Beispiel #1
0
    def plotFFT(self, output):

        # Calculate the FFT magnitude.
        f, fft = util.fft(self.frTime, self.frSignal)
        mag = np.abs(fft)

        # Plot the FFT magnitude.
        plt.plot(f, mag)

        # Axis limits.
        plt.xlim(0, 8000)
        plt.ylim(0, np.max(mag[(f > 1000)]) * 1.05)

        style.xlabel("Frequency (kHz)")
        style.ylabel("Arbitrary Units")

        plt.savefig(f"{output}/fft.pdf")

        # Save with a log scale.
        plt.yscale("log")
        plt.ylim(np.min(mag[(f < 8000)]), None)
        plt.savefig(f"{output}/fft_log.pdf")

        # Clear the figure.
        plt.clf()
Beispiel #2
0
    def plot(self, output, axis="f"):

        # Plot the specified distribution.
        plt.plot(self.axes[axis][self.physical], self.signal[self.physical],
                 'o-')

        # Plot the magic quantity as a vertical line.
        plt.axvline(util.magic[axis], ls=":", c="k", label="Magic")

        # Axis labels.
        label, units = util.labels[axis]['plot'], util.labels[axis]['units']
        style.xlabel(f"{label}" + (f" ({units})" if units != "" else ""))
        style.ylabel("Arbitrary Units")

        # Infobox containing mean and standard deviation.
        style.databox(
            (fr"\langle {util.labels[axis]['math']} \rangle",
             self.getMean(axis), self.getMeanError(axis),
             util.labels[axis]["units"]),
            (fr"\sigma_{{{util.labels[axis]['math']}}}", self.getWidth(axis),
             self.getWidthError(axis), util.labels[axis]["units"]),
            left=False if axis == "c_e" else True)

        # Add the legend.
        plt.legend(loc="upper right" if axis != "c_e" else "center right")

        # Save to disk.
        plt.savefig(output)

        # Clear the figure.
        plt.clf()
Beispiel #3
0
    def plotMagnitude(self, output):

        # Calculate the cosine, sine, and Fourier (magnitude) transforms.
        real = self.transform(self.t0)
        imag = self.transform(self.t0, sine=True)
        mag = np.sqrt(real**2 + imag**2)

        # Plot the magnitude, real, and imaginary parts.
        plt.plot(self.frequency, mag, 'o-', label="Fourier Magnitude")
        plt.plot(self.frequency, real, 'o-', label="Real Part (Cosine)")
        plt.plot(self.frequency, imag, 'o-', label="Imag. Part (Sine)")
        plt.axhline(0, ls=':', c="k")
        plt.legend()

        # Axis labels.
        style.xlabel("Frequency (kHz)")
        style.ylabel("Arbitrary Units")

        plt.savefig(f"{output}/magnitude.pdf")
        plt.clf()

        # Plot the phase.
        plt.plot(self.frequency, np.arctan2(imag, real), 'o-')
        style.xlabel("Frequency (kHz)")
        style.ylabel("Phase (rad)")
        plt.savefig(f"{output}/phase.pdf")
        plt.clf()
Beispiel #4
0
  def plot(self, output, endTimes):

    if output is not None:

      # Plot the signal.
      plt.plot(self.time, self.signal)

      # Label the axes.
      style.xlabel(r"Time ($\mu$s)")
      style.ylabel("Intensity")

      # Save the figure over a range of time axis limits (in us).
      for end in endTimes:

        # Set the time limits.
        plt.xlim(4, end)

        # Update the intensity limits.
        view = self.signal[(self.time >= 4) & (self.time <= end)]
        plt.ylim(np.min(view), np.max(view))

        # Save the figure.
        plt.savefig(f"{output}/signal/FastRotation_{end}us.pdf")

      # Clear the figure.
      plt.clf()
Beispiel #5
0
    def plotCorrelation(self, output):

        style.imshow(self.corr, label="Correlation", vmin=-1, vmax=1)

        style.xlabel(f"Frequency Bin ($\Delta f = {self.transform.df}$ kHz)")
        style.ylabel(f"Frequency Bin ($\Delta f = {self.transform.df}$ kHz)")

        plt.savefig(output)
        plt.clf()
Beispiel #6
0
    def plot(
        self,
        # Path to desired output file.
        output=None,
        # Assume plot objects exist already in plt.gca(), and update them for speed.
        update=False):

        # Make a text label for t0.
        label = f"$t_0 = {self.t0*1000:.4f}$ ns"

        # Make a plot from scratch.
        if not update:

            # Plot the transform, background points, and background fit.
            plt.plot(self.frequency,
                     self.signal,
                     'o-',
                     label="Cosine Transform")
            plt.plot(self.x, self.y, 'ko', label="Background")
            plt.plot(self.frequency, self.result, 'g', label="Background Fit")

            # Display the t0 label.
            plt.text(0.04,
                     0.95,
                     label,
                     ha="left",
                     va="top",
                     transform=plt.gca().transAxes)

            # Make the axis labels and legend.
            style.xlabel("Frequency (kHz)")
            style.ylabel("Arbitrary Units")
            plt.legend()

            # Save to disk and clear the figure, if specified.
            if output is not None:
                plt.savefig(output)
                plt.clf()

        # Update the existing plot objects for speed, assuming the above order.
        else:

            # Update the transform, background points, and background fit.
            plt.gca().lines[0].set_ydata(self.signal)
            plt.gca().lines[1].set_ydata(self.y)
            plt.gca().lines[2].set_ydata(self.result)

            # Update the t0 label.
            plt.gca().findobj(matplotlib.text.Text)[0].set_text(label)

            # Rescale the y-axis.
            plt.gca().relim()
            plt.gca().autoscale()
Beispiel #7
0
    def plot(self, times=[]):

        style.setStyle()

        self.frequencies.plot()
        style.xlabel("Cyclotron Frequency (kHz)")
        style.ylabel("Entries / 1 kHz")
        plt.savefig(f"{self.directory}/frequencies.pdf")
        plt.close()

        self.profile.plot()
        style.xlabel("Injection Time (ns)")
        style.ylabel("Entries / 1 ns")
        plt.savefig(f"{self.directory}/profile.pdf")
        plt.close()

        self.joint.plot()
        style.xlabel("Injection Time (ns)")
        style.ylabel("Cyclotron Frequency (kHz)")
        plt.savefig(f"{self.directory}/joint.pdf")
        plt.close()

        self.signal.plot()
        style.xlabel(r"Time (ns)")
        style.ylabel("Intensity / 1 ns")
        plt.savefig(f"{self.directory}/signal.pdf")
        for i in range(len(times)):
            if self.backward:
                plt.xlim(-times[i], times[i])
            else:
                plt.xlim(0, times[i])
            plt.savefig(f"{self.directory}/signal_{i}.pdf")
        plt.close()
Beispiel #8
0
    def plotOptimization(self, outDir, mode="coarse", all=False):

        if mode == "coarse":
            scanResults = self.coarseScan
        elif mode == "fine":
            scanResults = self.fineScan
        else:
            raise ValueError(f"Optimization mode '{mode}' not recognized.")

        scanMetric = np.array([result.chi2ndf for result in scanResults])
        label = r"$\chi^2$/ndf"

        # Extract the t0 times.
        times = np.array([result.t0 for result in scanResults])

        # Plot the SSE or chi2/ndf.
        plt.plot(times * 1000, scanMetric, 'o-')

        # For a chi2/ndf plot...
        if mode == "fine":
            # Show the one-sigma t0 bounds as a shaded rectangle.
            plt.axvspan((self.t0 - self.err_t0) * 1000,
                        (self.t0 + self.err_t0) * 1000,
                        alpha=0.2,
                        fc="k",
                        ec=None)
            # Plot the optimized t0 as a vertical line.
            plt.axvline(self.t0 * 1000, c="k", ls="--")
            # Show the horizontal reference line where chi2/ndf = 1.
            plt.axhline(1, c="k", ls=":")

        # Axis labels.
        style.xlabel("$t_0$ (ns)")
        style.ylabel(label)
        plt.ylim(0, None)

        # Save the result to disk, and clear the figure.
        plt.savefig(f"{outDir}/{mode}_scan.pdf")
        plt.clf()

        # Plot every background fit from the scan, in a multi-page PDF.
        if all:

            # Temporarily turn off LaTeX rendering for faster plots.
            latex = plt.rcParams["text.usetex"]
            plt.rcParams["text.usetex"] = False

            # Initialize the multi-page PDF file for scan plots.
            pdf = PdfPages(f"{outDir}/AllFits_{mode}.pdf")

            # Initialize a plot of the background fit.
            scanResults[0].plot()

            # Plot each background fit, updating the initialized plot each time.
            for i in range(len(times)):
                scanResults[i].plot(update=True)
                pdf.savefig()

            # Close the multi-page PDF, and clear the current figure.
            pdf.close()
            plt.clf()

            # Resume LaTeX rendering, if it was enabled before.
            if latex:
                plt.rcParams["text.usetex"] = True