Beispiel #1
0
    def get_stats(self):

        if self.mode in [0, 3, 5]:

            slope_A, intercept_A, r_value_A, p_value_A, std_err_A = \
             stats.linregress(self.fitter._f[self.selection_A], self.exA)
            slope_B, intercept_B, r_value_B, p_value_B, std_err_B = \
             stats.linregress(self.fitter._f[self.selection_B], self.exB)

            R2_A = r_value_A**2
            R2_B = r_value_B**2

            return R2_A, R2_B

        elif self.mode in [1, 4, 6, 7]:

            ### Selection A Energy
            slope_A_E, intercept_A_E, r_value_A_E, p_value_A_E, std_err_A_E = \
             stats.linregress(self.fitter._f[self.selection_A,0], self.exA[:,0])
            ### Selection A Entropy
            slope_A_S, intercept_A_S, r_value_A_S, p_value_A_S, std_err_A_S = \
             stats.linregress(self.fitter._f[self.selection_A,1], self.exA[:,1])

            ### Selection B Energy
            slope_B_E, intercept_B_E, r_value_B_E, p_value_B_E, std_err_B_E = \
             stats.linregress(self.fitter._f[self.selection_B,0], self.exB[:,0])
            ### Selection B Entropy
            slope_B_S, intercept_B_S, r_value_B_S, p_value_B_S, std_err_B_S = \
             stats.linregress(self.fitter._f[self.selection_B,1], self.exB[:,1])

            R2_A = [r_value_A_E**2, r_value_A_S**2]
            R2_B = [r_value_B_E**2, r_value_B_S**2]

            return R2_A, R2_B

        else:
            mode_error(self.mode)
Beispiel #2
0
    def init_output(self):

        ### Open files for writing
        self.modelparms = open("%sparms.out" % self.prefix, "w")
        self.modelprediction = open("%sprediction.out" % self.prefix, "w")
        self.modeldiff = open("%sdiff.out" % self.prefix, "w")

        now = datetime.datetime.now()

        ### Start to write the headers
        ### The modelparms file
        self.modelparms.write(
            "### File containing parameters of the functionals.\n")
        self.modelparms.write("### Written by gips.\n")
        self.modelparms.write("### Time: %s\n" %
                              now.strftime("%Y-%m-%d %H:%M"))
        self.modelparms.write("### Hostname: %s\n" % socket.gethostname())
        self.modelparms.write(
            "### The entropy contribution to free energy is calculated at 300 K\n"
        )
        if isinstance(self.optparms, dict):
            for key, value in self.optparms.items():
                self.modelparms.write("### %s: %s\n" % (key, value))
        self.modelparms.write("###\n")
        self.modelparms.write("### Step ")
        if self.parms == 6:
            self.modelparms.write("E_aff[kcal/mol] ")
        elif self.parms == 5:
            self.modelparms.write("Aff[kcal/mol] ")
        if self.mode == 7:
            if not self.pairs:
                self.modelparms.write("e_co(Rec)[kcal/mol] ")
            self.modelparms.write("e_co(Cplx)[kcal/mol] ")
            self.modelparms.write("e_co(Lig)[kcal/mol] ")
        else:
            self.modelparms.write("e_co[kcal/mol] ")
        if self.parms == 6:
            self.modelparms.write("S_aff[kcal/mol] ")
        if self.mode == 7:
            if not self.pairs:
                self.modelparms.write("s_co(Rec)[kcal/mol] ")
            self.modelparms.write("s_co(Cplx)[kcal/mol] ")
            self.modelparms.write("s_co(Lig)[kcal/mol] ")
        else:
            self.modelparms.write("s_co[kcal/mol] ")
        if self.mode in [5, 6, 7]:
            if not self.pairs:
                self.modelparms.write("g_co(Rec)[1/Ang^3] ")
            self.modelparms.write("g_co(Cplx)[1/Ang^3] ")
            self.modelparms.write("g_co(Lig)[1/Ang^3] ")
        else:
            self.modelparms.write("g_co[1/Ang^3] ")
        if self.mode in [0, 3, 5]:
            self.modelparms.write("C[kcal/mol] ")
        elif self.mode in [1, 4, 6, 7]:
            self.modelparms.write("C_E[kcal/mol] ")
            self.modelparms.write("C_S[kcal/mol] ")
        else:
            mode_error(self.mode)
        self.modelparms.write("SSE[kcal^2/mol^2](A) ")
        self.modelparms.write("SSE[kcal^2/mol^2](B) ")
        self.modelparms.write("R2(A) ")
        self.modelparms.write("R2(B) ")
        self.modelparms.write("rmsd[kcal/mol](A) ")
        self.modelparms.write("rmsd[kcal/mol](B) ")
        self.modelparms.write("\n")

        ### The model prediction file
        self.modelprediction.write(
            "### File containing predicted values of the model.\n")
        self.modelprediction.write("### Written by gips.\n")
        self.modelprediction.write("### Time: %s\n" %
                                   now.strftime("%Y-%m-%d %H:%M"))
        self.modelprediction.write("### Hostname: %s\n" % socket.gethostname())
        self.modelprediction.write("### All units in [kcal/mol]\n")
        if isinstance(self.optparms, dict):
            for key, value in self.optparms.items():
                self.modelprediction.write("### %s: %s\n" % (key, value))
        self.modelprediction.write("###\n")
        self.modelprediction.write("### Model values.\n")
        self.modelprediction.write("### All values in [kcal/mol].\n")
        if self.mode in [1, 4, 6, 7]:
            if self.fitter.decomp_E:
                self.modelprediction.write(
                    "### First row for each step is free energy, second row is energy.\n"
                )
            elif self.fitter.decomp_S:
                self.modelprediction.write(
                    "### First row for each step is free energy, second row is entropy.\n"
                )
            else:
                self.modelprediction.write(
                    "### First row for each step is energy, second row is entropy.\n"
                )
        self.modelprediction.write("#Title ")
        for name in self.fitter.name:
            self.modelprediction.write("%s " % name)
        self.modelprediction.write("\n")
        self.modelprediction.write("#Selection ")
        for i, name in enumerate(self.fitter.name):
            if i in self.selection_A:
                self.modelprediction.write("A ")
            elif i in self.selection_B:
                self.modelprediction.write("B ")
            else:
                raise KeyError(
                    "name=%s not found in selection A or selection B." % name)
        self.modelprediction.write("\n")
        if self.mode in [0, 3, 5]:
            self.modelprediction.write("-1 ")
            for value in self.fitter._exp_data:
                self.modelprediction.write("%6.3f " % value)
        elif self.mode in [1, 4, 6, 7]:
            self.modelprediction.write("-1 ")
            for value in self.fitter._exp_data[:, 0]:
                self.modelprediction.write("%6.3f " % value)
            self.modelprediction.write("\n")
            self.modelprediction.write("-1 ")
            for value in self.fitter._exp_data[:, 1]:
                self.modelprediction.write("%6.3f " % value)
        else:
            mode_error(self.mode)
        self.modelprediction.write("\n")

        ### The model-experiment difference file
        self.modeldiff.write(
            "### File containing differecnes between predicted and experimental values.\n"
        )
        self.modeldiff.write("### Written by gips.\n")
        self.modeldiff.write("### Time: %s\n" % now.strftime("%Y-%m-%d %H:%M"))
        self.modeldiff.write("### Hostname: %s\n" % socket.gethostname())
        self.modeldiff.write("### All units in [kcal/mol]\n")
        if isinstance(self.optparms, dict):
            for key, value in self.optparms.items():
                self.modeldiff.write("### %s: %s\n" % (key, value))
        self.modeldiff.write("###\n")
        self.modeldiff.write("### Model-Exp difference.\n")
        self.modeldiff.write("### All values in [kcal/mol].\n")
        if self.mode in [1, 4, 6, 7]:
            if self.fitter.decomp_E:
                self.modelprediction.write(
                    "### First row for each step is free energy energy, second row is energy.\n"
                )
            elif self.fitter.decomp_S:
                self.modelprediction.write(
                    "### First row for each step is free energy energy, second row is entropy.\n"
                )
            else:
                self.modelprediction.write(
                    "### First row for each step is energy, second row is entropy.\n"
                )
        self.modeldiff.write("Title ")

        for name in self.fitter.name:
            self.modeldiff.write("%s " % name)
        self.modeldiff.write("\n")
        self.modeldiff.write("# Selection ")
        for i, name in enumerate(self.fitter.name):
            if i in self.selection_A:
                self.modeldiff.write("A ")
            elif i in self.selection_B:
                self.modeldiff.write("B ")
            else:
                raise KeyError(
                    "name=%s not found in selection A or selection B." % name)
        self.modeldiff.write("\n")

        ### Flush file contents to disk
        self.modelparms.flush()
        self.modelprediction.flush()
        self.modeldiff.flush()
Beispiel #3
0
    def finish(self):

        if self.optimizer == "brute":
            self.modelparms.write("\n")
            self.modelprediction.write("\n")
            self.modeldiff.write("\n")

            self.modelparms.close()
            self.modelprediction.close()
            self.modeldiff.close()

            return 1

        self.x = np.array(self.x)
        self.f_A = np.array(self.f_A)
        self.rmsd_A = np.array(self.rmsd_A)
        self.f_B = np.array(self.f_B)
        self.rmsd_B = np.array(self.rmsd_B)

        self.R2_A = np.array(self.R2_A)
        self.R2_B = np.array(self.R2_B)

        ### Write out best result for selection A
        ### -------------------------------------

        if self.fitter.decomp:
            ### ndf (list of 1D NumPy int array): the non-dominated fronts
            ### dl  (list of 1D NumPy int array): the domination list
            ### dc  (1D NumPy int array)        : the domination count
            ### ndr (1D NumPy int array)        : the non-domination ranks
            ndf, dl, dc, ndr = pygmo.fast_non_dominated_sorting(self.f_A)
            ax_A = pygmo.plot_non_dominated_fronts(self.f_A)
            ax_A.figure.savefig("%spareto.selectionA.png" % self.prefix,
                                dpi=1000)
            ax_A.figure.clear("all")

            ordered_ndf = list()
            for front in ndf:
                ordered_ndf.append(pygmo.sort_population_mo(self.f_A[front]))
        else:
            ordered_ndf = np.argsort(self.f_A, axis=0)

        self.modelparms.write("### Best result (A)\n")
        self.modelprediction.write("### Best result (A)\n")
        self.modeldiff.write("### Best result (A)\n")

        for front_count, front in enumerate(ordered_ndf):
            for solution_i in front:

                step = self.step[solution_i]
                x = self.x[solution_i]
                f_A = self.f_A[solution_i]
                f_B = self.f_B[solution_i]
                rmsd_A = self.rmsd_A[solution_i]
                rmsd_B = self.rmsd_B[solution_i]
                R2_A = self.R2_A[solution_i]
                R2_B = self.R2_B[solution_i]

                self.modelparms.write("%d/%d " % (step, front_count))
                self.modelprediction.write("%d/%d " % (step, front_count))
                self.modeldiff.write("%d/%d " % (step, front_count))

                self.fitter.gist_functional(x)
                self.fitter._f_process(x)

                if self.mode in [0, 3, 5]:
                    for i in self.parmidx:
                        self.modelparms.write("%6.3f " % x[i])
                    self.modelparms.write("%6.3f " % f_A[0])
                    self.modelparms.write("%6.3f " % f_B[0])
                    self.modelparms.write("%6.3f " % R2_A)
                    self.modelparms.write("%6.3f " % R2_B)
                    self.modelparms.write("%6.3f " % rmsd_A)
                    self.modelparms.write("%6.3f " % rmsd_B)

                elif self.mode in [1, 4, 6, 7]:
                    ### Energy Output
                    for i in self.parmidx:
                        self.modelparms.write("%6.3f " % x[i])
                    self.modelparms.write("%6.3f " % f_A[0])
                    self.modelparms.write("%6.3f " % f_B[0])
                    self.modelparms.write("%6.3f " % R2_A[0])
                    self.modelparms.write("%6.3f " % R2_B[0])
                    self.modelparms.write("%6.3f " % rmsd_A[0])
                    self.modelparms.write("%6.3f " % rmsd_B[0])
                    self.modelparms.write("\n")

                    ### Entropy Output
                    self.modelparms.write("%d/%d " % (step, front_count))
                    for i in self.parmidx:
                        self.modelparms.write("%6.3f " % x[i])
                    self.modelparms.write("%6.3f " % f_A[1])
                    self.modelparms.write("%6.3f " % f_B[1])
                    self.modelparms.write("%6.3f " % R2_A[1])
                    self.modelparms.write("%6.3f " % R2_B[1])
                    self.modelparms.write("%6.3f " % rmsd_A[1])
                    self.modelparms.write("%6.3f " % rmsd_B[1])

                else:
                    mode_error(self.mode)

                if self.mode in [0, 3, 5]:
                    for i in range(self.N_len):
                        self.modelprediction.write("%6.3f " %
                                                   self.fitter._f[i])
                        diff = self.fitter._exp_data[i] - self.fitter._f[i]
                        self.modeldiff.write("%6.3f " % diff)
                elif self.mode in [1, 4, 6, 7]:
                    for i in range(self.N_len):
                        self.modelprediction.write("%6.3f " %
                                                   self.fitter._f[i, 0])
                        diff = self.fitter._exp_data[i, 0] - self.fitter._f[i,
                                                                            0]
                        self.modeldiff.write("%6.3f " % diff)
                    self.modelprediction.write("\n")
                    self.modelprediction.write("%d/%d " % (step, front_count))
                    self.modeldiff.write("\n")
                    self.modeldiff.write("%d/%d " % (step, front_count))
                    for i in range(self.N_len):
                        self.modelprediction.write("%6.3f " %
                                                   self.fitter._f[i, 1])
                        diff = self.fitter._exp_data[i, 1] - self.fitter._f[i,
                                                                            1]
                        self.modeldiff.write("%6.3f " % diff)
                else:
                    mode_error(self.mode)

                self.modelparms.write("\n")
                self.modelprediction.write("\n")
                self.modeldiff.write("\n")

        self.modelparms.write("\n")
        self.modelprediction.write("\n")
        self.modeldiff.write("\n")

        self.modelparms.close()
        self.modelprediction.close()
        self.modeldiff.close()
Beispiel #4
0
    def flush(self):

        self.modelparms.write("%d " % self.step[-1])
        self.modelprediction.write("%d " % self.step[-1])
        self.modeldiff.write("%d " % self.step[-1])

        if self.mode in [0, 3, 5]:
            for i in self.parmidx:
                self.modelparms.write("%6.3f " % self.x[-1][i])
            self.modelparms.write("%6.3f " % self.f_A[-1][0])
            self.modelparms.write("%6.3f " % self.f_B[-1][0])
            self.modelparms.write("%6.3f " % self.R2_A[-1])
            self.modelparms.write("%6.3f " % self.R2_B[-1])
            self.modelparms.write("%6.3f " % self.rmsd_A[-1])
            self.modelparms.write("%6.3f " % self.rmsd_B[-1])

        elif self.mode in [1, 4, 6, 7]:
            ### Energy Output
            for i in self.parmidx:
                self.modelparms.write("%6.3f " % self.x[-1][i])
            self.modelparms.write("%6.3f " % self.f_A[-1][0])
            self.modelparms.write("%6.3f " % self.f_B[-1][0])
            self.modelparms.write("%6.3f " % self.R2_A[-1][0])
            self.modelparms.write("%6.3f " % self.R2_B[-1][0])
            self.modelparms.write("%6.3f " % self.rmsd_A[-1][0])
            self.modelparms.write("%6.3f " % self.rmsd_B[-1][0])
            self.modelparms.write("\n")

            ### Entropy Output
            self.modelparms.write("%d " % self.step[-1])
            for i in self.parmidx:
                self.modelparms.write("%6.3f " % self.x[-1][i])
            self.modelparms.write("%6.3f " % self.f_A[-1][1])
            self.modelparms.write("%6.3f " % self.f_B[-1][1])
            ### Note: This line is different then the one in energy output
            self.modelparms.write("%6.3f " % self.R2_A[-1][1])
            self.modelparms.write("%6.3f " % self.R2_B[-1][1])
            self.modelparms.write("%6.3f " % self.rmsd_A[-1][1])
            self.modelparms.write("%6.3f " % self.rmsd_B[-1][1])
        else:
            mode_error(self.mode)

        if self.mode in [0, 3, 5]:
            for i in range(self.N_len):
                self.modelprediction.write("%6.3f " % self.fitter._f[i])
                diff = self.fitter._exp_data[i] - self.fitter._f[i]
                self.modeldiff.write("%6.3f " % diff)
        elif self.mode in [1, 4, 6, 7]:
            for i in range(self.N_len):
                self.modelprediction.write("%6.3f " % self.fitter._f[i, 0])
                diff = self.fitter._exp_data[i, 0] - self.fitter._f[i, 0]
                self.modeldiff.write("%6.3f " % diff)
            self.modelprediction.write("\n")
            self.modelprediction.write("%d " % self.step[-1])
            self.modeldiff.write("\n")
            self.modeldiff.write("%d " % self.step[-1])
            for i in range(self.N_len):
                self.modelprediction.write("%6.3f " % self.fitter._f[i, 1])
                diff = self.fitter._exp_data[i, 1] - self.fitter._f[i, 1]
                self.modeldiff.write("%6.3f " % diff)
        else:
            mode_error(self.mode)

        self.modelparms.write("\n")
        self.modelprediction.write("\n")
        self.modeldiff.write("\n")

        self.modelparms.flush()
        self.modelprediction.flush()
        self.modeldiff.flush()
Beispiel #5
0
    def __init__(self,
                 fitter,
                 mode=0,
                 optimizer="basinhopping",
                 optparms=None,
                 selection_A=None,
                 selection_B=None,
                 prefix=None,
                 verbose=False):

        self.fitter = fitter
        self.mode = mode
        self.optimizer = optimizer
        self.optparms = optparms
        self.selection_A = selection_A
        self.selection_B = selection_B
        self.prefix = prefix
        self.verbose = verbose

        self.len_A = len(self.selection_A)
        self.len_B = len(self.selection_B)

        self.pairs = fitter.pairs
        self.parms = fitter.parms

        if self.pairs:
            self.N_len = self.fitter.N_pairs
        else:
            self.N_len = self.fitter.N_case

        if self.mode == 0:
            self.parmidx = range(self.parms)
        elif self.mode == 1:
            self.parmidx = range(self.parms + 1)
        elif self.mode == 3:
            self.parmidx = range(self.parms)
        elif self.mode == 4:
            self.parmidx = range(self.parms + 1)
        elif self.mode == 5:
            if self.pairs:
                self.parmidx = range(self.parms + 1)
            else:
                self.parmidx = range(self.parms + 2)
        elif self.mode == 6:
            if self.pairs:
                self.parmidx = range(self.parms + 2)
            else:
                self.parmidx = range(self.parms + 3)
        elif self.mode == 7:
            if self.pairs:
                self.parmidx = range(self.parms + 4)
            else:
                self.parmidx = range(self.parms + 7)
        else:
            mode_error(self.mode)

        if prefix == None:
            prefix = ""
        elif type(prefix) != str:
            raise TypeError("prefix must be of type str, but is of type %s" %
                            type(prefix))

        self.exA = self.fitter._exp_data[self.selection_A]
        self.exB = self.fitter._exp_data[self.selection_B]

        self.x = list()
        self.f_A = list()
        self.f_B = list()
        self.rmsd_A = list()
        self.rmsd_B = list()
        self.step = list()
        self.R2_A = list()
        self.R2_B = list()

        self.__counter = 0

        self.init_output()
Beispiel #6
0
def decomposition(gdatarec_lib,
                  gdata_lib,
                  mode,
                  parms=6,
                  pairs=True,
                  parmsfile=None,
                  frag_file=None,
                  map_file=None,
                  radiusadd=[0., 3.],
                  softness=1.,
                  softcut=2.,
                  pairfile=None,
                  exclude=None,
                  paircut=0.0,
                  prefix=None,
                  scaling=2.0,
                  verbose=False):

    if verbose:
        print "Start mapout procedure with"
        print "mode      = %d" % mode
        print "softness  = %6.3f" % softness
        print "softcut   = %6.3f" % softcut
        print "parmsfile = %s" % parmsfile

    if verbose:
        print "Organizing and preparing data ..."

    mode_dict = dict()
    mode_dict = {
        0: mode0,
        1: mode1,
        3: mode3,
        4: mode4,
        5: mode5,
        6: mode6,
        7: mode7
    }

    if mode in mode_dict.keys():
        fitmode = mode_dict[mode]
    else:
        mode_error(mode)

    has_cplxlig = True
    if mode in [0, 1]:
        has_cplxlig = False

    fitter = fitmode(gdatarec_lib,
                     gdata_lib,
                     parms=parms,
                     pairs=False,
                     radiusadd=radiusadd,
                     softness=softness,
                     softcut=softcut,
                     scaling=scaling,
                     verbose=verbose)

    parmdict = read_parmsfile(parmsfile)

    ### Find position of SES in parms file
    A_SSE = -1
    B_SSE = -1
    for i, entry in enumerate(parmdict["header"]):
        if entry.startswith("SSE"):
            if entry.endswith("(A)"):
                A_SSE = i
            elif entry.endswith("(B)"):
                B_SSE = i

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Find the best Candidate Solutions ###
    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###

    ### Collect all the solution candiates
    N_entries = len(parmdict.keys()) - 1

    A_list = list()
    B_list = list()
    x_list = list()
    A_list_tmp = list()
    B_list_tmp = list()
    x_list_tmp = list()

    for key, value in parmdict.items():
        if key == "header":
            continue
        A_list_tmp.append(value[A_SSE])
        B_list_tmp.append(value[B_SSE])
        x_list_tmp.append(value[:fitter._parms])

    if fitter.decomp:
        N_entries = N_entries / 2
        for i in range(N_entries):
            A_list.append([
                copy.copy(A_list_tmp[2 * i]),
                copy.copy(A_list_tmp[2 * i + 1])
            ])
            B_list.append([
                copy.copy(B_list_tmp[2 * i]),
                copy.copy(B_list_tmp[2 * i + 1])
            ])
            x_list.append(copy.copy(x_list_tmp[2 * i]))
    else:
        A_list = copy.copy(A_list_tmp)
        B_list = copy.copy(B_list_tmp)
        x_list = copy.copy(x_list_tmp)

    A_list = np.array(A_list)
    B_list = np.array(B_list)

    ### Find the best candidate solution
    if fitter.decomp:
        ndf, dl, dc, ndr = pygmo.fast_non_dominated_sorting(A_list)
        ordered_ndf = list()
        for front in ndf:
            ordered_ndf.append(pygmo.sort_population_mo(A_list[front]))

    else:
        ordered_ndf = np.argsort(A_list, axis=0)

    if fitter.decomp:
        best_x_A = np.array(x_list[ordered_ndf[0][0]])
    else:
        best_x_A = np.array(x_list[ordered_ndf[0]])

    ### ~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Prepare Exclusion List ###
    ### ~~~~~~~~~~~~~~~~~~~~~~ ###

    if exclude != None \
    and exclude != "":
        exclude_list = list()
        with open(exclude, "r") as fopen:
            for line in fopen:
                l = line.rstrip().lstrip().split()
                if len(l) == 0:
                    continue
                if l[0].startswith("#"):
                    continue
                for s in l:
                    exclude_list.append(s)
    else:
        exclude_list = list()

    ### ~~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Prepare Pairise Fitting ###
    ### ~~~~~~~~~~~~~~~~~~~~~~~ ###

    if pairs:
        if pairfile != None \
        and pairfile != "":
            if type(pairfile) != str:
                raise TypeError(
                    "The path to pairfile must be of type str, but is of type %s"
                    % type(pairfile))
            pairlist = read_pairsfile(pairfile, paircut)

            pairlist_idx = list()
            for pair in pairlist:
                for i in range(fitter.N_case):
                    case1 = fitter.select[i]
                    name1 = fitter.name[case1]
                    if name1 in exclude_list:
                        continue
                    for j in range(fitter.N_case):
                        if j <= i:
                            continue
                        case2 = fitter.select[j]
                        name2 = fitter.name[case2]
                        if name2 in exclude_list:
                            continue
                        if name1==pair[0] \
                        and name2==pair[1]:
                            pairlist_idx.append([case1, case2])
                        elif name1==pair[1] \
                        and name2==pair[0]:
                            pairlist_idx.append([case2, case1])

        else:
            pairlist = None
            pairlist_idx = list()
            for i in range(fitter.N_case):
                name1 = fitter.name[i]
                if name1 in exclude_list:
                    continue
                for j in range(fitter.N_case):
                    if j <= i:
                        continue
                    name2 = fitter.name[j]
                    if name2 in exclude_list:
                        continue
                    pairlist_idx.append([i, j])

    else:
        pairlist = None
        pairlist_idx = None

    ### ~~~~~~~~~~~~~~~~~ ###
    ### Build the Library ###
    ### ~~~~~~~~~~~~~~~~~ ###

    has_extlib = False
    ### Check for external mapping files
    if frag_file != None \
    and frag_file != "":
        has_extlib = True
        ext_frag = list()
        ext_frag_name = list()
        with open(frag_file, "r") as fopen:
            for line in fopen:
                l = line.rstrip().lstrip().split()
                if len(l) == 0:
                    continue
                if l[0].startswith("#"):
                    continue
                ext_frag.append(Chem.MolFromSmiles(l[1]))
                ext_frag_name.append(l[0])
    else:
        ext_frag = None
        ext_frag_name = None

    if map_file != None \
    and map_file != "":
        ext_map_frag = list()
        ext_map_inds = list()
        ext_map_name = list()
        with open(map_file, "r") as fopen:
            for line in fopen:
                l = line.rstrip().lstrip().split()
                if len(l) == 0:
                    continue
                if l[0].startswith("#"):
                    continue
                ext_map_name.append(l[0])
                ext_map_frag.append(list())
                ext_map_inds.append(list())
                ids_list = l[1].split(",")
                if len(ids_list) == 1:
                    if ids_list[0] == "-1":
                        continue
                for i in ids_list:
                    ext_map_frag[-1].append(int(i))
                for s in l[2:]:
                    ext_map_inds[-1].append(list())
                    for i in s.split(","):
                        ext_map_inds[-1][-1].append(int(i))
    else:
        ext_map_frag = None
        ext_map_inds = None
        ext_map_name = None


    if ext_frag==None \
    and ext_map_frag!=None:
        raise IOError("Must provide both, frag_file and map_file.")

    if ext_frag!=None \
    and ext_map_frag==None:
        raise IOError("Must provide both, frag_file and map_file.")

    if has_extlib:
        mol2extmol = list()
        #frag2extfrag = list()
        if has_cplxlig:
            mol2extmol_cplx = list()
            #frag2extfrag_cplx = list()
            mol2extmol_lig = list()
            #frag2extfrag_lig  = list()

    if verbose:
        "Starting fragment decomposition..."
    RAND = np.random.randint(9999)
    frag_lib = frag_library()
    if has_cplxlig:
        frag_lib_cplx = frag_library()
        frag_lib_lig = frag_library()
    progs = aux_progs(verbose)
    for case in range(fitter.N_case):

        valid_poses = np.where(fitter.ind_case == case)[0]
        name = fitter.name[case]

        for pose in valid_poses:
            pmd_instance = fitter.pdat[pose]

            pmd_instance.save("p%d.mol2" % RAND)

            args = "-i p%d.mol2 -fi mol2 -o p%d_sybyl.mol2 -fo mol2 -at sybyl -pf y -dr no" % (
                RAND, RAND)
            progs.call(progs.ante_exe, args)

            mol = Chem.MolFromMol2File("p%d_sybyl.mol2" % RAND, removeHs=False)

            if verbose:
                AllChem.Compute2DCoords(mol)

            if has_extlib:
                index = ext_map_name.index(name)
                frag_list = list()
                for frag_id in ext_map_frag[index]:
                    frag_list.append(ext_frag[frag_id])
                    ### If we have an external library with mappings
                    ### we must do the refinement manually!
                mol2extmol.append(index)
            else:
                frag_list = get_frag_list(mol)

            frag_lib.add_frag_list(frag_list, mol)

            os.remove("p%d.mol2" % RAND)
            os.remove("p%d_sybyl.mol2" % RAND)

        if has_cplxlig:

            valid_poses_cplx = np.where(fitter.ind_case_cplx == case)[0]
            valid_poses_lig = np.where(fitter.ind_case_lig == case)[0]

            for pose in valid_poses_cplx:
                pmd_instance = fitter.pdat_cplx[pose]

                pmd_instance.save("p%d.mol2" % RAND)

                args = "-i p%d.mol2 -fi mol2 -o p%d_sybyl.mol2 -fo mol2 -at sybyl -pf y -dr no" % (
                    RAND, RAND)
                progs.call(progs.ante_exe, args)

                mol = Chem.MolFromMol2File("p%d_sybyl.mol2" % RAND,
                                           removeHs=False)

                if verbose:
                    AllChem.Compute2DCoords(mol)

                if has_extlib:
                    index = ext_map_name.index(name)
                    frag_list = list()
                    for frag_id in ext_map_frag[index]:
                        frag_list.append(ext_frag[frag_id])
                        ### If we have an external library with mappings
                        ### we must do the refinement manually!
                    mol2extmol_cplx.append(index)
                else:
                    frag_list = get_frag_list(mol)

                frag_lib_cplx.add_frag_list(frag_list, mol)

                os.remove("p%d.mol2" % RAND)
                os.remove("p%d_sybyl.mol2" % RAND)

            for pose in valid_poses_lig:
                pmd_instance = fitter.pdat_lig[pose]

                pmd_instance.save("p%d.mol2" % RAND)

                args = "-i p%d.mol2 -fi mol2 -o p%d_sybyl.mol2 -fo mol2 -at sybyl -pf y -dr no" % (
                    RAND, RAND)
                progs.call(progs.ante_exe, args)

                mol = Chem.MolFromMol2File("p%d_sybyl.mol2" % RAND,
                                           removeHs=False)

                if verbose:
                    AllChem.Compute2DCoords(mol)

                if has_extlib:
                    index = ext_map_name.index(name)
                    frag_list = list()
                    for frag_id in ext_map_frag[index]:
                        frag_list.append(ext_frag[frag_id])
                        ### If we have an external library with mappings
                        ### we must do the refinement manually!
                    mol2extmol_lig.append(index)
                else:
                    frag_list = get_frag_list(mol)

                frag_lib_lig.add_frag_list(frag_list, mol)

                os.remove("p%d.mol2" % RAND)
                os.remove("p%d_sybyl.mol2" % RAND)

    if has_extlib:
        for frag_id in range(frag_lib.N_frag):
            frag_lib.frag2mol_mapping.append(list())
            for mol_id in frag_lib.frag2mol[frag_id]:

                frag_id_rank = frag_lib.mol2frag[mol_id].index(frag_id)
                ext_mol_id = mol2extmol[mol_id]

                if len(ext_map_inds[ext_mol_id]) == 0:
                    ### If we are here, then the molecule has no fragments.
                    ### The molecule is then treated, as if itself would
                    ### be the fragment
                    mol = frag_lib.mol_list[mol_id]
                    matches = range(mol.GetNumAtoms())
                else:
                    matches = ext_map_inds[ext_mol_id][frag_id_rank]

                frag_lib.frag2mol_mapping[-1].append(matches)

        if has_cplxlig:
            for frag_id in range(frag_lib_cplx.N_frag):
                frag_lib_cplx.frag2mol_mapping.append(list())
                for mol_id in frag_lib_cplx.frag2mol[frag_id]:

                    frag_id_rank = frag_lib_cplx.mol2frag[mol_id].index(
                        frag_id)
                    ext_mol_id = mol2extmol_cplx[mol_id]

                    if len(ext_map_inds[ext_mol_id]) == 0:
                        ### If we are here, then the molecule has no fragments.
                        ### The molecule is then treated, as if itself would
                        ### be the fragment
                        mol = frag_lib_cplx.mol_list[mol_id]
                        matches = range(mol.GetNumAtoms())
                    else:
                        matches = ext_map_inds[ext_mol_id][frag_id_rank]

                    frag_lib_cplx.frag2mol_mapping[-1].append(matches)

            for frag_id in range(frag_lib_lig.N_frag):
                frag_lib_lig.frag2mol_mapping.append(list())
                for mol_id in frag_lib_lig.frag2mol[frag_id]:

                    frag_id_rank = frag_lib_lig.mol2frag[mol_id].index(frag_id)
                    ext_mol_id = mol2extmol_lig[mol_id]

                    if len(ext_map_inds[ext_mol_id]) == 0:
                        ### If we are here, then the molecule has no fragments.
                        ### The molecule is then treated, as if itself would
                        ### be the fragment
                        mol = frag_lib_lig.mol_list[mol_id]
                        matches = range(mol.GetNumAtoms())
                    else:
                        matches = ext_map_inds[ext_mol_id][frag_id_rank]

                    frag_lib_lig.frag2mol_mapping[-1].append(matches)

    else:
        frag_lib.refine()

        if has_cplxlig:
            frag_lib_cplx.refine()
            frag_lib_lig.refine()

    if verbose:
        print "Poses Fragments..."
        for case in range(fitter.N_case):
            name = fitter.name[case]
            valid_poses = np.where(fitter.ind_case == case)[0]
            print name,
            for pose in valid_poses:
                print frag_lib.mol2frag[pose],
            print ""
        frag_lib.draw("pos_")

        if has_cplxlig:
            print "Cplx Fragments..."
            for case in range(fitter.N_case):
                name = fitter.name[case]
                valid_poses = np.where(fitter.ind_case_cplx == case)[0]
                print name,
                for pose in valid_poses:
                    print frag_lib_cplx.mol2frag[pose],
                print ""
            frag_lib_cplx.draw("cplx_")

            print "Lig Fragments..."
            for case in range(fitter.N_case):
                name = fitter.name[case]
                valid_poses = np.where(fitter.ind_case_lig == case)[0]
                print name,
                for pose in valid_poses:
                    print frag_lib_lig.mol2frag[pose],
                print ""
            frag_lib_lig.draw("lig_")

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Calculate the Fragment weightings ###
    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###

    if verbose:
        print "Calculate fragment weightings..."
    ### Constructor for weight_fitting:
    ### def __init__(self, fitter, x, frag_library, prefix=None, verbose=False):
    weight = weight_fitting(fitter, best_x_A, pairs, frag_lib, "pos", verbose)
    weight.process_rec = True
    weight.process_cplx = False
    weight.process_lig = False
    if has_cplxlig:
        weight_cplx = weight_fitting(fitter, best_x_A, pairs, frag_lib_cplx,
                                     "cplx", verbose)
        weight_cplx.process_rec = False
        weight_cplx.process_cplx = True
        weight_cplx.process_lig = False
        weight_lig = weight_fitting(fitter, best_x_A, pairs, frag_lib_lig,
                                    "lig", verbose)
        weight_lig.process_rec = False
        weight_lig.process_cplx = False
        weight_lig.process_lig = True

    ### Make the fragment-based decomposition of the GIST grids
    for case in range(fitter.N_case):
        weight.set_case(case)
        ### Use the internal write routine as a callback for the process routine
        weight.process(weight.simple_weighting)
        if has_cplxlig:
            weight_cplx.set_case(case)
            weight_lig.set_case(case)
            weight_cplx.process(weight_cplx.simple_weighting)
            weight_lig.process(weight_lig.simple_weighting)

    ### Combine the individual poses and get the final
    ### contributions of the fragments
    calc_data = np.zeros((2, fitter.N_case, frag_lib.N_frag), dtype=DOUBLE)
    frag_assign = np.zeros((fitter.N_case, frag_lib.N_frag), dtype=int)
    frag_assign[:] = -1
    if has_cplxlig:
        calc_data_cplx = np.zeros((2, fitter.N_case, frag_lib_cplx.N_frag),
                                  dtype=DOUBLE)
        frag_assign_cplx = np.zeros((fitter.N_case, frag_lib_cplx.N_frag),
                                    dtype=int)
        frag_assign_cplx[:] = -1
        calc_data_lig = np.zeros((2, fitter.N_case, frag_lib_lig.N_frag),
                                 dtype=DOUBLE)
        frag_assign_lig = np.zeros((fitter.N_case, frag_lib_lig.N_frag),
                                   dtype=int)
        frag_assign_lig[:] = -1

    for case in range(fitter.N_case):
        weight.set_case(case)
        _data, _assign = weight.combine()
        calc_data[0, case, :] = np.copy(_data[0])
        calc_data[1, case, :] = np.copy(_data[1])
        frag_assign[case, :] = np.copy(_assign)
        if has_cplxlig:

            weight_cplx.set_case(case)
            _data, _assign = weight_cplx.combine()
            calc_data_cplx[0, case, :] = np.copy(_data[0])
            calc_data_cplx[1, case, :] = np.copy(_data[1])
            frag_assign_cplx[case, :] = np.copy(_assign)

            weight_lig.set_case(case)
            _data, _assign = weight_lig.combine()
            calc_data_lig[0, case, :] = np.copy(_data[0])
            calc_data_lig[1, case, :] = np.copy(_data[1])
            frag_assign_lig[case, :] = np.copy(_assign)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Evaluate the Fragment Properties ###
    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###

    if has_cplxlig:

        case2frag_cplx = np.zeros((fitter.N_case, frag_lib_cplx.N_frag),
                                  dtype=int)
        case2frag_lig = np.zeros((fitter.N_case, frag_lib_lig.N_frag),
                                 dtype=int)
        case2frag_cplx[:] = -1
        case2frag_lig[:] = -1

        for case in range(fitter.N_case):

            valids = np.where(frag_assign[case] > -1)[0]
            valids_cplx = np.where(frag_assign_cplx[case] > -1)[0]
            valids_lig = np.where(frag_assign_lig[case] > -1)[0]

            for frag_id in frag_assign[case, valids]:

                frag_lib.qp.makeDummiesQueries = False
                frag_lib_cplx.qp.makeDummiesQueries = False
                frag_lib_lig.qp.makeDummiesQueries = False

                frag = Chem.AdjustQueryProperties(frag_lib.frag_list[frag_id],\
                                                    frag_lib.qp)

                for frag_id_cplx in frag_assign_cplx[case, valids_cplx]:
                    frag_cplx = Chem.AdjustQueryProperties(frag_lib_cplx.frag_list[frag_id_cplx],\
                                                            frag_lib_cplx.qp)
                    if are_mol_same(frag, frag_cplx, useChirality=True):
                        case2frag_cplx[case, frag_id_cplx] = frag_id
                        break

                for frag_id_lig in frag_assign_lig[case, valids_lig]:
                    frag_lig  = Chem.AdjustQueryProperties(frag_lib_lig.frag_list[frag_id_lig],\
                                                            frag_lib_lig.qp)
                    if are_mol_same(frag, frag_lig, useChirality=True):
                        case2frag_lig[case, frag_id_lig] = frag_id
                        break
Beispiel #7
0
def gistmodel(gdatarec_lib,
              gdata_lib,
              mode,
              parms=6,
              pairs=False,
              decomp_E=False,
              decomp_S=False,
              optimizer='evolution',
              niter=500,
              nmin=1000,
              popsize=50,
              stepsize=0.05,
              verbose=False,
              kforce=100.,
              gradient=False,
              boundary=False,
              radiusadd=[0., 3.],
              boundsfile=None,
              softness=1.,
              softcut=2.,
              pairfile=None,
              exclude=None,
              paircut=0.0,
              shuffle=False,
              ksplit=5,
              ksplitfile=None,
              prefix=None,
              scaling=2.0,
              parmsfile=None):

    if verbose:
        print "Start optimization with"
        print "mode      = %d" % mode
        print "optimizer = %s" % optimizer
        print "niter     = %d" % niter
        print "nmin      = %d" % nmin
        if optimizer == "evolution":
            print "popsize   = %d" % popsize
        print "kforce    = %6.3f" % kforce
        print "gradient  = %s" % gradient
        print "boundary  = %s" % boundary
        print "pairs     = %s" % pairs
        print "decomp_E  = %s" % decomp_E
        print "decomp_S  = %s" % decomp_S
        if pairs:
            print "pairfile  = %s" % pairfile
            print "paircut   = %6.3f" % paircut
        print "softness  = %6.3f" % softness
        print "softcut   = %6.3f" % softcut
        print "shuffle   = %s" % shuffle
        print "ksplit    = %d" % ksplit
        if ksplitfile != None \
        and ksplitfile != "":
            print "Splitfile %s" % ksplitfile
        if exclude != None \
        and exclude != "":
            print "Exclude file %s" % exclude

    optparms = OrderedDict()
    optparms["Niter               "] = niter
    optparms["optimizer           "] = optimizer
    if optimizer == "evolution":
        optparms["Population size     "] = popsize
    elif optimizer == "brute":
        optparms["Stepsize            "] = stepsize
    else:
        optparms["Nmin                "] = nmin
    optparms["k_rstr              "] = kforce
    optparms["Radius add          "] = radiusadd
    optparms["Softness            "] = softness
    optparms["Softcut             "] = softcut
    optparms["Functional          "] = mode
    optparms["Analytic Gradient   "] = gradient
    optparms["Analytic Boundaries "] = boundary
    optparms["Pairs               "] = pairs
    optparms["Scoring             "] = parms
    if boundsfile != None \
    and boundsfile != "":
        optparms["Boundsfile          "] = boundsfile
    else:
        optparms["Boundsfile          "] = "None"
    if pairfile != None \
    and pairfile != "":
        optparms["Pairfile            "] = pairfile
    else:
        optparms["Pairfile            "] = "None"
    optparms["paircut             "] = paircut
    optparms["shuffle             "] = shuffle
    optparms["ksplit              "] = ksplit
    if ksplitfile != None \
    and ksplitfile != "":
        optparms["Splitfile           "] = ksplitfile
    if exclude != None \
    and exclude != "":
        optparms["Exclude file        "] = exclude

    if verbose:
        print "Organizing and preparing data ..."

    mode_dict = dict()
    mode_dict = {
        0: mode0,
        1: mode1,
        3: mode3,
        4: mode4,
        5: mode5,
        6: mode6,
        7: mode7
    }

    if mode in mode_dict.keys():
        fitmode = mode_dict[mode]
    else:
        mode_error(mode)

    if boundsfile != None \
    and boundsfile != "":
        if type(boundsfile) != str:
            raise TypeError(
                "The path to boundsfile must be of type str, but is of type %s"
                % type(boundsfile))
        boundsdict = read_boundsfile(boundsfile)
    else:
        boundsdict = None

    if ksplitfile != None \
    and ksplitfile != "":

        ### We need to know some information about the
        ### data in advance. Therefore, we preload just
        ### the metadata (this should be fast).

        if verbose:
            print "Preloading the gdat lib ..."
        fit_lib = gdat_fit_lib(gdatarec_dict=gdatarec_lib,
                               gdata_dict=gdata_lib,
                               ref_energy=-11.108,
                               mode=mode,
                               radiusadd=radiusadd,
                               softness=softness,
                               softcut=softcut,
                               exclude=None,
                               scaling=scaling,
                               verbose=verbose)

        fit_lib.load_metadata()

        k_groups = list()
        include_list = list()
        exclude_list = list()
        if pairs:
            pairlist = list()
        else:
            pairlist = None
        with open(ksplitfile, "r") as fopen:
            for line in fopen:
                for line in fopen:
                    l = line.rstrip().lstrip().split()
                    if len(l) == 0:
                        continue
                    if l[0].startswith("#"):
                        continue
                    if pairs:
                        pairlist.append([l[0], l[1]])
                        k_groups.append(int(l[2]))
                        include_list.append(l[0])
                        include_list.append(l[1])
                    else:
                        include_list.append(l[0])
                        k_groups.append(int(l[1]))

        for name in fit_lib.name:
            if not name in include_list:
                exclude_list.append(name)

        if ksplit not in k_groups:
            raise ValueError("ksplit %d value is not found in ksplit file.")

        k_groups = np.array(k_groups)

        del fit_lib

    else:

        if pairs:
            if pairfile != None \
            and pairfile != "":
                if type(pairfile) != str:
                    raise TypeError(
                        "The path to pairfile must be of type str, but is of type %s"
                        % type(pairfile))
                pairlist = read_pairsfile(pairfile, paircut)
            else:
                pairlist = None

        else:
            pairlist = None

        if exclude != None \
        and exclude != "":
            exclude_list = list()
            with open(exclude, "r") as fopen:
                for line in fopen:
                    l = line.rstrip().lstrip().split()
                    if len(l) == 0:
                        continue
                    if l[0].startswith("#"):
                        continue
                    for s in l:
                        exclude_list.append(s)
        else:
            exclude_list = None

    fitter = fitmode(gdatarec_lib,
                     gdata_lib,
                     parms=parms,
                     pairs=pairs,
                     radiusadd=radiusadd,
                     softness=softness,
                     softcut=softcut,
                     boundsdict=boundsdict,
                     pairlist=pairlist,
                     exclude=exclude_list,
                     decomp_E=decomp_E,
                     decomp_S=decomp_S,
                     verbose=verbose)

    fitter.anal_boundary = boundary

    if shuffle:
        rand = np.arange(fitter._exp_data.shape[0])
        np.random.shuffle(rand)
        _exp = copy.copy(fitter._exp_data)
        _name = copy.copy(fitter.name)
        for i, r in enumerate(rand):
            fitter._exp_data[i] = _exp[r]
            fitter.name[i] = _name[r]

    if ksplitfile==None \
    or ksplitfile == "":
        if pairs:
            k_groups = generate_ksplits(ksplit, fitter.N_pairs)
        else:
            k_groups = generate_ksplits(ksplit, fitter.N_case)
        ksplitlist = range(ksplit)

    else:
        ksplitlist = [ksplit]
        ### Correct for different list ordering
        ### by swapping indices in k_groups
        if not pairs:
            for k, name in enumerate(include_list):
                i = fitter.name.index(name)
                k_groups[i] = k_groups[k]
        else:
            for k, name in enumerate(pairlist):
                i = fitter.name.index("%s-%s" % (name[0], name[1]))
                k_groups[i] = k_groups[k]

    if parmsfile != None:
        parmdict = read_parmsfile(parmsfile)

    for i in ksplitlist:
        test_group = np.where(k_groups == i)[0]
        train_group = np.where(k_groups != i)[0]

        fitter.set_selection(train_group)
        if not shuffle:
            fitter.set_functional()
        fitter.set_bounds()
        fitter.set_step()
        fitter.set_x0()

        if parmsfile != None:
            _print_fun = print_fun(fitter=fitter,
                                   mode=mode,
                                   optimizer="brute",
                                   optparms=optparms,
                                   selection_A=train_group,
                                   selection_B=test_group,
                                   prefix="k%d." % i + prefix,
                                   verbose=verbose)

            for key, value in parmdict.items():
                if key == "header":
                    continue
                x = np.array(value[:fitter._parms])

                _print_fun(x)
                _print_fun.flush()

        else:
            if verbose:
                print "Start optimization for ksplit=%d ..." % i

            _print_fun = print_fun(fitter=fitter,
                                   mode=mode,
                                   optimizer=optimizer,
                                   optparms=optparms,
                                   selection_A=train_group,
                                   selection_B=test_group,
                                   prefix="k%d." % i + prefix,
                                   verbose=verbose)

            fitter.optimize(niter=niter,
                            nmin=nmin,
                            kforce=kforce,
                            gradient=gradient,
                            print_fun=_print_fun,
                            popsize=popsize,
                            stepsize=stepsize,
                            optimizer=optimizer)

        if verbose:
            print "Generating output ..."

        _print_fun.finish()
Beispiel #8
0
def mapout(gdatarec_lib,
           gdata_lib,
           mode,
           parms=6,
           pairs=False,
           parmsfile=None,
           radiusadd=[0., 3.],
           softness=1.,
           softcut=2.,
           exclude=None,
           prefix=None,
           scaling=2.0,
           verbose=False):

    if verbose:
        print "Start mapout procedure with"
        print "mode      = %d" % mode
        print "softness  = %6.3f" % softness
        print "softcut   = %6.3f" % softcut

    if verbose:
        print "Organizing and preparing data ..."

    mode_dict = dict()
    mode_dict = {
        0: mode0,
        1: mode1,
        3: mode3,
        4: mode4,
        5: mode5,
        6: mode6,
        7: mode7
    }

    if mode in mode_dict.keys():
        fitmode = mode_dict[mode]
    else:
        mode_error(mode)

    fitter = fitmode(gdatarec_lib,
                     gdata_lib,
                     parms=parms,
                     pairs=False,
                     radiusadd=radiusadd,
                     softness=softness,
                     softcut=softcut,
                     scaling=scaling,
                     verbose=verbose)

    ### Find position of SES in parms file
    if parmsfile == None:
        raise IOError("Must provide parmsfile.")
    parmdict = read_parmsfile(parmsfile)

    A_SSE = -1
    B_SSE = -1
    for i, entry in enumerate(parmdict["header"]):
        if entry.startswith("SSE"):
            if entry.endswith("(A)"):
                A_SSE = i
            elif entry.endswith("(B)"):
                B_SSE = i

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Find the best Candidate Solutions ###
    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###

    ### Collect all the solutions
    N_entries = len(parmdict.keys()) - 1

    A_list = list()
    B_list = list()
    x_list = list()
    A_list_tmp = list()
    B_list_tmp = list()
    x_list_tmp = list()

    for key, value in parmdict.items():
        if key == "header":
            continue
        A_list_tmp.append(value[A_SSE])
        B_list_tmp.append(value[B_SSE])
        x_list_tmp.append(value[:fitter._parms])

    if fitter.decomp:
        N_entries = N_entries / 2
        for i in range(N_entries):
            A_list.append([
                copy.copy(A_list_tmp[2 * i]),
                copy.copy(A_list_tmp[2 * i + 1])
            ])
            B_list.append([
                copy.copy(B_list_tmp[2 * i]),
                copy.copy(B_list_tmp[2 * i + 1])
            ])
            x_list.append(copy.copy(x_list_tmp[2 * i]))
    else:
        A_list = copy.copy(A_list_tmp)
        B_list = copy.copy(B_list_tmp)
        x_list = copy.copy(x_list_tmp)

    A_list = np.array(A_list)
    B_list = np.array(B_list)

    ### Find the best solution
    if fitter.decomp:
        ndf, dl, dc, ndr = pygmo.fast_non_dominated_sorting(A_list)
        ordered_ndf = list()
        for front in ndf:
            ordered_ndf.append(pygmo.sort_population_mo(A_list[front]))

    else:
        ordered_ndf = np.argsort(A_list, axis=0)

    if fitter.decomp:
        best_x_A = np.array(x_list[ordered_ndf[0][0]])
    else:
        best_x_A = np.array(x_list[ordered_ndf[0]])

    ### ~~~~~~~~~~~~~~~~~~~~~~ ###
    ### Prepare Exclusion List ###
    ### ~~~~~~~~~~~~~~~~~~~~~~ ###

    if exclude != None \
    and exclude != "":
        exclude_list = list()
        with open(exclude, "r") as fopen:
            for line in fopen:
                l = line.rstrip().lstrip().split()
                if len(l) == 0:
                    continue
                if l[0].startswith("#"):
                    continue
                for s in l:
                    exclude_list.append(s)
    else:
        exclude_list = list()

    ### ~~~~~~~~~~~~~~~~~~ ###
    ### Write out the maps ###
    ### ~~~~~~~~~~~~~~~~~~ ###

    ### Write out un-processed dx grids
    if mode in [0, 1, 2]:
        counter = 0
        for rec_keys in fitter.gdatarec_dict.keys():
            recdict = fitter.gdatarec_dict[rec_keys]
            title = recdict["title"]
            if title == None:
                name = "%d" % counter
            else:
                name = title
            for i in range(len(recdict["receptor"])):
                if recdict["receptor"][i]["gdat"] == None:
                    continue
                write_maps(recdict["receptor"][i]["gdat"],
                           prefix="rec_%s_%d" % (name, i),
                           pymol=True)
            counter += 1

    else:
        counter = 0
        for rec_keys in fitter.gdatarec_dict.keys():
            recdict = fitter.gdatarec_dict[rec_keys]
            title = recdict["title"]
            if title == None:
                name = "%d" % counter
            else:
                name = title
            for i in range(len(recdict["receptor"])):
                if recdict["receptor"][i]["gdat"] == None:
                    continue
                write_maps(recdict["receptor"][i]["gdat"],
                           prefix="rec_%s_%d" % (name, i),
                           pymol=True)
            counter += 1

        counter = 0
        for cplx_keys in fitter.gdata_dict.keys():
            cplxdict = fitter.gdata_dict[cplx_keys]
            if cplxdict["title"] in fitter.exclude:
                continue
            title = cplxdict["title"]
            if title == None:
                name = "%d" % counter
            else:
                name = title
            _N_dict = len(cplxdict["complex"])
            for i in range(_N_dict):
                if cplxdict["complex"][i]["gdat"] == None:
                    continue
                write_maps(cplxdict["complex"][i]["gdat"],
                           prefix="cplx_%s_%d" % (name, i),
                           pymol=True)
            _N_dict = len(cplxdict["ligand"])
            for i in range(_N_dict):
                if cplxdict["ligand"][i]["gdat"] == None:
                    continue
                write_maps(cplxdict["ligand"][i]["gdat"],
                           prefix="lig_%s_%d" % (name, i),
                           pymol=True)
            counter += 1

    ### Write out pre-processed xyz grids
    m = mapout_maps(fitter, best_x_A, pairs, prefix)

    if mode in [0, 1]:
        m.process_rec = True
        m.process_cplx = False
        m.process_lig = False
    else:
        m.process_rec = True
        m.process_cplx = True
        m.process_lig = True

    for case in range(fitter.N_case):
        if fitter.name[case] in exclude_list:
            continue
        m.set_case(case)
        ### Internal write routine as a callback to the process routine
        m.process(m.write)