Beispiel #1
0
def get_percentage_value(rst, value, includeNodata=None):
    """
    Return the % of cells with a certain value
    """

    import numpy
    from osgeo import gdal
    from glass.pys.num import count_where
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop.rst import get_nodata

    array = rst_to_array(rst)

    lnh, col = array.shape
    nrcell = lnh * col

    if not includeNodata:
        nd = get_nodata(rst, gisApi='gdal')

        nd_cells = count_where(array, array == nd)

        nrcell = nrcell - nd_cells

    valCount = count_where(array, array == value)

    perc = (valCount / float(nrcell)) * 100

    return perc
Beispiel #2
0
def speraman_correlation(x, y):
    """
    Speraman correlation between two raster images
    
    The images have to have the same reading order and the same size
    Is wise exclude the nodata values
    """

    from scipy import stats
    from glass.g.rd.rst import rst_to_array

    vx = rst_to_array(x, flatten=True, with_nodata=False)
    vy = rst_to_array(y, flatten=True, with_nodata=False)

    coef = stats.spearmanr(vx, vy, axis=0)

    return coef[0]
Beispiel #3
0
def pearson_correlation(x, y):
    """
    Pearson correlation between two raster images
    
    The images have to have the same reading order and the same size
    
    Is wise exclude the nodata values
    """

    import numpy
    from glass.g.rd.rst import rst_to_array

    vx = rst_to_array(x, flatten=True, with_nodata=False)
    vy = rst_to_array(y, flatten=True, with_nodata=False)

    cof = numpy.corrcoef(vx, vy)[0, 1]

    return cof
Beispiel #4
0
def rst_distinct(rst):
    """
    Export a list with the values of a raster
    
    API'S Available:
    * gdal;
    """

    import numpy
    from glass.g.rd.rst import rst_to_array

    v = numpy.unique(rst_to_array(rst, flatten=True, with_nodata=False))

    return list(v)
Beispiel #5
0
def rst_shape(rst):
    """
    Return number of lines and columns in a raster
    """

    from glass.pys import obj_to_lst
    from glass.g.rd.rst import rst_to_array

    rst = obj_to_lst(rst)
    shapes = {}

    for r in rst:
        array = rst_to_array(r)
        lnh, cols = array.shape

        shapes[r] = [lnh, cols]

        del array

    return shapes if len(rst) > 1 else shapes[rst[0]]
Beispiel #6
0
def count_cells(raster, countNodata=None):
    """
    Return number of cells in a Raster Dataset
    """

    from glass.g.rd.rst import rst_to_array
    from glass.pys.num import count_where

    a = rst_to_array(raster)

    lnh, col = a.shape
    nrcell = lnh * col

    if countNodata:
        return nrcell

    else:
        NoDataValue = get_nodata(raster)
        NrNodata = count_where(a, a == NoDataValue)
        return nrcell - NrNodata
Beispiel #7
0
def percentage_nodata(rst):
    """
    Return the % of cells with nodata value
    """

    import numpy
    from glass.pys.num import count_where
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop.rst import get_nodata

    array = rst_to_array(rst)

    lnh, col = array.shape
    nrcell = lnh * col

    nd = get_nodata(rst, gisApi='gdal')
    nd_cells = count_where(array, array == nd)

    perc = (nd_cells / float(nrcell)) * 100

    return perc
Beispiel #8
0
def comp_bnds(rsts, outRst):
    """
    Composite Bands
    """

    from osgeo import gdal, gdal_array
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop import drv_name
    from glass.g.prop.rst import get_nodata
    from glass.g.prop.prj import get_rst_epsg, epsg_to_wkt

    # Get Arrays
    _as = [rst_to_array(r) for r in rsts]

    # Get nodata values
    nds = [get_nodata(r) for r in rsts]

    # Assume that first raster is the template
    img_temp = gdal.Open(rsts[0])
    geo_tran = img_temp.GetGeoTransform()
    band = img_temp.GetRasterBand(1)
    dataType = gdal_array.NumericTypeCodeToGDALTypeCode(_as[0].dtype)
    rows, cols = _as[0].shape
    epsg = get_rst_epsg(rsts[0])

    # Create Output
    drv = gdal.GetDriverByName(drv_name(outRst))
    out = drv.Create(outRst, cols, rows, len(_as), dataType)
    out.SetGeoTransform(geo_tran)
    out.SetProjection(epsg_to_wkt(epsg))

    # Write all bands
    for i in range(len(_as)):
        outBand = out.GetRasterBand(i + 1)
        outBand.SetNoDataValue(nds[i])
        outBand.WriteArray(_as[i])

        outBand.FlushCache()

    return outRst
Beispiel #9
0
def rst_rotation(inFolder, template, outFolder, img_format='.tif'):
    """
    Invert raster data
    """

    import os
    from osgeo import gdal
    from glass.pys.oss import lst_ff
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop.rst import get_nodata
    from glass.g.wt.rst import obj_to_rst

    rasters = lst_ff(inFolder, file_format=img_format)

    for rst in rasters:
        a = rst_to_array(rst)
        nd = get_nodata(rst)

        obj_to_rst(a[::-1],
                   os.path.join(outFolder, os.path.basename(rst)),
                   template,
                   noData=nd)

    return outFolder
Beispiel #10
0
def lnd8_dn_to_ref(folder, img_format, meta_json, outWorkspace, srs):
    """
    Landsat8 digital numbers to surface reflectance
    """

    import math
    import json
    import os
    from glass.pys.oss import lst_ff
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop.rst import get_cellsize, rst_stats
    from glass.g.wt.rst import obj_to_rst

    def Get_RTA(Ml, Qcalc, Al):
        """
        Obtem Radiancia no Topo da Atmosfera
        
        Ml - relacao da radiancia multibanda
        Qcalc - imagem de satelite original
        Al - radiancia add band
        """

        Llambda = Ml * Qcalc + Al

        return Llambda

    def GetIrraSolar(d, Lmax, Pmax):
        """
        d - distancia da terra ao sol (com base no dia do ano em
        que a imagem foi recolhida)
        ESUN - irradiancia solar media exoatmosferica
        Lmax - radiancia maxima
        Pmax - reflectancia maxima
        """
        return (math.pi * d**2) * (Lmax / Pmax)

    def GetRefAparente(d, esun, rta, Z):
        """
        Reflectancia aparente
        Z - angulo zenital do sol
        """
        pp = math.pi * rta * d**2 / esun * math.cos(Z)
        return pp

    def GetRefSuperfice(DNmin, Ml, Al, IrrSolar, Z, d, RefAparente):
        """Reflectancia a superficie"""
        Lp = (Ml * DNmin + Al - 0.01 * IrrSolar) * (math.cos(Z) / math.pi *
                                                    d**2)
        p = math.pi * (RefAparente - Lp) * d**2 / IrrSolar * math.cos(Z)
        return p

    lst_bands = lst_ff(folder, file_format=img_format)
    json_file = open(meta_json, 'r')
    json_data = json.load(json_file)
    cellsize = get_cellsize(lst_bands[0], gisApi='gdal')

    # Estimate Surface Reflectance for each band
    for bnd in lst_bands:
        # Convert images to numpy array
        img = rst_to_array(bnd)
        # Calculations of each pixel; store results on a new numpy array
        rta_array = Get_RTA(
            json_data[u"RADIANCE_MULT_BAND"][os.path.basename(bnd)], img,
            json_data[u"RADIANCE_ADD_BAND"][os.path.basename(bnd)])
        solar_irradiation = GetIrraSolar(
            json_data[u"EARTH_SUN_DISTANCE"],
            json_data[u"RADIANCE_MAXIMUM_BAND"][os.path.basename(bnd)],
            json_data[u"REFLECTANCE_MAXIMUM_BAND"][os.path.basename(bnd)])
        ref_aparente_array = GetRefAparente(json_data[u"EARTH_SUN_DISTANCE"],
                                            solar_irradiation, rta_array,
                                            90 - json_data[u"SUN_ELEVATION"])
        new_map = GetRefSuperfice(
            rst_stats(bnd, api='gdal')['MIN'],
            json_data[u"RADIANCE_MULT_BAND"][os.path.basename(bnd)],
            json_data[u"RADIANCE_ADD_BAND"][os.path.basename(bnd)],
            solar_irradiation, 90 - json_data[u"SUN_ELEVATION"],
            json_data[u"EARTH_SUN_DISTANCE"], ref_aparente_array)
        obj_to_rst(new_map, os.path.join(outWorkspace, os.path.basename(bnd)),
                   bnd)
Beispiel #11
0
def num_roads(osmdata, nom, lineTbl, polyTbl, folder, cellsize, srs,
              rstTemplate):
    """
    Select Roads and convert To Raster
    """

    import datetime as dt
    import os
    import numpy as np
    from threading import Thread
    from glass.g.rd.rst import rst_to_array
    from glass.g.tbl.filter import sel_by_attr
    from glass.g.gp.prox.bfing.sql import splite_buffer
    from glass.g.dp.torst import shp_to_rst
    from glass.g.wt.rst import obj_to_rst
    from glass.ng.prop.sql import row_num

    time_a = dt.datetime.now().replace(microsecond=0)
    NR = row_num(osmdata, lineTbl, where="roads IS NOT NULL", api='sqlite')
    time_b = dt.datetime.now().replace(microsecond=0)

    if not NR: return None, {0: ('count_rows_roads', time_b - time_a)}

    timeGasto = {0: ('count_rows_roads', time_b - time_a)}

    # Get Roads Buffer
    LULC_CLS = '1221' if nom != "GLOBE_LAND_30" else '801'
    bfShps = []

    def exportAndBuffer():
        time_cc = dt.datetime.now().replace(microsecond=0)
        roadFile = splite_buffer(osmdata,
                                 lineTbl,
                                 "bf_roads",
                                 "geometry",
                                 os.path.join(folder, 'bf_roads.gml'),
                                 whrClause="roads IS NOT NULL",
                                 outTblIsFile=True,
                                 dissolve=None)
        time_c = dt.datetime.now().replace(microsecond=0)

        distRst = shp_to_rst(roadFile,
                             None,
                             cellsize,
                             -1,
                             os.path.join(folder, 'rst_roads.tif'),
                             epsg=srs,
                             rst_template=rstTemplate,
                             api="gdal")
        time_d = dt.datetime.now().replace(microsecond=0)

        bfShps.append(distRst)

        timeGasto[1] = ('buffer_roads', time_c - time_cc)
        timeGasto[2] = ('to_rst_roads', time_d - time_c)

    BUILDINGS = []

    def exportBuild():
        time_ee = dt.datetime.now().replace(microsecond=0)
        NB = row_num(osmdata,
                     polyTbl,
                     where="building IS NOT NULL",
                     api='sqlite')

        time_e = dt.datetime.now().replace(microsecond=0)

        timeGasto[3] = ('check_builds', time_e - time_ee)

        if not NB:
            return

        bShp = sel_by_attr(
            osmdata,
            "SELECT geometry FROM {} WHERE building IS NOT NULL".format(
                polyTbl),
            os.path.join(folder, 'road_builds.shp'),
            api_gis='ogr')
        time_f = dt.datetime.now().replace(microsecond=0)

        bRst = shp_to_rst(bShp,
                          None,
                          cellsize,
                          -1,
                          os.path.join(folder, 'road_builds.tif'),
                          epsg=srs,
                          rst_template=rstTemplate,
                          api='gdal')
        time_g = dt.datetime.now().replace(microsecond=0)

        BUILDINGS.append(bRst)

        timeGasto[4] = ('export_builds', time_f - time_e)
        timeGasto[5] = ('builds_to_rst', time_g - time_f)

    thrds = [
        Thread(name="build-th", target=exportBuild),
        Thread(name='roads-th', target=exportAndBuffer)
    ]

    for t in thrds:
        t.start()
    for t in thrds:
        t.join()

    if not len(BUILDINGS):
        return {LULC_CLS: bfShps[0]}

    time_x = dt.datetime.now().replace(microsecond=0)
    BUILD_ARRAY = rst_to_array(BUILDINGS[0], with_nodata=True)
    rst_array = rst_to_array(bfShps[0], with_nodata=True)
    np.place(rst_array, BUILD_ARRAY == 1, 0)

    newRaster = obj_to_rst(rst_array,
                           os.path.join(folder, 'fin_roads.tif'),
                           rstTemplate,
                           noData=-1)

    time_z = dt.datetime.now().replace(microsecond=0)

    timeGasto[6] = ('sanitize_roads', time_z - time_x)

    return {int(LULC_CLS): newRaster}, timeGasto
Beispiel #12
0
def update_globe_land_cover(original_globe_raster, osm_urban_atlas_raster,
                            osm_globe_raster, epsg, updated_globe_raster,
                            detailed_globe_raster):
    """
    Update the original Glob Land 30 with the result of the conversion of
    OSM DATA to the Globe Land Cover nomenclature;
    
    Also updates he previous updated Glob Land 30 with the result of the
    conversion of osm data to the Urban Atlas Nomenclature
    """

    import os
    import numpy as np
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop.rst import get_cellsize, get_nodata
    from glass.g.wt.rst import obj_to_rst

    # ############################# #
    # Convert images to numpy array #
    # ############################# #
    np_globe_original = rst_to_array(original_globe_raster)
    np_globe_osm = rst_to_array(osm_globe_raster)
    np_ua_osm = rst_to_array(osm_urban_atlas_raster)

    # ################################## #
    # Check the dimension of both images #
    # ################################## #
    if np_globe_original.shape != np_globe_osm.shape:
        return (
            'The Globe Land 30 raster (original) do not have the same number'
            ' of columns/lines comparing with the Globe Land 30 derived '
            'from OSM data')

    elif np_globe_original.shape != np_ua_osm.shape:
        return (
            'The Globe Land 30 raster (original) do not have the same '
            'number of columns/lines comparing with the Urban Atlas raster '
            'derived from OSM data')

    elif np_globe_osm.shape != np_ua_osm.shape:
        return (
            'The Globe Land 30 derived from OSM data do not have the same '
            'number of columns/lines comparing with the Urban Atlas raster '
            'derived from OSM data')

    # ############## #
    # Check Cellsize #
    # ############## #
    cell_of_rsts = get_cellsize(
        [original_globe_raster, osm_globe_raster, osm_urban_atlas_raster],
        xy=True,
        gisApi='gdal')

    cell_globe_original = cell_of_rsts[original_globe_raster]
    cell_globe_osm = cell_of_rsts[osm_globe_raster]
    cell_ua_osm = cell_of_rsts[osm_urban_atlas_raster]

    if cell_globe_original != cell_globe_osm:
        return (
            'The cellsize of the Globe Land 30 raster (original) is not the '
            'same comparing with the Globe Land 30 derived from OSM data')

    elif cell_globe_original != cell_ua_osm:
        return (
            'The cellsize of the Globe Land 30 raster (original) is not the '
            'same comparing with the Urban Atlas raster derived from OSM data')

    elif cell_ua_osm != cell_globe_osm:
        return (
            'The cellsize of the Globe Land 30 derived from OSM data is not '
            'the same comparing with the Urban Atlas raster derived from '
            'OSM data')

    # ############################# #
    # Get the Value of Nodata Cells #
    # ############################# #
    nodata_glob_original = get_nodata(original_globe_raster, gisApi='gdal')
    nodata_glob_osm = get_nodata(osm_globe_raster, gisApi='gdal')
    nodata_ua_osm = get_nodata(osm_urban_atlas_raster, gisApi='gdal')

    # ######################################## #
    # Create a new map - Globe Land 30 Updated #
    # ######################################## #
    """
    Create a new array with zeros...
    
    1) The zeros will be replaced by the values in the Globe Land derived from
    OSM.
    
    2) The zeros will be replaced by the values in the Original Globe Land at
    the cells with NULL data in the Globe Land derived from OSM.
    
    The meta array will identify values origins in the updated raster:
    1 - Orinal Raster
    2 - OSM Derived Raster
    """

    update_array = np.zeros(
        (np_globe_original.shape[0], np_globe_original.shape[1]))

    update_meta_array = np.zeros(
        (np_globe_original.shape[0], np_globe_original.shape[1]))

    # 1)
    np.copyto(update_array, np_globe_osm, 'no',
              np_globe_osm != nodata_glob_osm)
    # 1) meta
    np.place(update_meta_array, update_array != 0, 2)
    # 2) meta
    np.place(update_meta_array, update_array == 0, 1)
    # 2)
    np.copyto(update_array, np_globe_original, 'no', update_array == 0)
    # 2) meta
    np.place(update_meta_array, update_array == nodata_glob_original,
             int(nodata_glob_original))
    # noData to int
    np.place(update_array, update_array == nodata_glob_original,
             int(nodata_glob_original))

    updated_meta = os.path.join(
        os.path.dirname(updated_globe_raster), '{n}_meta{e}'.format(
            n=os.path.splitext(os.path.basename(updated_globe_raster))[0],
            e=os.path.splitext(os.path.basename(updated_globe_raster))[1]))
    # Create Updated Globe Cover 30
    obj_to_rst(update_array,
               updated_globe_raster,
               original_globe_raster,
               noData=int(nodata_glob_original))
    # Create Updated Globe Cover 30 meta
    obj_to_rst(update_meta_array,
               updated_meta,
               original_globe_raster,
               noData=int(nodata_glob_original))

    # ################################################# #
    # Create a new map - Globe Land 30 Detailed with UA #
    # ################################################# #
    np_update = rst_to_array(updated_globe_raster)

    detailed_array = np.zeros((np_update.shape[0], np_update.shape[1]))

    detailed_meta_array = np.zeros((np_update.shape[0], np_update.shape[1]))
    """
    Replace 80 Globe Land for 11, 12, 13, 14 of Urban Atlas
    
    The meta array will identify values origins in the detailed raster:
    1 - Updated Raster
    2 - UA Derived Raster from OSM
    """
    # Globe - Mantain some classes
    np.place(detailed_array, np_update == 30, 8)
    np.place(detailed_array, np_update == 30, 1)

    np.place(detailed_array, np_update == 40, 9)
    np.place(detailed_array, np_update == 40, 1)

    np.place(detailed_array, np_update == 50, 10)
    np.place(detailed_array, np_update == 50, 1)

    np.place(detailed_array, np_update == 10, 5)
    np.place(detailed_array, np_update == 10, 1)

    # Water bodies
    np.place(detailed_array, np_ua_osm == 50 or np_update == 60, 7)
    np.place(detailed_meta_array, np_ua_osm == 50 or np_update == 60, 1)

    # Urban - Where Urban Atlas IS NOT NULL
    np.place(detailed_array, np_ua_osm == 11, 1)
    np.place(detailed_meta_array, np_ua_osm == 11, 2)

    np.place(detailed_array, np_ua_osm == 12, 2)
    np.place(detailed_meta_array, np_ua_osm == 12, 2)

    np.place(detailed_array, np_ua_osm == 13, 3)
    np.place(detailed_meta_array, np_ua_osm == 13, 2)

    np.place(detailed_array, np_ua_osm == 14, 4)
    np.place(detailed_meta_array, np_ua_osm == 14, 2)

    # Urban Atlas - Class 30 to 6
    np.place(detailed_array, np_ua_osm == 30, 6)
    np.place(detailed_meta_array, np_ua_osm == 30, 2)

    # Create Detailed Globe Cover 30
    obj_to_rst(detailed_array,
               detailed_globe_raster,
               original_globe_raster,
               noData=0)

    # Create Detailed Globe Cover 30 meta
    detailed_meta = os.path.join(
        os.path.dirname(detailed_globe_raster), '{n}_meta{e}'.format(
            n=os.path.splitext(os.path.basename(detailed_meta))[0],
            e=os.path.splitext(os.path.basename(detailed_meta))[1]))
    obj_to_rst(detailed_meta_array,
               detailed_meta,
               original_globe_raster,
               noData=0)
Beispiel #13
0
def shp_to_rst(shp,
               inSource,
               cellsize,
               nodata,
               outRaster,
               epsg=None,
               rst_template=None,
               snapRst=None,
               api='gdal'):
    """
    Feature Class to Raster
    
    cellsize will be ignored if rst_template is defined
    
    * API's Available:
    - gdal;
    - pygrass;
    - grass;
    """

    if api == 'gdal':
        from osgeo import gdal, ogr
        from glass.g.prop import drv_name

        if not epsg:
            from glass.g.prop.prj import get_shp_sref

            srs = get_shp_sref(shp).ExportToWkt()
        else:
            from glass.g.prop.prj import epsg_to_wkt
            srs = epsg_to_wkt(epsg)

        # Get Extent
        dtShp = ogr.GetDriverByName(drv_name(shp)).Open(shp, 0)

        lyr = dtShp.GetLayer()

        if not rst_template:
            if not snapRst:
                x_min, x_max, y_min, y_max = lyr.GetExtent()
                x_res = int((x_max - x_min) / cellsize)
                y_res = int((y_max - y_min) / cellsize)

            else:
                from glass.g.prop.rst import adjust_ext_to_snap

                x_min, y_max, y_res, x_res, cellsize = adjust_ext_to_snap(
                    shp, snapRst)

        else:
            from glass.g.rd.rst import rst_to_array

            img_temp = gdal.Open(rst_template)
            geo_transform = img_temp.GetGeoTransform()

            y_res, x_res = rst_to_array(rst_template).shape

        # Create output
        dtRst = gdal.GetDriverByName(drv_name(outRaster)).Create(
            outRaster, x_res, y_res, gdal.GDT_Byte)

        if not rst_template:
            dtRst.SetGeoTransform((x_min, cellsize, 0, y_max, 0, -cellsize))

        else:
            dtRst.SetGeoTransform(geo_transform)

        dtRst.SetProjection(str(srs))

        bnd = dtRst.GetRasterBand(1)
        bnd.SetNoDataValue(nodata)

        gdal.RasterizeLayer(dtRst, [1], lyr, burn_values=[1])

        del lyr
        dtShp.Destroy()

    elif api == 'grass' or api == 'pygrass':
        """
        Use GRASS GIS
        - Start Session
        - Import data
        - Convert
        - Export
        """

        import os
        from glass.pys.oss import fprop
        from glass.g.wenv.grs import run_grass
        from glass.g.prop.prj import get_epsg

        # Create GRASS GIS Session
        ws = os.path.dirname(outRaster)
        loc = fprop(outRaster, 'fn')
        epsg = get_epsg(shp)

        gbase = run_grass(ws, location=loc, srs=epsg)

        import grass.script.setup as gsetup

        gsetup.init(gbase, ws, loc, 'PERMANENT')

        # Import Packages
        from glass.g.it.shp import shp_to_grs
        from glass.g.it.rst import grs_to_rst
        from glass.g.wenv.grs import shp_to_region

        # Shape to GRASS GIS
        gshp = shp_to_grs(shp, fprop(shp, 'fn'), asCMD=True)

        # Set Region
        shp_to_region(gshp, cellsize)

        # Convert
        grst = grsshp_to_grsrst(gshp, inSource, gshp + '__rst', api="grass")

        # Export
        grs_to_rst(grst, outRaster, as_cmd=True)

    else:
        raise ValueError('API {} is not available'.format(api))

    return outRaster
Beispiel #14
0
def gdal_slope(dem, srs, slope, unit='DEGREES'):
    """
    Create Slope Raster
    
    TODO: Test and see if is running correctly
    """
    
    import numpy;         import math
    from osgeo            import gdal
    from scipy.ndimage    import convolve
    from glass.g.rd.rst   import rst_to_array
    from glass.g.wt.rst   import obj_to_rst
    from glass.g.prop.rst import get_cellsize, get_nodata
    
    # ################ #
    # Global Variables #
    # ################ #
    cellsize = get_cellsize(dem, gisApi='gdal')
    # Get Nodata Value
    NoData = get_nodata(dem)
    
    # #################### #
    # Produce Slope Raster #
    # #################### #
    # Get Elevation array
    arr_dem = rst_to_array(dem)
    # We have to get a array with the number of nearst cells with values
    with_data = numpy.zeros((arr_dem.shape[0], arr_dem.shape[1]))
    numpy.place(with_data, arr_dem!=NoData, 1.0)
    mask = numpy.array([[1,1,1],
                        [1,0,1],
                        [1,1,1]])
    arr_neigh = convolve(with_data, mask, mode='constant')
    numpy.place(arr_dem, arr_dem==NoData, 0.0)
    # The rate of change in the x direction for the center cell e is:
    kernel_dz_dx_left = numpy.array([[0,0,1],
                                     [0,0,2],
                                     [0,0,1]])
    kernel_dz_dx_right = numpy.array([[1,0,0],
                                     [2,0,0],
                                     [1,0,0]])
    dz_dx = (convolve(arr_dem, kernel_dz_dx_left, mode='constant')-convolve(arr_dem, kernel_dz_dx_right, mode='constant')) / (arr_neigh * cellsize)
    # The rate of change in the y direction for cell e is:
    kernel_dz_dy_left = numpy.array([[0,0,0],
                                    [0,0,0],
                                    [1,2,1]])
    kernel_dz_dy_right = numpy.array([[1,2,1],
                                    [0,0,0],
                                    [0,0,0]])
    dz_dy = (convolve(arr_dem, kernel_dz_dy_left, mode='constant')-convolve(arr_dem, kernel_dz_dy_right, mode='constant')) / (arr_neigh * cellsize)
    # Taking the rate of change in the x and y direction, the slope for the center cell e is calculated using
    rise_run = ((dz_dx)**2 + (dz_dy)**2)**0.5
    if unit=='DEGREES':
        arr_slope = numpy.arctan(rise_run) * 57.29578
    elif unit =='PERCENT_RISE':
        arr_slope = numpy.tan(numpy.arctan(rise_run)) * 100.0
    # Estimate the slope for the cells with less than 8 neigh
    aux_dem = rst_to_array(dem)
    index_vizinhos = numpy.where(arr_neigh<8)
    for idx in range(len(index_vizinhos[0])):
        # Get Value of the cell
        lnh = index_vizinhos[0][idx]
        col = index_vizinhos[1][idx]
        e = aux_dem[lnh][col]
        a = aux_dem[lnh-1][col-1]
        if a == NoData:
            a = e
        if lnh==0 or col==0:
            a=e
        b = aux_dem[lnh-1][col]
        if b == NoData:
            b = e
        if lnh==0:
            b=e
        try:
            c = aux_dem[lnh-1][col+1]
            if c == NoData:
                c=e
            if lnh==0:
                c=e
        except:
            c = e
        d = aux_dem[lnh][col-1]
        if d == NoData:
            d = e
        if col==0:
            d=e
        try:
            f = aux_dem[lnh][col+1]
            if f == NoData:
                f=e
        except:
            f=e
        try:
            g = aux_dem[lnh+1][col-1]
            if g == NoData:
                g=e
            if col==0:
                g=e
        except:
            g=e
        try:
            h = aux_dem[lnh+1][col]
            if h ==NoData:
                h = e
        except:
            h=e
        try:
            i = aux_dem[lnh+1][col+1]
            if i == NoData:
                i = e
        except:
            i=e
        dz_dx = ((c + 2*f + i) - (a + 2*d + g)) / (8 * cellsize)
        dz_dy = ((g + 2*h + i) - (a + 2*b + c)) / (8 * cellsize)
        rise_sun = ((dz_dx)**2 + (dz_dy)**2)**0.5
        if unit == 'DEGREES':
            arr_slope[lnh][col] = math.atan(rise_sun) * 57.29578
        elif unit == 'PERCENT_RISE':
            arr_slope[lnh][col] = math.tan(math.atan(rise_sun)) * 100.0
    # Del value originally nodata
    numpy.place(arr_slope, aux_dem==NoData, numpy.nan)
    #arr_slope[lnh][col] = slope_degres
    obj_to_rst(arr_slope, slope, dem)
Beispiel #15
0
def osm2lulc(osmdata,
             nomenclature,
             refRaster,
             lulcRst,
             overwrite=None,
             dataStore=None,
             roadsAPI='POSTGIS'):
    """
    Convert OSM data into Land Use/Land Cover Information
    
    A matrix based approach
    
    roadsAPI Options:
    * SQLITE
    * POSTGIS
    """

    # ************************************************************************ #
    # Python Modules from Reference Packages #
    # ************************************************************************ #
    import os
    import numpy
    import datetime
    from threading import Thread
    from osgeo import gdal
    # ************************************************************************ #
    # Dependencies #
    # ************************************************************************ #
    from glass.g.rd.rst import rst_to_array
    from glass.g.prop import check_isRaster
    from glass.g.prop.rst import get_cellsize
    from glass.pys.oss import mkdir, copy_file
    from glass.pys.oss import fprop
    if roadsAPI == 'POSTGIS':
        from glass.ng.sql.db import create_db
        from glass.g.it.db import osm_to_psql
        from glass.ete.osm2lulc.mod2 import pg_num_roads
        from glass.ng.sql.bkup import dump_db
        from glass.ng.sql.db import drop_db
    else:
        from glass.g.it.osm import osm_to_sqdb
        from glass.ete.osm2lulc.mod2 import num_roads
    from glass.ete.osm2lulc.utils import osm_project, add_lulc_to_osmfeat
    from glass.ete.osm2lulc.utils import osmlulc_rsttbl
    from glass.ete.osm2lulc.utils import get_ref_raster
    from glass.ete.osm2lulc.mod1 import num_selection
    from glass.ete.osm2lulc.m3_4 import num_selbyarea
    from glass.ete.osm2lulc.mod5 import num_base_buffer
    from glass.ete.osm2lulc.mod6 import num_assign_builds
    from glass.g.wt.rst import obj_to_rst
    # ************************************************************************ #
    # Global Settings #
    # ************************************************************************ #
    # Check if input parameters exists!
    if not os.path.exists(os.path.dirname(lulcRst)):
        raise ValueError('{} does not exist!'.format(os.path.dirname(lulcRst)))

    if not os.path.exists(osmdata):
        raise ValueError(
            'File with OSM DATA ({}) does not exist!'.format(osmdata))

    if not os.path.exists(refRaster):
        raise ValueError(
            'File with reference area ({}) does not exist!'.format(refRaster))

    # Check if Nomenclature is valid
    nomenclature = "URBAN_ATLAS" if nomenclature != "URBAN_ATLAS" and \
        nomenclature != "CORINE_LAND_COVER" and \
        nomenclature == "GLOBE_LAND_30" else nomenclature

    time_a = datetime.datetime.now().replace(microsecond=0)

    workspace = os.path.join(os.path.dirname(lulcRst),
                             'num_osmto') if not dataStore else dataStore

    # Check if workspace exists:
    if os.path.exists(workspace):
        if overwrite:
            mkdir(workspace, overwrite=True)
        else:
            raise ValueError('Path {} already exists'.format(workspace))
    else:
        mkdir(workspace, overwrite=None)

    # Get Ref Raster and EPSG
    refRaster, epsg = get_ref_raster(refRaster, workspace, cellsize=2)
    CELLSIZE = get_cellsize(refRaster, gisApi='gdal')

    from glass.ete.osm2lulc import osmTableData, PRIORITIES

    time_b = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Convert OSM file to SQLITE DB or to POSTGIS DB #
    # ************************************************************************ #
    if roadsAPI == 'POSTGIS':
        osm_db = create_db(fprop(osmdata, 'fn', forceLower=True),
                           overwrite=True)
        osm_db = osm_to_psql(osmdata, osm_db)

    else:
        osm_db = osm_to_sqdb(osmdata, os.path.join(workspace, 'osm.sqlite'))
    time_c = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Add Lulc Classes to OSM_FEATURES by rule #
    # ************************************************************************ #
    add_lulc_to_osmfeat(osm_db, osmTableData, nomenclature, api=roadsAPI)
    time_d = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Transform SRS of OSM Data #
    # ************************************************************************ #
    osmTableData = osm_project(
        osm_db,
        epsg,
        api=roadsAPI,
        isGlobeLand=None if nomenclature != "GLOBE_LAND_30" else True)
    time_e = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # MapResults #
    # ************************************************************************ #
    mergeOut = {}
    timeCheck = {}
    RULES = [1, 2, 3, 4, 5, 7]

    def run_rule(ruleID):
        time_start = datetime.datetime.now().replace(microsecond=0)
        _osmdb = copy_file(
            osm_db,
            os.path.splitext(osm_db)[0] +
            '_r{}.sqlite'.format(ruleID)) if roadsAPI == 'SQLITE' else None
        # ******************************************************************** #
        # 1 - Selection Rule #
        # ******************************************************************** #
        if ruleID == 1:
            res, tm = num_selection(_osmdb if _osmdb else osm_db,
                                    osmTableData['polygons'],
                                    workspace,
                                    CELLSIZE,
                                    epsg,
                                    refRaster,
                                    api=roadsAPI)
        # ******************************************************************** #
        # 2 - Get Information About Roads Location #
        # ******************************************************************** #
        elif ruleID == 2:
            res, tm = num_roads(
                _osmdb, nomenclature, osmTableData['lines'],
                osmTableData['polygons'], workspace, CELLSIZE, epsg,
                refRaster) if _osmdb else pg_num_roads(
                    osm_db, nomenclature, osmTableData['lines'],
                    osmTableData['polygons'], workspace, CELLSIZE, epsg,
                    refRaster)

        # ******************************************************************** #
        # 3 - Area Upper than #
        # ******************************************************************** #
        elif ruleID == 3:
            if nomenclature != "GLOBE_LAND_30":
                res, tm = num_selbyarea(osm_db if not _osmdb else _osmdb,
                                        osmTableData['polygons'],
                                        workspace,
                                        CELLSIZE,
                                        epsg,
                                        refRaster,
                                        UPPER=True,
                                        api=roadsAPI)
            else:
                return

        # ******************************************************************** #
        # 4 - Area Lower than #
        # ******************************************************************** #
        elif ruleID == 4:
            if nomenclature != "GLOBE_LAND_30":
                res, tm = num_selbyarea(osm_db if not _osmdb else _osmdb,
                                        osmTableData['polygons'],
                                        workspace,
                                        CELLSIZE,
                                        epsg,
                                        refRaster,
                                        UPPER=False,
                                        api=roadsAPI)
            else:
                return

        # ******************************************************************** #
        # 5 - Get data from lines table (railway | waterway) #
        # ******************************************************************** #
        elif ruleID == 5:
            res, tm = num_base_buffer(osm_db if not _osmdb else _osmdb,
                                      osmTableData['lines'],
                                      workspace,
                                      CELLSIZE,
                                      epsg,
                                      refRaster,
                                      api=roadsAPI)
        # ******************************************************************** #
        # 7 - Assign untagged Buildings to tags #
        # ******************************************************************** #
        elif ruleID == 7:
            if nomenclature != "GLOBE_LAND_30":
                res, tm = num_assign_builds(osm_db if not _osmdb else _osmdb,
                                            osmTableData['points'],
                                            osmTableData['polygons'],
                                            workspace,
                                            CELLSIZE,
                                            epsg,
                                            refRaster,
                                            apidb=roadsAPI)

            else:
                return

        time_end = datetime.datetime.now().replace(microsecond=0)
        mergeOut[ruleID] = res
        timeCheck[ruleID] = {'total': time_end - time_start, 'detailed': tm}

    thrds = []
    for r in RULES:
        thrds.append(
            Thread(name="to_{}".format(str(r)), target=run_rule, args=(r, )))

    for t in thrds:
        t.start()
    for t in thrds:
        t.join()

    # Merge all results into one Raster
    compileResults = {}
    for rule in mergeOut:
        for cls in mergeOut[rule]:
            if cls not in compileResults:
                if type(mergeOut[rule][cls]) == list:
                    compileResults[cls] = mergeOut[rule][cls]
                else:
                    compileResults[cls] = [mergeOut[rule][cls]]

            else:
                if type(mergeOut[rule][cls]) == list:
                    compileResults[cls] += mergeOut[rule][cls]
                else:
                    compileResults[cls].append(mergeOut[rule][cls])

    time_m = datetime.datetime.now().replace(microsecond=0)
    # All Rasters to Array
    arrayRst = {}
    for cls in compileResults:
        for raster in compileResults[cls]:
            if not raster:
                continue

            array = rst_to_array(raster)

            if cls not in arrayRst:
                arrayRst[cls] = [array.astype(numpy.uint8)]

            else:
                arrayRst[cls].append(array.astype(numpy.uint8))
    time_n = datetime.datetime.now().replace(microsecond=0)

    # Sum Rasters of each class
    for cls in arrayRst:
        if len(arrayRst[cls]) == 1:
            sumArray = arrayRst[cls][0]

        else:
            sumArray = arrayRst[cls][0]

            for i in range(1, len(arrayRst[cls])):
                sumArray = sumArray + arrayRst[cls][i]

        arrayRst[cls] = sumArray

    time_o = datetime.datetime.now().replace(microsecond=0)

    # Apply priority rule
    __priorities = PRIORITIES[nomenclature + "_NUMPY"]

    for lulcCls in __priorities:
        __lulcCls = rstcls_map(lulcCls)

        if __lulcCls not in arrayRst:
            continue
        else:
            numpy.place(arrayRst[__lulcCls], arrayRst[__lulcCls] > 0, lulcCls)

    for i in range(len(__priorities)):
        lulc_i = rstcls_map(__priorities[i])

        if lulc_i not in arrayRst:
            continue

        else:
            for e in range(i + 1, len(__priorities)):
                lulc_e = rstcls_map(__priorities[e])

                if lulc_e not in arrayRst:
                    continue

                else:
                    numpy.place(arrayRst[lulc_e],
                                arrayRst[lulc_i] == __priorities[i], 0)

    time_p = datetime.datetime.now().replace(microsecond=0)

    # Merge all rasters
    startCls = 'None'
    for i in range(len(__priorities)):
        lulc_i = rstcls_map(__priorities[i])

        if lulc_i in arrayRst:
            resultSum = arrayRst[lulc_i]
            startCls = i
            break

    if startCls == 'None':
        return 'NoResults'

    for i in range(startCls + 1, len(__priorities)):
        lulc_i = rstcls_map(__priorities[i])

        if lulc_i not in arrayRst:
            continue

        resultSum = resultSum + arrayRst[lulc_i]

    # Save Result
    outIsRst = check_isRaster(lulcRst)
    if not outIsRst:
        from glass.pys.oss import fprop

        lulcRst = os.path.join(os.path.dirname(lulcRst),
                               fprop(lulcRst, 'fn') + '.tif')

    numpy.place(resultSum, resultSum == 0, 1)
    obj_to_rst(resultSum, lulcRst, refRaster, noData=1)

    osmlulc_rsttbl(
        nomenclature + "_NUMPY",
        os.path.join(os.path.dirname(lulcRst),
                     os.path.basename(lulcRst) + '.vat.dbf'))

    time_q = datetime.datetime.now().replace(microsecond=0)

    # Dump Database if PostGIS was used
    # Drop Database if PostGIS was used
    if roadsAPI == 'POSTGIS':
        dump_db(osm_db, os.path.join(workspace, osm_db + '.sql'), api='psql')
        drop_db(osm_db)

    return lulcRst, {
        0: ('set_settings', time_b - time_a),
        1: ('osm_to_sqdb', time_c - time_b),
        2: ('cls_in_sqdb', time_d - time_c),
        3: ('proj_data', time_e - time_d),
        4: ('rule_1', timeCheck[1]['total'], timeCheck[1]['detailed']),
        5: ('rule_2', timeCheck[2]['total'], timeCheck[2]['detailed']),
        6:
        None if 3 not in timeCheck else
        ('rule_3', timeCheck[3]['total'], timeCheck[3]['detailed']),
        7:
        None if 4 not in timeCheck else
        ('rule_4', timeCheck[4]['total'], timeCheck[4]['detailed']),
        8: ('rule_5', timeCheck[5]['total'], timeCheck[5]['detailed']),
        9:
        None if 7 not in timeCheck else
        ('rule_7', timeCheck[7]['total'], timeCheck[7]['detailed']),
        10: ('rst_to_array', time_n - time_m),
        11: ('sum_cls', time_o - time_n),
        12: ('priority_rule', time_p - time_o),
        13: ('merge_rst', time_q - time_p)
    }