def realTimeTwitterMap(interval): """ Interval in minutes! """ while True: df = pd.read_csv('terrortracking.csv',encoding="Latin-1") arr = df[['Lat', 'Long']] arr=arr.dropna() arr=(np.array(arr)).tolist() maps = gmaps.heatmap(arr) gmaps.display(maps) print('done') time.sleep(interval*60)
def plotRiskyLocations(name, country): if name == None: return # Consider saving this to pickle file. dic = { "Business": ["Business", "Gas", "mall", "restaurant", "cafe", "hotel"], "Government (General)": ["Government buildings", "Ministry"], "Police": ["Police post", "prison", "Police"], "Military": ["military base", "air base", "navy"], "abortion related": "abortion clinic", "airports & aircraft": "airport", "Government (Diplomatic)": "embassy", "Educational Institution": ["school", "university"], "Food or Water Supply": ["water treatment plant", "farms"], "NGO": ["NGO", "Non governmental organisations"], "Maritime": ["port", "ferry"], "Journalists & Media": "newspaper company", "Other": ["fire station", "hospital"], # wtf do you code for this "Private Citizens & Property": ["shopping malls", "markets"], "Religious Figures/Institutions": ["temples", "churches", "mosques"], "Terrorists/Non-State Militia": "militia", "Transportation": ["Train station", "Bus stations"], "Utilities": ["power plant", "water plant"], "Tourists": ["tourist spots"], "Telecommunications": ["Radio station", "TV station", "Internet provider"], "Violent Political Party": "political party", # and this } name = dic[name] geolocator = Nominatim() location = [] if type(name) != list: loc = geolocator.geocode(name + " " + country, exactly_one=False, timeout=10) if loc is not None: location.append(loc) else: for entry in name: loc = geolocator.geocode(entry + " " + country, exactly_one=False, timeout=10) if loc is not None: location.append(loc) location = list(itertools.chain(*location)) # flatten list data = [] for entry in location: data.append([entry.latitude, entry.longitude]) maps = gmaps.heatmap(data) gmaps.display(maps)
# ## Creazione della mappa # # invece che uno scatterplot con dei raggi, la libreria ci consente solo di fare una heatmap (eventualmente pesata) # # In[2]: roma = pandas.read_csv("../data/Roma_towers.csv") coordinate = roma[['lat', 'lon']].values # In[3]: heatmap = gmaps.heatmap(coordinate) gmaps.display(heatmap) # TODO scrivere che dietro queste due semplici linee ci sta un pomeriggio intero di smadonnamenti # In[4]: colosseo = (41.890183, 12.492369) # In[5]: import gmplot from gmplot import GoogleMapPlotter # gmap = gmplot.from_geocode("San Francisco")
import gmaps # load a Numpy array of (latitude, longitude) pairs data = gmaps.datasets.load_dataset('taxi_rides') map = gmaps.heatmap(data) gmaps.display(map)