.flip(
            list_of_input_matrices[0][i, ..., 0], axis=0)

        _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
            field_matrix=this_reflectivity_matrix_dbz,
            field_name=radar_utils.REFL_NAME,
            grid_point_heights_metres=training_option_dict[
                trainval_io.RADAR_HEIGHTS_KEY],
            ground_relative=True, num_panel_rows=this_num_panel_rows,
            font_size=FONT_SIZE_SANS_COLOUR_BARS)

        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(radar_utils.REFL_NAME)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=this_reflectivity_matrix_dbz,
            colour_map=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        this_title_string = '{0:s} (before optimization)'.format(
            this_base_title_string)

        this_file_name = (
            '{0:s}/{1:s}_before-optimization_reflectivity.jpg'
        ).format(before_optimization_dir_name, this_base_pathless_file_name)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        print 'Saving figure to: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()

        this_az_shear_matrix_s01 = numpy.flip(
            list_of_input_matrices[1][i, ..., 0], axis=0)

        _, these_axes_objects = (
            radar_plotting.plot_many_2d_grids_without_coords(
                field_matrix=this_az_shear_matrix_s01,
                field_name_by_panel=az_shear_field_names, num_panel_rows=1,
                panel_names=az_shear_field_names,
                plot_colour_bar_by_panel=plot_colour_bar_flags,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)
        )

        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(
                radar_utils.LOW_LEVEL_SHEAR_NAME)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=this_az_shear_matrix_s01,
            colour_map=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        this_title_string = '{0:s} (before optimization)'.format(
            this_base_title_string)

        this_file_name = (
            '{0:s}/{1:s}_before-optimization_azimuthal-shear.jpg'
        ).format(before_optimization_dir_name, this_base_pathless_file_name)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        print 'Saving figure to: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()

        this_refl_diff_matrix_dbz = (
            list_of_optimized_matrices[0][i, ..., 0] -
            list_of_input_matrices[0][i, ..., 0]
        )
        this_refl_diff_matrix_dbz = numpy.flip(
            this_refl_diff_matrix_dbz, axis=0)

        this_max_value_dbz = numpy.percentile(
            numpy.absolute(this_refl_diff_matrix_dbz),
            max_colour_percentile_for_diff)

        this_colour_norm_object = matplotlib.colors.Normalize(
            vmin=-1 * this_max_value_dbz, vmax=this_max_value_dbz, clip=False)

        _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
            field_matrix=this_refl_diff_matrix_dbz,
            field_name=radar_utils.REFL_NAME,
            grid_point_heights_metres=training_option_dict[
                trainval_io.RADAR_HEIGHTS_KEY],
            ground_relative=True, num_panel_rows=this_num_panel_rows,
            font_size=FONT_SIZE_SANS_COLOUR_BARS,
            colour_map_object=diff_colour_map_object,
            colour_norm_object=this_colour_norm_object)

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=this_refl_diff_matrix_dbz,
            colour_map=diff_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        this_title_string = '{0:s} (after minus before optimization)'.format(
            this_base_title_string)

        this_file_name = (
            '{0:s}/{1:s}_optimization-diff_reflectivity.jpg'
        ).format(difference_dir_name, this_base_pathless_file_name)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        print 'Saving figure to: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()

        this_shear_diff_matrix_s01 = (
            list_of_optimized_matrices[1][i, ..., 0] -
            list_of_input_matrices[1][i, ..., 0]
        )
        this_shear_diff_matrix_s01 = numpy.flip(
            this_shear_diff_matrix_s01, axis=0)

        this_max_value_s01 = numpy.percentile(
            numpy.absolute(this_shear_diff_matrix_s01),
            max_colour_percentile_for_diff)

        this_colour_norm_object = matplotlib.colors.Normalize(
            vmin=-1 * this_max_value_s01, vmax=this_max_value_s01, clip=False)

        _, these_axes_objects = (
            radar_plotting.plot_many_2d_grids_without_coords(
                field_matrix=this_shear_diff_matrix_s01,
                field_name_by_panel=az_shear_field_names, num_panel_rows=1,
                panel_names=az_shear_field_names,
                colour_map_object_by_panel=
                [diff_colour_map_object] * num_az_shear_fields,
                colour_norm_object_by_panel=
                [copy.deepcopy(this_colour_norm_object)] * num_az_shear_fields,
                plot_colour_bar_by_panel=plot_colour_bar_flags,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)
        )

        plotting_utils.add_colour_bar(
            axes_object_or_list=these_axes_objects,
            values_to_colour=this_shear_diff_matrix_s01,
            colour_map=diff_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation='horizontal', extend_min=True, extend_max=True)

        this_title_string = '{0:s} (after minus before optimization)'.format(
            this_base_title_string)

        this_file_name = (
            '{0:s}/{1:s}_optimization-diff_azimuthal-shear.jpg'
        ).format(difference_dir_name, this_base_pathless_file_name)

        pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
        print 'Saving figure to: "{0:s}"...'.format(this_file_name)
        pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
        pyplot.close()
def _plot_3d_radar_cams(
        radar_matrix, model_metadata_dict, cam_colour_map_object,
        max_colour_prctile_for_cam, output_dir_name,
        class_activation_matrix=None, ggradcam_output_matrix=None,
        storm_ids=None, storm_times_unix_sec=None):
    """Plots class-activation maps for 3-D radar data.

    E = number of examples
    M = number of rows in spatial grid
    N = number of columns in spatial grid
    H = number of heights in spatial grid
    F = number of radar fields

    This method will plot either `class_activation_matrix` or
    `ggradcam_output_matrix`, not both.

    If `storm_ids is None` and `storm_times_unix_sec is None`, will assume that
    the input matrices contain probability-matched means.

    :param radar_matrix: E-by-M-by-N-by-H-by-F numpy array of radar values.
    :param model_metadata_dict: Dictionary with CNN metadata (see doc for
        `cnn.read_model_metadata`).
    :param cam_colour_map_object: See documentation at top of file.
    :param max_colour_prctile_for_cam: Same.
    :param output_dir_name: Same.
    :param class_activation_matrix: E-by-M-by-N-by-H numpy array of class
        activations.
    :param ggradcam_output_matrix: E-by-M-by-N-by-H-by-F numpy array of output
        values from guided Grad-CAM.
    :param storm_ids: length-E list of storm IDs (strings).
    :param storm_times_unix_sec: length-E numpy array of storm times.
    """

    pmm_flag = storm_ids is None and storm_times_unix_sec is None

    num_examples = radar_matrix.shape[0]
    num_heights = radar_matrix.shape[-2]
    num_fields = radar_matrix.shape[-1]
    num_panel_rows = int(numpy.floor(numpy.sqrt(num_heights)))

    if class_activation_matrix is None:
        quantity_string = 'max absolute guided Grad-CAM output'
        pathless_file_name_prefix = 'guided-gradcam'
    else:
        quantity_string = 'max class activation'
        pathless_file_name_prefix = 'gradcam'

    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]

    for i in range(num_examples):
        for k in range(num_fields):
            this_field_name = training_option_dict[
                trainval_io.RADAR_FIELDS_KEY][k]

            _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
                field_matrix=numpy.flip(radar_matrix[i, ..., k], axis=0),
                field_name=this_field_name,
                grid_point_heights_metres=training_option_dict[
                    trainval_io.RADAR_HEIGHTS_KEY],
                ground_relative=True, num_panel_rows=num_panel_rows,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)

            if class_activation_matrix is None:
                this_matrix = ggradcam_output_matrix[i, ..., k]

                this_max_contour_level = numpy.percentile(
                    numpy.absolute(this_matrix), max_colour_prctile_for_cam)
                if this_max_contour_level == 0:
                    this_max_contour_level = 10.

                saliency_plotting.plot_many_2d_grids_with_contours(
                    saliency_matrix_3d=numpy.flip(this_matrix, axis=0),
                    axes_objects_2d_list=these_axes_objects,
                    colour_map_object=cam_colour_map_object,
                    max_absolute_contour_level=this_max_contour_level,
                    contour_interval=this_max_contour_level / 10)

            else:
                this_matrix = class_activation_matrix[i, ...]

                this_max_contour_level = numpy.percentile(
                    this_matrix, max_colour_prctile_for_cam)
                if this_max_contour_level == 0:
                    this_max_contour_level = 10.

                cam_plotting.plot_many_2d_grids(
                    class_activation_matrix_3d=numpy.flip(this_matrix, axis=0),
                    axes_objects_2d_list=these_axes_objects,
                    colour_map_object=cam_colour_map_object,
                    max_contour_level=this_max_contour_level,
                    contour_interval=this_max_contour_level / NUM_CONTOURS)

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(this_field_name)
            )

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=radar_matrix[i, ..., k],
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal', extend_min=True, extend_max=True)

            if pmm_flag:
                this_title_string = 'Probability-matched mean'
                this_figure_file_name = '{0:s}/{1:s}_pmm_{2:s}.jpg'.format(
                    output_dir_name, pathless_file_name_prefix,
                    this_field_name.replace('_', '-')
                )

            else:
                this_storm_time_string = time_conversion.unix_sec_to_string(
                    storm_times_unix_sec[i], TIME_FORMAT)

                this_title_string = 'Storm "{0:s}" at {1:s}'.format(
                    storm_ids[i], this_storm_time_string)

                this_figure_file_name = (
                    '{0:s}/{1:s}_{2:s}_{3:s}_{4:s}.jpg'
                ).format(
                    output_dir_name, pathless_file_name_prefix,
                    storm_ids[i].replace('_', '-'), this_storm_time_string,
                    this_field_name.replace('_', '-')
                )

            this_title_string += ' ({0:s} = {1:.3f})'.format(
                quantity_string, this_max_contour_level)
            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)

            print 'Saving figure to file: "{0:s}"...'.format(
                this_figure_file_name)
            pyplot.savefig(this_figure_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()
Beispiel #6
0
def _plot_bwo_for_3d_radar(
        optimized_radar_matrix, training_option_dict, diff_colour_map_object,
        max_colour_percentile_for_diff, top_output_dir_name, pmm_flag,
        input_radar_matrix=None, storm_ids=None, storm_times_unix_sec=None):
    """Plots BWO results for 3-D radar fields.

    E = number of examples (storm objects)
    M = number of rows in spatial grid
    N = number of columns in spatial grid
    H = number of heights in spatial grid
    F = number of fields

    :param optimized_radar_matrix: E-by-M-by-N-by-H-by-F numpy array of radar
        values (predictors).
    :param training_option_dict: See doc for `_plot_bwo_for_2d3d_radar`.
    :param diff_colour_map_object: Same.
    :param max_colour_percentile_for_diff: Same.
    :param top_output_dir_name: Same.
    :param pmm_flag: Same.
    :param input_radar_matrix: Same as `optimized_radar_matrix` but with
        non-optimized input.
    :param storm_ids: See doc for `_plot_bwo_for_2d3d_radar`.
    :param storm_times_unix_sec: Same.
    """

    before_optimization_dir_name = '{0:s}/before_optimization'.format(
        top_output_dir_name)
    after_optimization_dir_name = '{0:s}/after_optimization'.format(
        top_output_dir_name)
    difference_dir_name = '{0:s}/after_minus_before_optimization'.format(
        top_output_dir_name)

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=before_optimization_dir_name)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=after_optimization_dir_name)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=difference_dir_name)

    if pmm_flag:
        have_storm_ids = False
    else:
        have_storm_ids = not (storm_ids is None or storm_times_unix_sec is None)

    radar_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    radar_heights_m_agl = training_option_dict[trainval_io.RADAR_HEIGHTS_KEY]

    num_storms = optimized_radar_matrix.shape[0]
    num_heights = optimized_radar_matrix.shape[-2]
    num_panel_rows = int(numpy.floor(
        numpy.sqrt(num_heights)
    ))

    for i in range(num_storms):
        print '\n'

        if pmm_flag:
            this_base_title_string = 'Probability-matched mean'
            this_base_pathless_file_name = 'pmm'
        else:
            if have_storm_ids:
                this_storm_time_string = time_conversion.unix_sec_to_string(
                    storm_times_unix_sec[i], TIME_FORMAT)

                this_base_title_string = 'Storm "{0:s}" at {1:s}'.format(
                    storm_ids[i], this_storm_time_string)

                this_base_pathless_file_name = '{0:s}_{1:s}'.format(
                    storm_ids[i].replace('_', '-'), this_storm_time_string)

            else:
                this_base_title_string = 'Example {0:d}'.format(i + 1)
                this_base_pathless_file_name = 'example{0:06d}'.format(i)

        for j in range(len(radar_field_names)):
            _, these_axes_objects = (
                radar_plotting.plot_3d_grid_without_coords(
                    field_matrix=numpy.flip(
                        optimized_radar_matrix[i, ..., j], axis=0),
                    field_name=radar_field_names[j],
                    grid_point_heights_metres=radar_heights_m_agl,
                    ground_relative=True, num_panel_rows=num_panel_rows,
                    font_size=FONT_SIZE_SANS_COLOUR_BARS)
            )

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(
                    radar_field_names[j])
            )

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=optimized_radar_matrix[i, ..., j],
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal', extend_min=True, extend_max=True)

            this_title_string = '{0:s} (after optimization)'.format(
                this_base_title_string)

            this_file_name = (
                '{0:s}/{1:s}_after-optimization_{2:s}.jpg'
            ).format(
                after_optimization_dir_name, this_base_pathless_file_name,
                radar_field_names[j].replace('_', '-')
            )

            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()

            if input_radar_matrix is None:
                continue

            _, these_axes_objects = (
                radar_plotting.plot_3d_grid_without_coords(
                    field_matrix=numpy.flip(
                        input_radar_matrix[i, ..., j], axis=0),
                    field_name=radar_field_names[j],
                    grid_point_heights_metres=radar_heights_m_agl,
                    ground_relative=True, num_panel_rows=num_panel_rows,
                    font_size=FONT_SIZE_SANS_COLOUR_BARS)
            )

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(
                    radar_field_names[j])
            )

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=input_radar_matrix[i, ..., j],
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal', extend_min=True, extend_max=True)

            this_title_string = '{0:s} (before optimization)'.format(
                this_base_title_string)

            this_file_name = (
                '{0:s}/{1:s}_before-optimization_{2:s}.jpg'
            ).format(
                before_optimization_dir_name, this_base_pathless_file_name,
                radar_field_names[j].replace('_', '-')
            )

            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()

            this_diff_matrix = (
                optimized_radar_matrix[i, ..., j] -
                input_radar_matrix[i, ..., j]
            )

            this_max_value = numpy.percentile(
                numpy.absolute(this_diff_matrix),
                max_colour_percentile_for_diff)

            this_colour_norm_object = matplotlib.colors.Normalize(
                vmin=-1 * this_max_value, vmax=this_max_value, clip=False)

            _, these_axes_objects = (
                radar_plotting.plot_3d_grid_without_coords(
                    field_matrix=numpy.flip(this_diff_matrix, axis=0),
                    field_name=radar_field_names[j],
                    grid_point_heights_metres=radar_heights_m_agl,
                    ground_relative=True, num_panel_rows=num_panel_rows,
                    font_size=FONT_SIZE_SANS_COLOUR_BARS,
                    colour_map_object=diff_colour_map_object,
                    colour_norm_object=this_colour_norm_object)
            )

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=this_diff_matrix,
                colour_map=diff_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal', extend_min=True, extend_max=True)

            this_title_string = (
                '{0:s} (after minus before optimization)'
            ).format(this_base_title_string)

            this_file_name = (
                '{0:s}/{1:s}_optimization-diff_{2:s}.jpg'
            ).format(
                difference_dir_name, this_base_pathless_file_name,
                radar_field_names[j].replace('_', '-')
            )

            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()
Beispiel #7
0
def _plot_2d3d_radar_scan(list_of_predictor_matrices,
                          model_metadata_dict,
                          allow_whitespace,
                          title_string=None):
    """Plots 3-D reflectivity and 2-D azimuthal shear for one example.

    :param list_of_predictor_matrices: See doc for `_plot_3d_radar_scan`.
    :param model_metadata_dict: Same.
    :param allow_whitespace: Same.
    :param title_string: Same.
    :return: figure_objects: length-2 list of figure handles (instances of
        `matplotlib.figure.Figure`).  The first is for reflectivity; the second
        is for azimuthal shear.
    :return: axes_object_matrices: length-2 list (the first is for reflectivity;
        the second is for azimuthal shear).  Each element is a 2-D numpy
        array of axes handles (instances of
        `matplotlib.axes._subplots.AxesSubplot`).
    """

    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    az_shear_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    refl_heights_m_agl = training_option_dict[trainval_io.RADAR_HEIGHTS_KEY]

    num_az_shear_fields = len(az_shear_field_names)
    num_refl_heights = len(refl_heights_m_agl)

    this_num_panel_rows = int(numpy.floor(numpy.sqrt(num_refl_heights)))
    this_num_panel_columns = int(
        numpy.ceil(float(num_refl_heights) / this_num_panel_rows))

    if allow_whitespace:
        refl_figure_object = None
        refl_axes_object_matrix = None
    else:
        refl_figure_object, refl_axes_object_matrix = (
            plotting_utils.create_paneled_figure(
                num_rows=this_num_panel_rows,
                num_columns=this_num_panel_columns,
                horizontal_spacing=0.,
                vertical_spacing=0.,
                shared_x_axis=False,
                shared_y_axis=False,
                keep_aspect_ratio=True))

    refl_figure_object, refl_axes_object_matrix = (
        radar_plotting.plot_3d_grid_without_coords(
            field_matrix=numpy.flip(list_of_predictor_matrices[0][..., 0],
                                    axis=0),
            field_name=radar_utils.REFL_NAME,
            grid_point_heights_metres=refl_heights_m_agl,
            ground_relative=True,
            num_panel_rows=this_num_panel_rows,
            figure_object=refl_figure_object,
            axes_object_matrix=refl_axes_object_matrix,
            font_size=FONT_SIZE_SANS_COLOUR_BARS))

    if allow_whitespace:
        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(radar_utils.REFL_NAME))

        plotting_utils.plot_colour_bar(
            axes_object_or_matrix=refl_axes_object_matrix,
            data_matrix=list_of_predictor_matrices[0],
            colour_map_object=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation_string='horizontal',
            extend_min=True,
            extend_max=True)

        if title_string is not None:
            this_title_string = '{0:s}; {1:s}'.format(title_string,
                                                      radar_utils.REFL_NAME)
            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)

    if allow_whitespace:
        shear_figure_object = None
        shear_axes_object_matrix = None
    else:
        shear_figure_object, shear_axes_object_matrix = (
            plotting_utils.create_paneled_figure(
                num_rows=1,
                num_columns=num_az_shear_fields,
                horizontal_spacing=0.,
                vertical_spacing=0.,
                shared_x_axis=False,
                shared_y_axis=False,
                keep_aspect_ratio=True))

    shear_figure_object, shear_axes_object_matrix = (
        radar_plotting.plot_many_2d_grids_without_coords(
            field_matrix=numpy.flip(list_of_predictor_matrices[1], axis=0),
            field_name_by_panel=az_shear_field_names,
            panel_names=az_shear_field_names,
            num_panel_rows=1,
            figure_object=shear_figure_object,
            axes_object_matrix=shear_axes_object_matrix,
            plot_colour_bar_by_panel=numpy.full(num_az_shear_fields,
                                                False,
                                                dtype=bool),
            font_size=FONT_SIZE_SANS_COLOUR_BARS))

    if allow_whitespace:
        this_colour_map_object, this_colour_norm_object = (
            radar_plotting.get_default_colour_scheme(
                radar_utils.LOW_LEVEL_SHEAR_NAME))

        plotting_utils.plot_colour_bar(
            axes_object_or_matrix=shear_axes_object_matrix,
            data_matrix=list_of_predictor_matrices[1],
            colour_map_object=this_colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation_string='horizontal',
            extend_min=True,
            extend_max=True)

        if title_string is not None:
            pyplot.suptitle(title_string, fontsize=TITLE_FONT_SIZE)

    figure_objects = [refl_figure_object, shear_figure_object]
    axes_object_matrices = [refl_axes_object_matrix, shear_axes_object_matrix]
    return figure_objects, axes_object_matrices
Beispiel #8
0
def _plot_3d_radar_scan(list_of_predictor_matrices,
                        model_metadata_dict,
                        allow_whitespace,
                        title_string=None):
    """Plots 3-D radar scan for one example.

    J = number of panel rows in image
    K = number of panel columns in image
    F = number of radar fields

    :param list_of_predictor_matrices: List created by
        `testing_io.read_specific_examples`, except that the first axis (example
        dimension) is removed.
    :param model_metadata_dict: Dictionary returned by
        `cnn.read_model_metadata`.
    :param allow_whitespace: See documentation at top of file.
    :param title_string: Title (may be None).

    :return: figure_objects: length-F list of figure handles (instances of
        `matplotlib.figure.Figure`).
    :return: axes_object_matrices: length-F list.  Each element is a J-by-K
        numpy array of axes handles (instances of
        `matplotlib.axes._subplots.AxesSubplot`).
    """

    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    radar_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    radar_heights_m_agl = training_option_dict[trainval_io.RADAR_HEIGHTS_KEY]

    num_radar_fields = len(radar_field_names)
    num_radar_heights = len(radar_heights_m_agl)

    num_panel_rows = int(numpy.floor(numpy.sqrt(num_radar_heights)))
    num_panel_columns = int(
        numpy.ceil(float(num_radar_heights) / num_panel_rows))

    figure_objects = [None] * num_radar_fields
    axes_object_matrices = [None] * num_radar_fields
    radar_matrix = list_of_predictor_matrices[0]

    for j in range(num_radar_fields):
        this_radar_matrix = numpy.flip(radar_matrix[..., j], axis=0)

        if not allow_whitespace:
            figure_objects[j], axes_object_matrices[j] = (
                plotting_utils.create_paneled_figure(
                    num_rows=num_panel_rows,
                    num_columns=num_panel_columns,
                    horizontal_spacing=0.,
                    vertical_spacing=0.,
                    shared_x_axis=False,
                    shared_y_axis=False,
                    keep_aspect_ratio=True))

        figure_objects[j], axes_object_matrices[j] = (
            radar_plotting.plot_3d_grid_without_coords(
                field_matrix=this_radar_matrix,
                field_name=radar_field_names[j],
                grid_point_heights_metres=radar_heights_m_agl,
                ground_relative=True,
                num_panel_rows=num_panel_rows,
                figure_object=figure_objects[j],
                axes_object_matrix=axes_object_matrices[j],
                font_size=FONT_SIZE_SANS_COLOUR_BARS))

        if allow_whitespace:
            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(radar_field_names[j]))

            plotting_utils.plot_colour_bar(
                axes_object_or_matrix=axes_object_matrices[j],
                data_matrix=this_radar_matrix,
                colour_map_object=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation_string='horizontal',
                extend_min=True,
                extend_max=True)

            if title_string is not None:
                this_title_string = '{0:s}; {1:s}'.format(
                    title_string, radar_field_names[j])
                pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)

    return figure_objects, axes_object_matrices
def plot_examples(list_of_predictor_matrices,
                  storm_ids,
                  storm_times_unix_sec,
                  model_metadata_dict,
                  output_dir_name,
                  storm_activations=None):
    """Plots one or more learning examples.

    E = number of examples (storm objects)

    :param list_of_predictor_matrices: List created by
        `testing_io.read_specific_examples`.  Contains data to be plotted.
    :param storm_ids: length-E list of storm IDs.
    :param storm_times_unix_sec: length-E numpy array of storm times.
    :param model_metadata_dict: See doc for `cnn.read_model_metadata`.
    :param output_dir_name: Name of output directory (figures will be saved
        here).
    :param storm_activations: length-E numpy array of storm activations (may be
        None).  Will be included in title of each figure.
    """

    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    sounding_field_names = training_option_dict[
        trainval_io.SOUNDING_FIELDS_KEY]
    plot_soundings = sounding_field_names is not None

    if plot_soundings:
        list_of_metpy_dictionaries = dl_utils.soundings_to_metpy_dictionaries(
            sounding_matrix=list_of_predictor_matrices[-1],
            field_names=sounding_field_names)
    else:
        list_of_metpy_dictionaries = None

    num_radar_dimensions = len(list_of_predictor_matrices[0].shape) - 2
    list_of_layer_operation_dicts = model_metadata_dict[
        cnn.LAYER_OPERATIONS_KEY]

    if num_radar_dimensions == 2:
        if list_of_layer_operation_dicts is None:
            field_name_by_panel = training_option_dict[
                trainval_io.RADAR_FIELDS_KEY]

            panel_names = (
                radar_plotting.radar_fields_and_heights_to_panel_names(
                    field_names=field_name_by_panel,
                    heights_m_agl=training_option_dict[
                        trainval_io.RADAR_HEIGHTS_KEY]))

            plot_colour_bar_by_panel = numpy.full(len(panel_names),
                                                  True,
                                                  dtype=bool)

        else:
            field_name_by_panel, panel_names = (
                radar_plotting.layer_ops_to_field_and_panel_names(
                    list_of_layer_operation_dicts))

            plot_colour_bar_by_panel = numpy.full(len(panel_names),
                                                  False,
                                                  dtype=bool)
            plot_colour_bar_by_panel[2::3] = True
    else:
        field_name_by_panel = None
        panel_names = None
        plot_colour_bar_by_panel = None

    az_shear_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
    num_az_shear_fields = len(az_shear_field_names)

    num_storms = len(storm_ids)
    myrorss_2d3d = len(list_of_predictor_matrices) == 3

    for i in range(num_storms):
        this_time_string = time_conversion.unix_sec_to_string(
            storm_times_unix_sec[i], TIME_FORMAT)
        this_base_title_string = 'Storm "{0:s}" at {1:s}'.format(
            storm_ids[i], this_time_string)

        if storm_activations is not None:
            this_base_title_string += ' (activation = {0:.3f})'.format(
                storm_activations[i])

        this_base_file_name = '{0:s}/storm={1:s}_{2:s}'.format(
            output_dir_name, storm_ids[i].replace('_', '-'), this_time_string)

        if plot_soundings:
            sounding_plotting.plot_sounding(
                sounding_dict_for_metpy=list_of_metpy_dictionaries[i],
                title_string=this_base_title_string)

            this_file_name = '{0:s}_sounding.jpg'.format(this_base_file_name)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()

        if myrorss_2d3d:
            this_reflectivity_matrix_dbz = numpy.flip(
                list_of_predictor_matrices[0][i, ..., 0], axis=0)

            this_num_heights = this_reflectivity_matrix_dbz.shape[-1]
            this_num_panel_rows = int(numpy.floor(
                numpy.sqrt(this_num_heights)))

            _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
                field_matrix=this_reflectivity_matrix_dbz,
                field_name=radar_utils.REFL_NAME,
                grid_point_heights_metres=training_option_dict[
                    trainval_io.RADAR_HEIGHTS_KEY],
                ground_relative=True,
                num_panel_rows=this_num_panel_rows,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(
                    radar_utils.REFL_NAME))

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=this_reflectivity_matrix_dbz,
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal',
                extend_min=True,
                extend_max=True)

            this_title_string = '{0:s}; {1:s}'.format(this_base_title_string,
                                                      radar_utils.REFL_NAME)
            this_file_name = '{0:s}_reflectivity.jpg'.format(
                this_base_file_name)

            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()

            this_az_shear_matrix_s01 = numpy.flip(
                list_of_predictor_matrices[1][i, ..., 0], axis=0)

            _, these_axes_objects = (
                radar_plotting.plot_many_2d_grids_without_coords(
                    field_matrix=this_az_shear_matrix_s01,
                    field_name_by_panel=az_shear_field_names,
                    panel_names=az_shear_field_names,
                    num_panel_rows=1,
                    plot_colour_bar_by_panel=numpy.full(num_az_shear_fields,
                                                        False,
                                                        dtype=bool),
                    font_size=FONT_SIZE_SANS_COLOUR_BARS))

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(
                    radar_utils.LOW_LEVEL_SHEAR_NAME))

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=this_az_shear_matrix_s01,
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal',
                extend_min=True,
                extend_max=True)

            this_file_name = '{0:s}_shear.jpg'.format(this_base_file_name)
            pyplot.suptitle(this_base_title_string, fontsize=TITLE_FONT_SIZE)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()

            continue

        this_radar_matrix = list_of_predictor_matrices[0]

        if num_radar_dimensions == 2:
            this_num_channels = this_radar_matrix.shape[-1]
            this_num_panel_rows = int(
                numpy.floor(numpy.sqrt(this_num_channels)))

            radar_plotting.plot_many_2d_grids_without_coords(
                field_matrix=numpy.flip(this_radar_matrix[i, ...], axis=0),
                field_name_by_panel=field_name_by_panel,
                panel_names=panel_names,
                num_panel_rows=this_num_panel_rows,
                plot_colour_bar_by_panel=plot_colour_bar_by_panel,
                font_size=FONT_SIZE_WITH_COLOUR_BARS,
                row_major=False)

            this_title_string = this_base_title_string + ''
            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)

            this_file_name = '{0:s}.jpg'.format(this_base_file_name)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()

            continue

        radar_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]
        radar_heights_m_agl = training_option_dict[
            trainval_io.RADAR_HEIGHTS_KEY]

        for j in range(len(radar_field_names)):
            this_num_heights = this_radar_matrix.shape[-2]
            this_num_panel_rows = int(numpy.floor(
                numpy.sqrt(this_num_heights)))

            _, these_axes_objects = radar_plotting.plot_3d_grid_without_coords(
                field_matrix=numpy.flip(this_radar_matrix[i, ..., j], axis=0),
                field_name=radar_field_names[j],
                grid_point_heights_metres=radar_heights_m_agl,
                ground_relative=True,
                num_panel_rows=this_num_panel_rows,
                font_size=FONT_SIZE_SANS_COLOUR_BARS)

            this_colour_map_object, this_colour_norm_object = (
                radar_plotting.get_default_colour_scheme(radar_field_names[j]))

            plotting_utils.add_colour_bar(
                axes_object_or_list=these_axes_objects,
                values_to_colour=this_radar_matrix[i, ..., j],
                colour_map=this_colour_map_object,
                colour_norm_object=this_colour_norm_object,
                orientation='horizontal',
                extend_min=True,
                extend_max=True)

            this_title_string = '{0:s}; {1:s}'.format(this_base_title_string,
                                                      radar_field_names[j])
            this_file_name = '{0:s}_{1:s}.jpg'.format(
                this_base_file_name, radar_field_names[j].replace('_', '-'))

            pyplot.suptitle(this_title_string, fontsize=TITLE_FONT_SIZE)
            print 'Saving figure to: "{0:s}"...'.format(this_file_name)
            pyplot.savefig(this_file_name, dpi=FIGURE_RESOLUTION_DPI)
            pyplot.close()
def _plot_3d_radar_difference(difference_matrix,
                              colour_map_object,
                              max_colour_percentile,
                              model_metadata_dict,
                              backwards_opt_dict,
                              output_dir_name,
                              example_index=None,
                              significance_matrix=None):
    """Plots difference (after minus before optimization) for 3-D radar data.

    M = number of rows in spatial grid
    N = number of columns in spatial grid
    H = number of heights in spatial grid
    F = number of fields

    :param difference_matrix: M-by-N-by-H-by-F numpy array of differences (after
        minus before optimization).
    :param colour_map_object: See documentation at top of file.
    :param max_colour_percentile: Same.
    :param model_metadata_dict: Dictionary returned by
        `cnn.read_model_metadata`.
    :param backwards_opt_dict: Dictionary returned by
        `backwards_optimization.read_standard_file` or
        `backwards_optimization.read_pmm_file`, containing metadata.
    :param output_dir_name: Name of output directory.  Figure(s) will be saved
        here.
    :param example_index: This method will plot only the [i]th example, where
        i = `example_index`.  This will be used to find metadata for the given
        example in `backwards_opt_dict`.  If `backwards_opt_dict` contains PMM
        (probability-matched means), leave this argument alone.
    :param significance_matrix: M-by-N-by-H-by-F numpy array of Boolean flags,
        indicating where these differences are significantly different than
        differences from another backwards optimization.
    """

    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    radar_heights_m_agl = training_option_dict[trainval_io.RADAR_HEIGHTS_KEY]
    num_heights = len(radar_heights_m_agl)

    num_panel_rows = int(numpy.floor(numpy.sqrt(num_heights)))

    pmm_flag = backwards_opt.MEAN_FINAL_ACTIVATION_KEY in backwards_opt_dict
    if pmm_flag:
        initial_activation = backwards_opt_dict[
            backwards_opt.MEAN_INITIAL_ACTIVATION_KEY]
        final_activation = backwards_opt_dict[
            backwards_opt.MEAN_FINAL_ACTIVATION_KEY]

        full_storm_id_string = None
        storm_time_string = None
    else:
        initial_activation = backwards_opt_dict[
            backwards_opt.INITIAL_ACTIVATIONS_KEY][example_index]
        final_activation = backwards_opt_dict[
            backwards_opt.FINAL_ACTIVATIONS_KEY][example_index]

        full_storm_id_string = backwards_opt_dict[
            backwards_opt.FULL_IDS_KEY][example_index]

        storm_time_string = time_conversion.unix_sec_to_string(
            backwards_opt_dict[backwards_opt.STORM_TIMES_KEY][example_index],
            plot_input_examples.TIME_FORMAT)

    conv_2d3d = model_metadata_dict[cnn.CONV_2D3D_KEY]
    if conv_2d3d:
        radar_field_names = [radar_utils.REFL_NAME]
    else:
        radar_field_names = training_option_dict[trainval_io.RADAR_FIELDS_KEY]

    num_fields = len(radar_field_names)

    for j in range(num_fields):
        this_max_colour_value = numpy.percentile(
            numpy.absolute(difference_matrix[..., j]), max_colour_percentile)

        this_colour_norm_object = matplotlib.colors.Normalize(
            vmin=-1 * this_max_colour_value,
            vmax=this_max_colour_value,
            clip=False)

        # TODO(thunderhoser): Deal with change of units.
        this_figure_object, this_axes_object_matrix = (
            radar_plotting.plot_3d_grid_without_coords(
                field_matrix=numpy.flip(difference_matrix[..., j], axis=0),
                field_name=radar_field_names[j],
                grid_point_heights_metres=radar_heights_m_agl,
                ground_relative=True,
                num_panel_rows=num_panel_rows,
                font_size=FONT_SIZE_SANS_COLOUR_BARS,
                colour_map_object=colour_map_object,
                colour_norm_object=this_colour_norm_object))

        if significance_matrix is not None:
            this_matrix = numpy.flip(significance_matrix[..., j], axis=0)

            significance_plotting.plot_many_2d_grids_without_coords(
                significance_matrix=this_matrix,
                axes_object_matrix=this_axes_object_matrix)

        plotting_utils.plot_colour_bar(
            axes_object_or_matrix=this_axes_object_matrix,
            data_matrix=difference_matrix[..., j],
            colour_map_object=colour_map_object,
            colour_norm_object=this_colour_norm_object,
            orientation_string='horizontal',
            extend_min=True,
            extend_max=True)

        if pmm_flag:
            this_title_string = 'PMM'
        else:
            this_title_string = 'Storm "{0:s}" at {1:s}'.format(
                full_storm_id_string, storm_time_string)

        this_title_string += (
            '; {0:s}; activation from {1:.2e} to {2:.2e}').format(
                radar_field_names[j], initial_activation, final_activation)

        this_figure_object.suptitle(this_title_string,
                                    fontsize=TITLE_FONT_SIZE)

        this_file_name = plot_input_examples.metadata_to_radar_fig_file_name(
            output_dir_name=output_dir_name,
            pmm_flag=pmm_flag,
            full_storm_id_string=full_storm_id_string,
            storm_time_string=storm_time_string,
            radar_field_name=radar_field_names[j])

        print('Saving figure to: "{0:s}"...'.format(this_file_name))
        this_figure_object.savefig(this_file_name,
                                   dpi=FIGURE_RESOLUTION_DPI,
                                   pad_inches=0,
                                   bbox_inches='tight')
        pyplot.close(this_figure_object)