Beispiel #1
0
def clip_each_feature(rst, shp, feature_id, work, out_basename):
    """
    Clip a raster dataset for each feature in a feature class
    """

    import arcpy
    import os

    from glass.cpu.arcg.lyr import feat_lyr
    from glass.cpu.arcg.lyr import rst_lyr
    from glass.cpu.arcg.anls.exct import select_by_attr
    from glass.oss.ops import create_folder

    # ########### #
    # Environment #
    # ########### #
    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = work

    # ###### #
    # Do it! #
    # ###### #
    # Open feature class
    lyr_shp = feat_lyr(shp)
    lyr_rst = rst_lyr(rst)

    # Create folder for some temporary files
    wTmp = create_folder(os.path.join(work, 'tmp'))

    # Get id's field type
    fields = arcpy.ListFields(lyr_shp)
    for f in fields:
        if str(f.name) == str(feature_id):
            fld_type = f.type
            break

    expression = '{fld}=\'{_id}\'' if str(fld_type) == 'String' else \
        '{fld}={_id}'

    del fields, f

    # Run the clip tool for each feature in the shp input
    c = arcpy.SearchCursor(lyr_shp)
    l = c.next()
    while l:
        fid = str(l.getValue(feature_id))
        selection = select_by_attr(
            lyr_shp, expression.format(fld=feature_id, _id=fid),
            os.path.join(wTmp, 'each_{}.shp'.format(fid)))

        clip_rst = clip_raster(lyr_rst, selection,
                               '{b}_{_id}.tif'.format(b=out_basename, _id=fid))

        l = c.next()
Beispiel #2
0
def mean_rst_by_polygon(polygons, raster, work, resultShp):
    """
    Mean of all cells intersect with the input polygon features
    """

    import arcpy
    import os

    from glass.cpu.arcg.lyr import feat_lyr, rst_lyr
    from glass.prop.rst import rst_stats
    from glass.cpu.arcg.mng.fld import add_field
    from glass.mng.gen import copy_feat
    from glass.cpu.arcg.anls.exct import select_by_attr
    from glass.cpu.arcg.mng.rst.proc import clip_raster

    # ########### #
    # Environment #
    # ########### #
    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = work

    # ###### #
    # Do it! #
    # ###### #
    # Copy the Input
    poly_copy = copy_feat(polygons, resultShp, gisApi='arcpy')
    # Create Layers
    lyrShp = feat_lyr(poly_copy)
    lyrRst = rst_lyr(raster)
    # Create field for register calculated statistics
    if len(os.path.basename(raster)) <= 10:
        fld_name = os.path.basename(raster)
    else:
        fld_name = os.path.basename(raster)[:10]
    add_field(lyrShp, fld_name, "DOUBLE", "20", "3")
    # Calculate mean
    c = arcpy.UpdateCursor(lyrShp)
    l = c.next()
    while l:
        fid = str(l.getValue("FID"))
        selection = select_by_attr(lyrShp, "FID={c}".format(c=fid),
                                   "poly_{c}.shp".format(c=fid))
        sel_rst = clip_raster(lyrRst, selection,
                              "clip_rst_{c}.img".format(c=fid))

        mean = rst_stats(sel_rst, api='arcpy')["MEAN"]
        l.setValue(fld_name, mean)
        c.updateRow(l)
        l = c.next()
Beispiel #3
0
def mean_time_in_povoated_areas(network,
                                rdv_name,
                                stat_units,
                                popFld,
                                destinations,
                                output,
                                workspace,
                                ONEWAY=True,
                                GRID_REF_CELLSIZE=10):
    """
    Receive statistical units and some destinations. Estimates the mean distance
    to that destinations for each statistical unit.
    The mean for each statistical will be calculated using a point grid:
    -> Statistical unit to grid point;
    -> Distance from grid point to destination;
    -> Mean of these distances.
    
    This method will only do the math for areas (statistic units)
    with population.
    """

    import os
    import arcpy
    from glass.cpu.arcg.lyr import feat_lyr
    from glass.cpu.arcg.anls.exct import select_by_attr
    from glass.cpu.arcg.mng.fld import field_statistics
    from glass.cpu.arcg.mng.fld import add_field
    from glass.cpu.arcg.mng.gen import merge
    from glass.mng.gen import copy_feat
    from glass.mob.arctbx.closest import closest_facility
    from glass.to.shp.arcg import rst_to_pnt
    from glass.to.rst import shp_to_raster

    if arcpy.CheckExtension("Network") == "Available":
        arcpy.CheckOutExtension("Network")

    else:
        raise ValueError('Network analyst extension is not avaiable')

    arcpy.env.overwriteOutput = True

    WORK = workspace

    # Add field
    stat_units = copy_feat(stat_units,
                           os.path.join(WORK, os.path.basename(stat_units)),
                           gisApi='arcpy')
    add_field(stat_units, "TIME", "DOUBLE", "10", precision="3")

    # Split stat_units into two layers
    # One with population
    # One with no population
    withPop = select_by_attr(stat_units, '{}>0'.format(popFld),
                             os.path.join(WORK, 'with_pop.shp'))
    noPop = select_by_attr(stat_units, '{}=0'.format(popFld),
                           os.path.join(WORK, 'no_pop.shp'))

    # For each statistic unit with population
    withLyr = feat_lyr(withPop)
    cursor = arcpy.UpdateCursor(withLyr)

    FID = 0
    for feature in cursor:
        # Create a new file
        unity = select_by_attr(
            withLyr, 'FID = {}'.format(str(FID)),
            os.path.join(WORK, 'unit_{}.shp'.format(str(FID))))

        # Convert to raster
        rst_unity = shp_to_raster(unity,
                                  "FID",
                                  GRID_REF_CELLSIZE,
                                  None,
                                  os.path.join(WORK,
                                               'unit_{}.tif'.format(str(FID))),
                                  api='arcpy')

        # Convert to point
        pnt_unity = rst_to_pnt(
            rst_unity, os.path.join(WORK, 'pnt_un_{}.shp'.format(str(FID))))

        # Execute closest facilitie
        CLOSEST_TABLE = os.path.join(WORK, 'cls_fac_{}.dbf'.format(str(FID)))
        closest_facility(network,
                         rdv_name,
                         destinations,
                         pnt_unity,
                         CLOSEST_TABLE,
                         oneway_restriction=ONEWAY)

        # Get Mean
        MEAN_TIME = field_statistics(CLOSEST_TABLE, 'Total_Minu', 'MEAN')[0]

        # Record Mean
        feature.setValue("TIME", MEAN_TIME)
        cursor.updateRow(feature)

        FID += 1

    merge([withPop, noPop], output)

    return output
Beispiel #4
0
def mean_time_by_influence_area(netDt,
                                rdv,
                                infraestruturas,
                                fld_infraestruturas,
                                unidades,
                                id_unidade,
                                conjuntos,
                                popf,
                                influence_areas_unities,
                                w,
                                output,
                                oneway=True):
    """
    Tempo medio ponderado pela populacao residente a infra-estrutura mais
    proxima (min), por area de influencia
    
    * netDt - Path to Network Dataset
    * infraestruturas - Points of destiny
    * fld_infraestruturas - Field on destiny points to relate with influence area
    * unidades - BGRI; Freg; Concelhos
    * conjuntos - Freg; Concelhos; NUT - field
    * popf - Field with the population of the statistic unity
    * influence_areas_unities - Field on statistic unities layer to relate
    with influence area
    * w = Workspace
    * output = Path to store the final output
    * rdv - Name of feature class with the streets network
    * junctions - Name of feature class with the junctions
    """

    import arcpy
    import os
    from glass.cpu.arcg.lyr import feat_lyr
    from glass.cpu.arcg.mng.feat import feat_to_pnt
    from glass.cpu.arcg.mng.gen import merge
    from glass.mng.gen import copy_feat
    from glass.mng.genze import dissolve
    from glass.cpu.arcg.mng.fld import add_field
    from glass.cpu.arcg.mng.fld import calc_fld
    from glass.cpu.arcg.mng.fld import field_statistics
    from glass.cpu.arcg.mng.fld import type_fields
    from glass.cpu.arcg.mng.joins import join_table
    from glass.cpu.arcg.anls.exct import select_by_attr
    from glass.cpu.arcg.netanlst.closest import closest_facility
    """if arcpy.CheckExtension("Network") == "Available":
        arcpy.CheckOutExtension("Network")
    
    else:
        raise ValueError('Network analyst extension is not avaiable')"""
    def ListGroupArea(lyr, fld_ia, fld_grp):
        d = {}
        cs = arcpy.SearchCursor(lyr)
        for lnh in cs:
            id_group = lnh.getValue(fld_grp)
            id_ia = lnh.getValue(fld_ia)
            if id_group not in d.keys():
                d[id_group] = [id_ia]
            else:
                if id_ia not in d[id_group]:
                    d[id_group].append(id_ia)
        return d

    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = w

    # Procedure #
    copy_unities = copy_feat(unidades,
                             os.path.join(w, os.path.basename(unidades)),
                             gisApi='arcpy')

    # Generate centroids of the statistic unities - unidades
    lyr_unidades = feat_lyr(copy_unities)
    pnt_unidades = feat_to_pnt(lyr_unidades,
                               'pnt_unidades.shp',
                               pnt_position="INSIDE")
    # List all groups of unities (conjuntos)
    group_areas = ListGroupArea(lyr_unidades, influence_areas_unities,
                                conjuntos)
    # Create Layers
    lyr_pnt_unidades = feat_lyr(pnt_unidades)
    lyr_pnt_facilities = feat_lyr(infraestruturas)

    result_list = []

    fld_type_unities = type_fields(lyr_pnt_unidades, field=conjuntos)
    SELECT_UNITIES = '{fld}=\'{c}\'' if str(fld_type_unities) == 'String' \
        else '{fld}={c}'

    fld_type_facilities = type_fields(lyr_pnt_facilities,
                                      field=fld_infraestruturas)
    SELECT_FACILITIES = '{fld}=\'{obj}\'' if str(fld_type_facilities) == 'String' \
        else '{fld}={obj}'
    for group in group_areas.keys():
        # Select centroids of interest
        interest_centroids = select_by_attr(
            lyr_pnt_unidades, SELECT_UNITIES.format(c=str(group),
                                                    fld=conjuntos),
            'pnt_{c}.shp'.format(c=str(group)))
        # Select facilities of interest
        expression = ' OR '.join([
            SELECT_FACILITIES.format(fld=fld_infraestruturas,
                                     obj=str(group_areas[group][i]))
            for i in range(len(group_areas[group]))
        ])

        interest_facilities = select_by_attr(
            lyr_pnt_facilities, expression,
            'facilities_{c}.shp'.format(c=str(group)))
        # Run closest facilitie - Distance between selected CENTROID and selected facilities
        cls_fac_table = os.path.join(w, "clsf_{c}.dbf".format(c=str(group)))
        closest_facility(netDt,
                         rdv,
                         interest_facilities,
                         interest_centroids,
                         cls_fac_table,
                         oneway_restriction=oneway)
        add_field(cls_fac_table, 'j', "SHORT", "6")
        calc_fld(cls_fac_table, 'j', "[IncidentID]-1")
        join_table(interest_centroids, "FID", cls_fac_table, "j", "Total_Minu")
        # Calculate sum of time x population
        add_field(interest_centroids, 'sum', "DOUBLE", "10", "3")
        calc_fld(interest_centroids, 'sum',
                 "[{pop}]*[Total_Minu]".format(pop=popf))
        denominador = field_statistics(interest_centroids, 'sum', 'SUM')
        add_field(interest_centroids, 'tm', "DOUBLE", "10", "3")
        calc_fld(
            interest_centroids, 'tm',
            "([sum]/{sumatorio})*[Total_Minu]".format(
                sumatorio=str(denominador)))
        result_list.append(interest_centroids)

    merge_shp = merge(result_list, "merge_centroids.shp")
    join_table(lyr_unidades, id_unidade, "merge_centroids.shp", id_unidade,
               "tm")

    return dissolve(lyr_unidades,
                    output,
                    conjuntos,
                    statistics="tm SUM",
                    api='arcpy')
Beispiel #5
0
def clip_several_each_feature(rst_folder,
                              shp,
                              feature_id,
                              work,
                              template=None,
                              rst_file_format='.tif'):
    """
    Clip a folder of rasters by each feature in a feature class

    The rasters clipped for a feature will be in an individual folder
    """

    import arcpy
    import os

    from glass.cpu.arcg.lyr import feat_lyr
    from glass.cpu.arcg.lyr import rst_lyr
    from glass.cpu.arcg.anls.exct import select_by_attr
    from glass.cpu.arcg.mng.fld import type_fields
    from glass.oss.ops import create_folder
    from glass.pys.oss import lst_ff

    # ########### #
    # Environment #
    # ########### #
    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = work

    # ###### #
    # Do it! #
    # ###### #
    # Open feature class
    lyr_shp = feat_lyr(shp)

    # Create folder for some temporary files
    wTmp = create_folder(os.path.join(work, 'tmp'))

    # Split feature class in parts
    c = arcpy.SearchCursor(lyr_shp)
    l = c.next()
    features = {}

    # Get id's field type
    fld_type = type_fields(lyr_shp, field=feature_id)

    expression = '{fld}=\'{_id}\'' if str(fld_type) == 'String' else \
        '{fld}={_id}'

    del fields, f

    while l:
        fid = str(l.getValue(feature_id))

        selection = select_by_attr(
            lyr_shp, expression.format(fld=feature_id, _id=fid),
            os.path.join(wTmp, 'each_{}.shp'.format(fid)))

        f_lyr = feat_lyr(selection)
        features[fid] = f_lyr

        l = c.next()

    rasters = lst_ff(rst_folder, file_format='.tif')

    for raster in rasters:
        r_lyr = rst_lyr(raster)
        for feat in features:
            clip_rst = clip_raster(
                r_lyr, features[feat],
                os.path.join(work,
                             os.path.splitext(os.path.basename(feat))[0],
                             os.path.basename(raster)), template)