def holdlist_format(self,
                     date=None,
                     prctype='close',
                     outdir=None,
                     source='wind'):
     """ 提取标准格式, 与get_totval 平行,不会互相调用 """
     if date is None:
         date = dt.datetime.today()
     if source == 'wind':
         #######  万得数据源 #######
         w.start()
         if date is None:
             date = dt.datetime.today()
     elif source == 'gm':
         ######  掘金数据源 #######
         md.init('18201141877', 'Wqxl7309')
         if prctype == 'settle':
             prctype = 'settle_price'  # 转为掘金格式
     holdnum = self.get_holdnum(date=date)
     holding = pd.DataFrame()
     for strat in self._logdir:
         stratinfo = strat.split('_')
         cttype = stratinfo[1].upper()
         montype = stratinfo[0]
         name = RawHoldingFutures.get_contracts_ours(date=date,
                                                     cttype=cttype)[montype]
         code = RawHoldingStocks.addfix(name)
         num = holdnum[strat]
         multi = self._multiplier[cttype]
         if source == 'wind':
             ############# wind 数据源
             prc = w.wsd('.'.join([name, 'CFE']), prctype, date,
                         date).Data[0][0]
         elif source == 'gm':
             ######### 掘金数据
             lastbar = md.get_last_n_dailybars(
                 symbol='.'.join(['CFFEX', name]),
                 n=1,
                 end_time=date.strftime('%Y-%m-%d'))[0]
             prc = eval('.'.join(['lastbar', prctype]))
         #### 紧急措施 手动
         # prc = 6069.2 if name=='IC1707' else 5880.6
         holdlist = pd.DataFrame(
             [[code, name, num, multi, prc]],
             columns=['code', 'name', 'num', 'multi', 'prc'])
         #holdlist['val'] = holdlist['num']*holdlist['multi']*holdlist['prc']
         holding = holding.append(holdlist, ignore_index=True)
     holding = holding[holding['num'] != 0]
     if outdir:
         holding.to_csv(outdir, header=True, index=False)
     else:
         return holding
def get_data( begin_time, end_time, period ):
    """
    :param from_time:
    :param to_time:
    :return:
    """
    # df = ts.get_hist_data(code, start=begin_time, end=end_time)
    # df = ts.get_hist_data('600848')
    ret = md.init( "13601380996", "it@iZ23psatkqsZ" )
    # df4 = tt.get_bars( "SHFE.ru1709", 60, "2016-09-05 09:00:00", "2016-11-04 23:30:00" )
    # df5 = tt.get_bars( "SHFE.ru1709", 60, "2016-11-05 09:00:00", "2017-01-04 23:30:00" )
    # df6 = tt.get_bars( "SHFE.ru1709", 60, "2017-01-05 09:00:00", "2017-03-04 23:30:00" )
    # df7 = tt.get_bars( "SHFE.ru1709", 60, "2017-03-05 09:00:00", "2017-05-04 23:30:00" )
    # df8 = tt.get_bars( "SHFE.ru1709", 60, "2017-05-25 09:00:00", "2017-07-06 23:30:00" )
    # df8 = tt.get_bars( "CZCE.CF709", 600, "2017-03-25 09:00:00", "2017-07-06 23:30:00" )
    df8 = tt.get_bars( "CZCE.ZC709", 900, "2017-02-25 09:00:00", "2017-07-06 23:30:00" )
    # df = pd.concat( [df4, df5, df6, df7, df8] )
    df = pd.concat( [df8] )
    print( len( df ) )
    return df
    def extract_tick_data(self, session_start, session_end, target_contract):
        return_tick_dicts = []
        ret_value = md.init("*****@*****.**", "btbxl@121208")

        current_loop_start = session_start

        while (True):
            test_tick_list = md.get_ticks(
                target_contract,
                current_loop_start.strftime(
                    stdafx.my_datetime.my_quant_time_format),
                session_end.strftime(stdafx.my_datetime.my_quant_time_format))
            if test_tick_list.__len__() <= 1:  #如果已经取不出数据,则跳出
                break
            current_final_tick = test_tick_list[test_tick_list.__len__() - 1]
            current_final_tick_moment = stdafx.my_datetime.utc_float2datetime(
                current_final_tick.utc_time)
            current_loop_start = current_final_tick_moment  #更新下一圈提数据的开始时刻
            test_tick_list.pop()
            return_tick_dicts.extend(test_tick_list)
            if current_loop_start >= session_end:  #如果下圈开始时间已经等于最终时间,则结束
                break
            pass

        tick_series = [
            my_tick(tick_to_dict(each_tick)) for each_tick in return_tick_dicts
        ]

        self.tick_profitability_walk(tick_series)
        my_tick_dict_series = [each.__dict__ for each in tick_series]

        pickle_filename = self.get_pickle_filename(target_contract,
                                                   session_start, session_end)

        pickle_file = open(pickle_filename, mode='wb')
        pickle.dump(my_tick_dict_series, pickle_file, -1)
        pickle_file.close()
        return my_tick_dict_series
Beispiel #4
0
 def __init__(self, username, password):
     self._username = username
     self._password = password
     md.init(username=username, password=password)
Beispiel #5
0
def OneDayMinData_MD(date,stklst):
    md.init('18201141877','Wqxl7309')
    datestr= dt.datetime.strptime(str(date),'%Y%m%d')
    datestr = dt.datetime.strftime(datestr,'%Y-%m-%d')
    starttime = ' '.join([datestr,'09:30:00'])
    endtime = ' '.join([datestr,'15:00:00'])
    # day base obj
    objday = StocksMinDB(configpath=r'E:\stocks_data_min\StocksMinDB\configs')
    objday.connectDB('stocks_data_min_by_day')
    daycols = [c.lower() for c in ByDay.colinfo if c!='STKID']
    dayconn = objday._getConn_()
    # stk base obj
    objstk = StocksMinDB(configpath=r'E:\stocks_data_min\StocksMinDB\configs')
    objstk.connectDB('stocks_data_min_by_stock')
    stkcols = [c.lower() for c in ByStock.colinfo]
    stkconn = objstk._getConn_()
    # data to extract
    cols = ['date','time','stkcd','open','high','low','close','volume','amount']
    alldata = pd.DataFrame()
    for stk in stklst:
        szstk = False
        if stk>=600000:
            stkcd = '.'.join(['SHSE',str(stk)])
        else:
            szstk = True
            stkstr = str(stk)
            stkcd = '.'.join(['SZSE','0'*(6-len(stkstr))+stkstr])
        stkbars = md.get_bars(stkcd,60,starttime,endtime)
        stkdata = [[date,utc2local(bar.utc_endtime,'%H%M'),stk,bar.open,bar.high,bar.low,bar.close,bar.volume,bar.amount] for bar in stkbars]
        if szstk and stkdata[-1][1]==1500 and stkdata[-2][1]>=1457:
            tms = stkdata[-2][1]+1
            cls = stkdata[-2][6]
            for tm in range(tms,1460):
                stkdata.insert(-1,[date,tm,stk,cls,cls,cls,cls,0,0])
        stkdata = pd.DataFrame(stkdata,columns=cols)
        stkdata['volamtflag'] = 0
        stkdata.loc[stkdata['amount']>(stkdata['volume']+100)*stkdata['high'],'volamtflag'] = 1
        stkdata.loc[stkdata['amount']<(stkdata['volume']-100)*stkdata['low'],'volamtflag'] = 2
        stkdata.loc[(stkdata['amount']==0) & (stkdata['volume']>0),'volamtflag'] = 3
        stkdata.loc[(stkdata['amount']==0) & (stkdata['volume']==0),'volamtflag'] = 4
        alldata = alldata.append(stkdata,ignore_index=True)
        stktable = '_'.join(['stkmin',stkcd[:2].lower()+stkcd.split('.')[1]])
        objstk.update_db(conn=stkconn,
                         dbname='stocks_data_min_by_stock',
                         data=stkdata.loc[:,stkcols].values,
                         tablename=stktable,
                         colinfo=ByStock.colinfo,
                         prmkey=ByStock.prmkey,
                         if_exist='append',
                         chunksize=1000
                         )
    # update day base
    daytable = 'stkmin_{0}'.format(date)
    daycolinfo = dict([itm for itm in ByDay.colinfo.items() if itm[0]!='STKID'])
    objday.update_db(conn=dayconn,
                         dbname='stocks_data_min_by_day',
                         data=alldata.loc[:,daycols].values,
                         tablename=daytable,
                         colinfo=daycolinfo,
                         prmkey=ByDay.prmkey,
                         if_exist='append',
                         chunksize=1000
                         )
Beispiel #6
0
# coding:utf-8
__author__ = 'song.lu'
from dateutil.parser import parse
from gmsdk import md
import pandas as pd
import numpy as np
import time




md.init('cloud.myquant.cn:8000', 'demo', 'demo')

r = md.get_bars(
    'CFFEX.IF1506',
    60,
    '2015-05-27 09:15:00',
    '2015-05-27 15:30:00',
)


st = time.time()
times = []
closep = []
openp = []
highp = []
lowp = []
volume = []
for i in r:
    times.append(parse(str(i.bar_time)))
    closep.append(i.close)
Beispiel #7
0
def OneDayMinData_MD(date, stklst):
    md.init('18201141877', 'Wqxl7309')
    datestr = dt.datetime.strptime(str(date), '%Y%m%d')
    datestr = dt.datetime.strftime(datestr, '%Y-%m-%d')
    starttime = ' '.join([datestr, '09:30:00'])
    endtime = ' '.join([datestr, '15:00:00'])
    # day base obj
    objday = StocksMinDB(configpath=r'E:\stocks_data_min\StocksMinDB\configs')
    objday.connectDB('stocks_data_min_by_day')
    daycols = [c.lower() for c in ByDay.colinfo if c != 'STKID']
    dayconn = objday._getConn_()
    # stk base obj
    objstk = StocksMinDB(configpath=r'E:\stocks_data_min\StocksMinDB\configs')
    objstk.connectDB('stocks_data_min_by_stock')
    stkcols = [c.lower() for c in ByStock.colinfo]
    stkconn = objstk._getConn_()
    # data to extract
    cols = [
        'date', 'time', 'stkcd', 'open', 'high', 'low', 'close', 'volume',
        'amount'
    ]
    alldata = pd.DataFrame()
    for stk in stklst:
        szstk = False
        if stk >= 600000:
            stkcd = '.'.join(['SHSE', str(stk)])
        else:
            szstk = True
            stkstr = str(stk)
            stkcd = '.'.join(['SZSE', '0' * (6 - len(stkstr)) + stkstr])
        stkbars = md.get_bars(stkcd, 60, starttime, endtime)
        stkdata = [[
            date,
            utc2local(bar.utc_endtime, '%H%M'), stk, bar.open, bar.high,
            bar.low, bar.close, bar.volume, bar.amount
        ] for bar in stkbars]
        if szstk and stkdata[-1][1] == 1500 and stkdata[-2][1] >= 1457:
            tms = stkdata[-2][1] + 1
            cls = stkdata[-2][6]
            for tm in range(tms, 1460):
                stkdata.insert(-1, [date, tm, stk, cls, cls, cls, cls, 0, 0])
        stkdata = pd.DataFrame(stkdata, columns=cols)
        stkdata['volamtflag'] = 0
        stkdata.loc[stkdata['amount'] >
                    (stkdata['volume'] + 100) * stkdata['high'],
                    'volamtflag'] = 1
        stkdata.loc[stkdata['amount'] <
                    (stkdata['volume'] - 100) * stkdata['low'],
                    'volamtflag'] = 2
        stkdata.loc[(stkdata['amount'] == 0) & (stkdata['volume'] > 0),
                    'volamtflag'] = 3
        stkdata.loc[(stkdata['amount'] == 0) & (stkdata['volume'] == 0),
                    'volamtflag'] = 4
        alldata = alldata.append(stkdata, ignore_index=True)
        stktable = '_'.join(
            ['stkmin', stkcd[:2].lower() + stkcd.split('.')[1]])
        objstk.update_db(conn=stkconn,
                         dbname='stocks_data_min_by_stock',
                         data=stkdata.loc[:, stkcols].values,
                         tablename=stktable,
                         colinfo=ByStock.colinfo,
                         prmkey=ByStock.prmkey,
                         if_exist='append',
                         chunksize=1000)
    # update day base
    daytable = 'stkmin_{0}'.format(date)
    daycolinfo = dict(
        [itm for itm in ByDay.colinfo.items() if itm[0] != 'STKID'])
    objday.update_db(conn=dayconn,
                     dbname='stocks_data_min_by_day',
                     data=alldata.loc[:, daycols].values,
                     tablename=daytable,
                     colinfo=daycolinfo,
                     prmkey=ByDay.prmkey,
                     if_exist='append',
                     chunksize=1000)
Beispiel #8
0
# coding:utf-8
from gmsdk import md, to_dict
import time
import datetime
import pymongo

# 读取期货列表
f_list = list()
with open('list.txt', 'r') as f:
    lines = f.readlines()
    for line in lines:
        i = line.split(' ')
        f_list.append(i[0])

# 初始化行情服务器
ret = md.init('13063638616', '940304', mode=1)
print ret
##########################
'''
设置数据库
'''
conn = pymongo.MongoClient('139.196.6.151', 26666)
db = conn['test_center']
qh_data_one_min = db['qh_data_one_min']
qh_data_five_min = db['qh_data_five_min']
qh_data_five_daily = db['qh_data_five_daily']
###############################
end = datetime.datetime.now()
start_m = end.month - 1
start = datetime.datetime(end.year, start_m, 1, 9, 0, 0)
start_e = datetime.datetime(end.year, start_m, 1, 15, 0, 0)
Beispiel #9
0
def min_data(daima,start_date,end_date,n):

    def count_split_days(start_date,end_date):
        if datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))<datetime.datetime(2015,1,5):
            num = (datetime.datetime(int(end_date[0:4]),int(end_date[4:6]),int(end_date[6:]))-datetime.datetime(2015,1,5)).days
        else:
            num = (datetime.datetime(int(end_date[0:4]),int(end_date[4:6]),int(end_date[6:]))-datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))).days
        return num
        
        
    from gmsdk import md
    ret = md.init("yourname", "password")
    if daima[0:2]=='60':
        daima_new = str('SHSE.')+str(daima)
    else:
        daima_new = str('SZSE.')+str(daima)
    mins = n*60
    strtime = []
    openp = []
    high = []
    low = []
    close = []
    volume = []
    amount = []

    days_internal = 120

    LoopNum = divmod(count_split_days(start_date,end_date),days_internal)[0]+1
    left = divmod(count_split_days(start_date,end_date),days_internal)[1]
    bars_set = []
    n = 0
    for ln in range(0,LoopNum):
        if n == 0:
            bars = md.get_bars(daima_new,mins,str(datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))+datetime.timedelta(days=days_internal*(ln)))[0:10]+' 09:00:00',str(datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))+datetime.timedelta(days=days_internal*(ln+1)))[0:10]+' 15:30:00')
            n = n+1
        else:
            if ln == LoopNum-1:
                bars = md.get_bars(daima_new,mins,str(datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))+datetime.timedelta(days=days_internal*(ln)+1))[0:10]+' 09:00:00',end_date[0:4]+'-'+end_date[4:6]+'-'+end_date[6:]+' 15:30:00')
                n = n+1
            else:
                bars = md.get_bars(daima_new,mins,str(datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))+datetime.timedelta(days=days_internal*(ln)+1))[0:10]+' 09:00:00',str(datetime.datetime(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:]))+datetime.timedelta(days=days_internal*(ln+1)))[0:10]+' 15:30:00')
                n = n+1
                
            

        bars_set.append(bars)

    
    for SignalBars in bars_set:
        for b in SignalBars:
            strtime.append(b.strtime)
            openp.append(b.open)
            high.append(b.high)
            low.append(b.low)
            close.append(b.close)
            volume.append(b.volume)
            amount.append(b.amount)

    mins = pd.DataFrame({'strtime':strtime,
                        'open':openp,
                        'close':close,
                        'high':high,
                        'low':low,
                        'volume':volume,
                        'amount':amount})
    return mins
Beispiel #10
0
def min_data(daima, start_date, end_date, n):
    def count_split_days(start_date, end_date):
        if datetime.datetime(int(start_date[0:4]), int(start_date[4:6]),
                             int(start_date[6:])) < datetime.datetime(
                                 2015, 1, 5):
            num = (datetime.datetime(int(end_date[0:4]), int(end_date[4:6]),
                                     int(end_date[6:])) -
                   datetime.datetime(2015, 1, 5)).days
        else:
            num = (datetime.datetime(int(end_date[0:4]), int(end_date[4:6]),
                                     int(end_date[6:])) -
                   datetime.datetime(int(start_date[0:4]), int(
                       start_date[4:6]), int(start_date[6:]))).days
        return num

    from gmsdk import md
    ret = md.init("yourname", "password")
    if daima[0:2] == '60':
        daima_new = str('SHSE.') + str(daima)
    else:
        daima_new = str('SZSE.') + str(daima)
    mins = n * 60
    strtime = []
    openp = []
    high = []
    low = []
    close = []
    volume = []
    amount = []

    days_internal = 120

    LoopNum = divmod(count_split_days(start_date, end_date),
                     days_internal)[0] + 1
    left = divmod(count_split_days(start_date, end_date), days_internal)[1]
    bars_set = []
    n = 0
    for ln in range(0, LoopNum):
        if n == 0:
            bars = md.get_bars(
                daima_new, mins,
                str(
                    datetime.datetime(int(start_date[0:4]), int(
                        start_date[4:6]), int(start_date[6:])) +
                    datetime.timedelta(days=days_internal * (ln)))[0:10] +
                ' 09:00:00',
                str(
                    datetime.datetime(int(start_date[0:4]), int(
                        start_date[4:6]), int(start_date[6:])) +
                    datetime.timedelta(days=days_internal *
                                       (ln + 1)))[0:10] + ' 15:30:00')
            n = n + 1
        else:
            if ln == LoopNum - 1:
                bars = md.get_bars(
                    daima_new, mins,
                    str(
                        datetime.datetime(int(start_date[
                            0:4]), int(start_date[4:6]), int(start_date[6:])) +
                        datetime.timedelta(days=days_internal *
                                           (ln) + 1))[0:10] + ' 09:00:00',
                    end_date[0:4] + '-' + end_date[4:6] + '-' + end_date[6:] +
                    ' 15:30:00')
                n = n + 1
            else:
                bars = md.get_bars(
                    daima_new, mins,
                    str(
                        datetime.datetime(int(start_date[
                            0:4]), int(start_date[4:6]), int(start_date[6:])) +
                        datetime.timedelta(days=days_internal *
                                           (ln) + 1))[0:10] + ' 09:00:00',
                    str(
                        datetime.datetime(int(start_date[
                            0:4]), int(start_date[4:6]), int(start_date[6:])) +
                        datetime.timedelta(days=days_internal *
                                           (ln + 1)))[0:10] + ' 15:30:00')
                n = n + 1

        bars_set.append(bars)

    for SignalBars in bars_set:
        for b in SignalBars:
            strtime.append(b.strtime)
            openp.append(b.open)
            high.append(b.high)
            low.append(b.low)
            close.append(b.close)
            volume.append(b.volume)
            amount.append(b.amount)

    mins = pd.DataFrame({
        'strtime': strtime,
        'open': openp,
        'close': close,
        'high': high,
        'low': low,
        'volume': volume,
        'amount': amount
    })
    return mins
Beispiel #11
0
from gmsdk import md

ret = md.init("13601380996",
              "it@iZ23psatkqsZ",
              2,
              "SHFE.RU1709.bar.60")

ticks = md.get_ticks("SHSE.600000,SZSE.000001",
                     "2017-06-01 09:30:00",
                     "2017-06-01 09:31:00")

print(ticks)

ret = md.init("13601380996",
              "it@iZ23psatkqsZ",
              4,
              "SHFE.ru1709.tick")


ti = md.get_ticks("SHFE.ru1709.tick","2017-06-01 09:30:00","2017-06-01 09:31:00")

print("aaa!")
print(ti)
Beispiel #12
0
# -*- coding: utf-8 -*-
import datetime
from gmsdk import md, to_dict
import pandas as pd
md.init('13601380996', 'it@iZ23psatkqsZ')
CFFEX = ['IF', 'IH', 'IC', 'T', 'TF']
CZCE = ['CF', 'FG', 'MA', 'RM', 'SR', 'TA', 'ZC']
SHFE = ['AL', 'BU', 'CU', 'HC', 'NI', 'RB', 'RU', 'SN', 'ZN']
DCE = ['C', 'CS', 'I', 'J', 'JD', 'JM', 'L', 'M', 'P', 'PP', 'V', 'Y']


def mtsymbol_list(symbol_list):
    z = len(symbol_list)
    ret = ''
    for i in range(z):
        ret = ret + symbol_list[i] + ','
    ret = ret[:len(ret) - 1]
    return ret


def to_pd(var, index):
    ret = []
    for i in var:
        ret.append(to_dict(i))
    ret = pd.DataFrame(ret)
    ret = ret.set_index(index)
    return ret


def get_shse():
    var = md.get_instruments('SHSE', 1, 0)
Beispiel #13
0
# -*- coding: utf-8 -*-
import datetime
from gmsdk import md,to_dict
import pandas as pd
md.init('*****@*****.**','tquant121')
CFFEX = ['IF','IH','IC','T','TF']
CZCE =['CF','FG','MA','RM','SR','TA','ZC']
SHFE = ['AL','BU','CU','HC','NI','RB','RU','SN','ZN']
DCE=['C','CS','I','J','JD','JM','L','M','P','PP','V','Y']
def mtsymbol_list(symbol_list):
    z = len (symbol_list)
    ret = ''
    for i in range(z):
        ret = ret + symbol_list[i] +','
    ret = ret[:len(ret)-1]
    return ret
def to_pd(var,index):
    ret =[]
    for i in var:
        ret.append(to_dict(i))
    ret = pd.DataFrame (ret)
    ret = ret.set_index(index)
    return ret
def get_shse( ):
    var =md.get_instruments('SHSE', 1, 0)
    return to_pd(var,'symbol')
def get_szse():
    var =md.get_instruments('SZSE', 1, 0)
    return to_pd(var,'symbol')
def get_shfe():
    var = md.get_instruments('SHFE', 4, 1)
Beispiel #14
0
# -*- coding: utf-8 -*-
import datetime
from gmsdk import md,to_dict
import pandas as pd
md.init('*****@*****.**','it@iZ23psatkqsZ')
CFFEX = ['IF','IH','IC','T','TF']
CZCE =['CF','FG','MA','RM','SR','TA','ZC']
SHFE = ['AL','BU','CU','HC','NI','RB','RU','SN','ZN']
DCE=['C','CS','I','J','JD','JM','L','M','P','PP','V','Y']
def mtsymbol_list(symbol_list):
    z = len (symbol_list)
    ret = ''
    for i in range(z):
        ret = ret + symbol_list[i] +','
    ret = ret[:len(ret)-1]
    return ret
def to_pd(var,index):
    ret =[]
    for i in var:
        ret.append(to_dict(i))
    ret = pd.DataFrame (ret)
    ret = ret.set_index(index)
    return ret
def get_shse( ):
    var =md.get_instruments('SHSE', 1, 0)
    return to_pd(var,'symbol')
def get_szse():
    var =md.get_instruments('SZSE', 1, 0)
    return to_pd(var,'symbol')
def get_shfe():
    var = md.get_instruments('SHFE', 4, 1)
Beispiel #15
0
from dateutil.parser import parse
from gmsdk import md
import pandas as pd
import numpy as np
import time

# st = time.time()

md.init('cloud.myquant.cn:8000', '18616622990', '034863342')


class GMPrice(object):
    def __init__(self, symbol=None, bar_types=None, begin_time=None, end_time=None):
        self.symbol = symbol
        self.bar_type = bar_types
        self.begin_time = begin_time
        self.end_time = end_time

    def __var_df(self, symbol=None, bar_type=None, begin_time=None, end_time=None, method=''):
        symbol = symbol if symbol else self.symbol
        bar_type = bar_type if bar_type else self.bar_type
        begin_time = begin_time if begin_time else self.begin_time
        end_time = end_time if end_time else self.end_time
        a = md.__getattribute__(method)
        if method in ['get_bars']:
            r = a(symbol, bar_type, begin_time, end_time)
        elif method in ['get_dailybars', 'get_ticks']:
            r = a(symbol, begin_time, end_time)
        elif method in ['get_last_ticks', 'get_last_dailybars']:
            r = a(symbol)
        # ret = self.__df_trans(r)
Beispiel #16
0
# -*- coding: utf-8 -*-
import datetime

import pandas as pd

from gmsdk import md, to_dict

md.init('13382753152', '940809')
CFFEX = ['IF', 'IH', 'IC', 'T', 'TF']
CZCE = ['CF', 'FG', 'MA', 'RM', 'SR', 'TA', 'ZC']
SHFE = ['AL', 'BU', 'CU', 'HC', 'NI', 'RB', 'RU', 'SN', 'ZN']
DCE = ['C', 'CS', 'I', 'J', 'JD', 'JM', 'L', 'M', 'P', 'PP', 'V', 'Y']


def mtsymbol_list(symbol_list):
    z = len(symbol_list)
    ret = ''
    for i in range(z):
        ret = ret + symbol_list[i] + ','
    ret = ret[:len(ret) - 1]
    return ret


def to_pd(var, index):
    ret = []
    for i in var:
        ret.append(to_dict(i))
    ret = pd.DataFrame(ret)
    ret = ret.set_index(index)
    return ret
Beispiel #17
0
 def __init__(self,configPath = r'E:\stocks_data_min\StocksMinDB\configs'):
     self.byDayDb = StocksMinDB(configpath=configPath,corenum=1)
     self.byDayDb.connectDB('stocks_data_min_by_day')
     self.byStkDb = StocksMinDB(configpath=configPath,corenum=1)
     self.byStkDb.connectDB('stocks_data_min_by_stock')
     md.init('18201141877','Wqxl7309')
Beispiel #18
0
def updatePal(palPath=None):
    start = time.time()

    md.init('18201141877', 'Wqxl7309')
    if not w.isconnected():
        w.start()

    palPath = r'E:\bqfcts\bqfcts\data\Paltest' if palPath is None else palPath
    tempFilePath = os.path.join(palPath,'temp_files')
    if not os.path.exists(tempFilePath):
        os.mkdir(tempFilePath)
    matName = 'data_20150701_now.mat'

    savedPal = h5py.File(os.path.join(palPath,matName))
    # print(read_cell(savedPal,'sec_names'))
    nextTrd = dt.datetime.strptime(str(int(savedPal['nexttrd'][0][0])),'%Y%m%d')
    nextTrdStr = nextTrd.strftime('%Y-%m-%d')
    updateTime = dt.datetime(nextTrd.year,nextTrd.month,nextTrd.day,15,30,0)
    if updateTime > dt.datetime.now():
        print('not update time yet')
        return
    else:
        availableDateStr = md.get_last_dailybars('SHSE.000001')[0].strtime[:10]
        if int(availableDateStr.replace('-','')) <= int(nextTrdStr.replace('-','')):
            print('new data not avaliable yet')
            return
        else:
            print('will update from {0} to {1}'.format(nextTrdStr,availableDateStr))

    betweenDays = [tdt.strtime[:10] for tdt in md.get_calendar('SHSE',nextTrdStr,availableDateStr)]
    if nextTrdStr!=availableDateStr:    # 避免同一日期重复
        betweenDays.append(availableDateStr)
    betweenDaysNumber = [int(tdt.replace('-','')) for tdt in betweenDays]
    newDateNum = len(betweenDaysNumber)

    # 更新前 先备份数据
    backupPath = os.path.join(palPath,'backup')
    cpResult = os.system(r'COPY {0} {1} /Y'.format(os.path.join(palPath,matName),os.path.join(backupPath,matName)))
    assert cpResult==0,'backup failed'

    gmDateFmt = 'yyyy-mm-dd'

    # update indice
    indiceNames = ['sh','hs300','zz500','sz50']
    indiceCodes = ['000001','000300','000905','000016']
    symbols = ','.join(['SHSE.{}'.format(sbl) for sbl in indiceCodes])
    indiceBars = md.get_dailybars(symbols,nextTrdStr,availableDateStr)
    for dumi,idx in enumerate(indiceNames):
        bars = indiceBars[dumi::4]
        idxret = np.array([bar.close for bar in bars])/np.array([bar.pre_close for bar in bars]) - 1
        idxArray = np.array([betweenDaysNumber,
                             [bar.open for bar in bars],
                             [bar.high for bar in bars],
                             [bar.low for bar in bars],
                             [bar.close for bar in bars],
                             [bar.volume for bar in bars],
                             [bar.amount for bar in bars],
                             idxret
                             ])
        # newIndex = np.column_stack([savedPal['index_{}'.format(idx)][:], idxArray])
        pd.DataFrame(np.transpose(idxArray)).to_csv(os.path.join(tempFilePath,'index_{}.csv'.format(idx)),index=False,header=False)

    # update stock info
    nCut = savedPal['N_cut'][0][0]    # 6000
    nEnd = savedPal['N_end'][0][0]    # last end date id ex.6732
    stockNames = read_cell(savedPal, 'stockname')
    savedStkcdsGM = ['.'.join([stk[-2:]+'SE',stk[:6]]) for stk in stockNames]
    savedStkNum = len(stockNames)
    listedStkcdsWind =  w.wset('sectorconstituent','date={};sectorid=a001010100000000'.format(availableDateStr)).Data[1]
    newStkcdsWind = sorted(list(set(listedStkcdsWind) - set(stockNames)))
    if newStkcdsWind:
        stockNames.extend( newStkcdsWind )
        newStkIpos = [int(tdt.strftime('%Y%m%d')) for tdt in w.wss(newStkcdsWind, 'ipo_date').Data[0]]
        newIpoIds = [(w.tdayscount(nextTrd,str(ipo)).Data[0][0]+nEnd) for ipo in newStkIpos]
        newStockip = pd.DataFrame([[int(newStkcdsWind[dumi][:6]), newStkIpos[dumi], newIpoIds[dumi],0,0,0,0,0] for dumi in range(len(newStkcdsWind))])
        newStockip.to_csv( os.path.join(tempFilePath,'stockip.csv'),index=False,header=False )
    else:
        pd.DataFrame([]).to_csv(os.path.join(tempFilePath, 'stockip.csv'), index=False, header=False)
    newStkcdsGm = ['.'.join([stk[-2:]+'SE',stk[:6]]) for stk in newStkcdsWind]
    allStkcdsGM = savedStkcdsGM + newStkcdsGm     # 全体股票包含已退市 与pal行数相同
    # allSecNames = pd.DataFrame(w.wss(stockNames,'sec_name').Data[0])
    allInstruments = md.get_instruments('SZSE', 1, 0) + md.get_instruments('SHSE', 1, 0)
    allInstrumentsDF = pd.DataFrame([[inds.symbol, inds.sec_name] for inds in allInstruments],columns=['symbol','sec_name']).set_index('symbol')
    allSecNames = allInstrumentsDF.loc[allStkcdsGM,'sec_name']
    allSecNames.to_csv( os.path.join(tempFilePath, 'sec_names.csv'), index=False, header=False )
    pd.DataFrame(newStkcdsWind).to_csv( os.path.join(tempFilePath, 'stockname.csv'), index=False, header=False )

    # update trade info
    pages = ['date','open','high','low','close','volume','amount','pctchg','flow_a_share','total_share','adjfct','adjprc','isst']
    newPal = {}
    for page in pages:
        newPal[page] = pd.DataFrame(np.zeros([len(allStkcdsGM), newDateNum]),index=allStkcdsGM,columns=betweenDays)
    lastPal = pd.DataFrame(savedPal['Pal'][:,-1,:],columns=savedStkcdsGM)
    barsDaily = md.get_dailybars(','.join(allStkcdsGM), nextTrdStr, availableDateStr)
    for bar in barsDaily:
        tdt = bar.strtime[:10]
        stk = '.'.join([bar.exchange,bar.sec_id])
        newPal['date'].loc[stk, tdt] = int(tdt.replace('-',''))
        newPal['open'].loc[stk, tdt] = bar.open
        newPal['high'].loc[stk, tdt] = bar.high
        newPal['low'].loc[stk, tdt] = bar.low
        newPal['close'].loc[stk, tdt] = bar.close
        newPal['volume'].loc[stk, tdt] = bar.volume
        newPal['amount'].loc[stk, tdt] = bar.amount
        newPal['pctchg'].loc[stk, tdt] = bar.close/bar.pre_close - 1
        # 计算自算复权因子 : 前一日收盘价*(1+当日收益率)/当日收盘价 s.t. (当日收盘价*当日复权因子)/前一日收盘价 = 1+ret
        # 若当日没有交易 : 沿用前一日 复权因子  循环外处理
        # 若前一日没有交易 前一日收盘价 特殊处理:
        #  当日有交易 : 取停牌前最后一个交易日的 收盘价
        #  当日没交易 没有退市 : 沿用前一日复权因子  循环外处理
        #  当日没交易 已经退市 : 沿用前一日复权因子  循环外处理
        # 若新股上市第一天 : 复权因子为1
        if stk in newStkcdsGm:
            newPal['adjfct'].loc[stk, tdt] = 1
        else:
            noTrdLast = (lastPal.loc[0, stk] == 0) if tdt == nextTrdStr else (newPal['date'].loc[stk, betweenDays[betweenDays.index(tdt) - 1]] == 0)
            if noTrdLast: # 前一日没交易 今日有交易(否则不应出现在bars里面)
                lastBar = md.get_last_n_dailybars(stk, 2, end_time=tdt)[-1]
                newPal['adjfct'].loc[stk, tdt] = lastPal.loc[15, stk] * lastBar.close * (1 + newPal['pctchg'].loc[stk, tdt]) / bar.close
            else:
                preClose = lastPal.loc[4,stk] if tdt==nextTrdStr else newPal['close'].loc[stk,betweenDays[betweenDays.index(tdt)-1]]
                newPal['adjfct'].loc[stk, tdt] = lastPal.loc[15, stk] * preClose * (1 + newPal['pctchg'].loc[stk, tdt]) / bar.close
    for dumi,tdt in enumerate(betweenDays):
        idx = newPal['adjfct'].loc[:,tdt]==0
        idx = idx.values
        if tdt==nextTrdStr:
            newPal['adjfct'].loc[idx[:savedStkNum], tdt] = lastPal.loc[15,:].values[idx[:savedStkNum]]
        else:
            newPal['adjfct'].loc[idx, tdt] = newPal['adjfct'].loc[idx, betweenDays[dumi-1]]
    newPal['adjprc'] = newPal['adjfct']*newPal['close']

    shareBar = md.get_share_index(','.join(allStkcdsGM), nextTrdStr, availableDateStr)
    for bar in shareBar:
        tdt = bar.pub_date
        stk = bar.symbol
        newPal['flow_a_share'].loc[stk, tdt] = bar.flow_a_share
        newPal['total_share'].loc[stk, tdt] = bar.total_share

    isST = np.array([int('ST' in sn) for sn in allSecNames.values])
    newPal['isst'] = pd.DataFrame(np.repeat(np.reshape(isST,(isST.shape[0],1)),len(betweenDays),axis=1), index=allStkcdsGM, columns=betweenDays)

    for page in newPal:
        newPal[page].to_csv(os.path.join(tempFilePath,'{}.csv'.format(page)),index=False,header=False )

    print('Pal temp files update finished with {0} stocks and {1} days in {2} seconds '.format(len(newStkcdsWind),len(betweenDays),time.time() - start))
Beispiel #19
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from gmsdk import md, to_dict

md.init('*****@*****.**', '123456')
# 提取tick数据
r = md.get_ticks(
    'SHSE.600000',
    '2016-01-04 09:00:00',
    '2016-01-04 12:00:00',
)
print('get_ticks: ', len(r))

#提取tick快照
r = md.get_last_ticks('SHSE.600000')
print('get_last_ticks: ', len(r))

#提取最新N笔tick数据
r = md.get_last_n_ticks(
    'SHSE.600000', 10)
print('get_last_n_ticks(10): ', len(r))

#提起一分钟分时数据(freq=60 seconds)
r = md.get_bars(
    'SHSE.600000',
    60,
    '2015-12-01 09:30:00',
    '2015-12-10 09:31:00',
)
print('get_bars: ', len(r))
Beispiel #20
0
def data_subscribe(source):
    """  数据源订阅 , pool_columns 提供需要订阅的字段,需要更新 undl_pool_info """
    COLNUM = len(gv.POOL_COLUMNS)
    if source == 'wind':
        # 定义数据源对应 callback 函数
        def wind_callback(indata):
            if indata.ErrorCode != 0:
                raise Exception('Error in callback with ErrorCode %d' %
                                indata.ErrorCode)  # 实际使用时,为防止中断可改为log输出
            for dumi in range(len(indata.Codes)):
                fieldlen = len(indata.Fields)
                if fieldlen == COLNUM:  # 只有在所有field都有数据的时候才存储
                    tempdata = []
                    for dumj in range(fieldlen):
                        tempdata.append(indata.Data[dumj][dumi])
                    gv.UNDL_POOL_INFO[indata.Codes[dumi]] = tempdata

        w.start()
        underlyings = list(gv.UNDL_POOL['total'])
        w.wsq(','.join(underlyings),
              ','.join(gv.POOL_COLUMNS),
              func=wind_callback)
        print('data subscribed with source %s' % source)
    elif source == 'goldmine':
        vars = {'rt_last': 'tick.last_price', 'rt_time': 'tick.str_time'}

        def on_tick(tick):
            tempdata = []
            for col in gv.POOL_COLUMNS:
                tempdata.append(eval(vars[col]))
            gv.UNDL_POOL_INFO[addfix(tick.sec_id)] = tempdata

        # 提取当前资产池中的代码,并转换为gm所需格式
        underlyings = list(gv.UNDL_POOL['total'])
        ret = md.init(username="******", password="******", mode=3)
        if ret != 0:
            raise Exception('Error in initiation with ErrorCode %d' % ret)
        ret = md.subscribe(','.join(underlyings))
        if ret != 0:
            raise Exception('Error in subscribe with ErrorCode %d' % ret)
        # 添加回调函数
        md.ev_tick += on_tick
        # 初始填充POOL,确保不会出现 NAN
        fillundl = ','.join(underlyings).replace('.tick', '')
        ticks = md.get_last_ticks(fillundl)
        for tick in ticks:
            tempdata = []
            for col in gv.POOL_COLUMNS:
                tempdata.append(eval(vars[col]))
            #UNDL_POOL_INFO[addfix(tick.sec_id)] = tempdata
            gv.UNDL_POOL_INFO[RawHoldingStocks.addfix(tick.sec_id).addfix(
                tick.sec_id)] = tempdata
        # 加入线程
        data_thread = threading.Thread(target=md.run)
        if not gv.PRE_THREADS.get(source):  # 如果是第一次建立线程则创建,否则只要重新订阅
            gv.PRE_THREADS[source] = data_thread
            data_thread.start()
        else:
            ret = md.resubscribe(','.join(underlyings))
            if ret != 0:
                raise Exception('Error in subscribe with ErrorCode %d' % ret)
        print(threading.enumerate())
        print('data subscribed with source %s' % source)
    elif source == 'goldmine_snapshot':
        vars = {'rt_last': 'tick.last_price', 'rt_time': 'tick.str_time'}

        def pull_ticks():
            underlyings = list(gv.UNDL_POOL['total'])
            ticks = md.get_last_ticks(','.join(underlyings))
            for tick in ticks:
                tempdata = []
                for col in gv.POOL_COLUMNS:
                    tempdata.append(eval(vars[col]))
                #UNDL_POOL_INFO[addfix(tick.sec_id)] = tempdata
                gv.UNDL_POOL_INFO[RawHoldingStocks.addfix(
                    tick.sec_id)] = tempdata

        ret = md.init(username="******", password="******", mode=1)
        if ret != 0:
            raise Exception('Error in initiation with ErrorCode %d' % ret)
        data_thread = NewThread(target=pull_ticks)
        if not gv.PRE_THREADS.get(source):  # 如果是第一次建立线程则创建,否则先关闭老线程,再开启新线程
            gv.PRE_THREADS[source] = data_thread
        else:
            gv.PRE_THREADS[source].stop()
            gv.PRE_THREADS[source] = data_thread
        data_thread.start()
        print(threading.enumerate())
        print('data subscribed with source %s' % source)
    elif source == 'simulation':

        def simugen(pathtype='Brownian', step=1):
            """ 模拟行情数据生成器 """
            colnum = len(gv.POOL_COLUMNS)
            holdings = gv.UNDL_POOL['total']
            for undl in holdings:
                if undl not in gv.UNDL_POOL_INFO:
                    gv.UNDL_POOL_INFO[undl] = np.random.rand(1, colnum)[0]
                else:
                    if pathtype == 'Geometric':
                        trend = np.random.randn(1, colnum)[0]
                        sigma = np.random.rand(1, colnum)[0]
                        gv.UNDL_POOL_INFO[undl] *= np.exp(
                            trend * step + sigma * np.sqrt(step) *
                            np.random.randn(1, colnum))[0]
                    else:
                        gv.UNDL_POOL_INFO[undl] += np.sqrt(
                            step) * np.random.randn(1, colnum)[0]

        data_thread = NewThread(target=simugen)
        if not gv.PRE_THREADS.get(source):  # 如果是第一次建立线程则创建,否则先关闭老线程,再开启新线程
            gv.PRE_THREADS[source] = data_thread
        else:
            gv.PRE_THREADS[source].stop()
            gv.PRE_THREADS[source] = data_thread
        data_thread.start()
        print(threading.enumerate())
        print('data subscribed with source: %s' % source)
    else:
        print('No source infomation provided, can not subscribe!')