def test_001(self):
        """
        Test the energy of a simple sequence (1, 2, -1, -2).
        """
        # input and expected results
        src_data = (1, 1, 1, 1)
        expected_result = 1

        # blocks
        fft_size = len(src_data)
        mavg_size = 1

        src = blocks.vector_source_c(data=src_data)
        dst = blocks.probe_signal_f()
        ed = EnergySSArch(fft_size, mavg_size, EnergyDecision(1))
        #radio_device = RadioDevice(the_source = src, the_sink = dst)

        radio_device = RadioDevice()
        radio_device.add_arch(source=src, arch=ed, sink=dst, uhd_device=None, name='ed')
        ################ FIM NOVO RADIO DEVICE

        ## flowgraph
        ##self.tb.add_arch(ed, radio_device, 'ed')
        self.tb.add_radio(radio_device)
        self.tb.run()

        result_data = dst.level()
        self.assertEqual(expected_result, result_data)
    def test_004(self):
        """
        Test EDTopBlock with a simple input (1, 2, 3, 4).
        """
        arr = (1.0, 2.0, 3.0, 4.0)
        expected_result = 30  # before expected result was 2536

        ed = EnergySSArch(fft_size=len(arr),
                          mavg_size=1,
                          algorithm=EnergyDecision(expected_result + 1)  # (expected_out + 1)
                          )

        src = blocks.vector_source_c(data=arr, vlen=1)
        sink = blocks.probe_signal_f()

        device = RadioDevice()
        device.add_arch(source=src, arch=ed, sink=sink, uhd_device=None, name='ed')

        self.tb.add_radio(device, 'ed')

        self.tb.start()
        self.tb.wait()

        ###self.assertEqual(expected_result , device.sink.output()[1])
        self.assertEqual(expected_result, device.ed.output()[1])  # uses 'name' parameter of the add_arch method
Beispiel #3
0
    def __init__(self):
        gr.top_block.__init__(self, "Top Block")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Top Block")
        try:
             self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
             pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "top_block")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 32000
        self.center_freq = center_freq = 0

        ##################################################
        # Blocks
        ##################################################
        self.freq_sweep_probe = blocks.probe_signal_f()
        def _center_freq_probe():
            while True:
                val = self.freq_sweep_probe.level()
                try:
                    self.set_center_freq(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _center_freq_thread = threading.Thread(target=_center_freq_probe)
        _center_freq_thread.daemon = True
        _center_freq_thread.start()
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_int*1, samp_rate,True)
        self.blocks_int_to_float_1 = blocks.int_to_float(1, 1)
        self.audio_sink_0 = audio.sink(samp_rate, "", True)
        self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, center_freq*300+300, 1, 0)
        self.analog_sig_source_x_0 = analog.sig_source_i(samp_rate, analog.GR_SAW_WAVE, 0.1, 3, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_throttle_0, 0))    
        self.connect((self.analog_sig_source_x_1, 0), (self.audio_sink_0, 0))    
        self.connect((self.blocks_int_to_float_1, 0), (self.freq_sweep_probe, 0))    
        self.connect((self.blocks_throttle_0, 0), (self.blocks_int_to_float_1, 0))    
    def test_001(self):
        """
        Test RadioDevice instantiation.
        """
        source = blocks.vector_source_c([1] * 8)
        sync = blocks.probe_signal_f()

        dev = RadioDevice()
        dev.add_arch(source=source, arch=None, sink=sync, uhd_device=None, name='None')
Beispiel #5
0
    def __init__(self):
        gr.top_block.__init__(self, "Tutorial Two 4")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Tutorial Two 4")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "tutorial_two_4")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.variable_function_probe_0 = variable_function_probe_0 = 0
        self.samp_rate = samp_rate = 32000

        ##################################################
        # Blocks
        ##################################################
        self.blocks_probe_signal_x_0 = blocks.probe_signal_f()
        
        def _variable_function_probe_0_probe():
            while True:
                val = self.blocks_probe_signal_x_0.level()
                try:
                    self.set_variable_function_probe_0(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _variable_function_probe_0_thread = threading.Thread(target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()
            
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1, samp_rate,True)
        self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, 1000, 1, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_throttle_0, 0))    
        self.connect((self.blocks_throttle_0, 0), (self.blocks_probe_signal_x_0, 0))    
Beispiel #6
0
def main():
    global radio_obj, sig_probe

    radio_obj = radio( 0 )
    sig_probe = blocks.probe_signal_f()
    radio_obj.block.connect(radio_obj.block.agc.offs, sig_probe)

    thread2 = Thread( target = rssi_function )
    thread2.start()

    radio_obj.MainLoop()
Beispiel #7
0
    def test_001(self):
        value = 12.3
        repeats = 100
        src_data = [value] * repeats

        src = blocks.vector_source_f(src_data)
        dst = blocks.probe_signal_f()

        self.tb.connect(src, dst)
        self.tb.run()
        output = dst.level()
        self.assertAlmostEqual(value, output, places=6)
    def test_003(self):
        """
        Test a more elaborate scenario with feedback.
        In this test the FeedbackTopBlock is utilized with n waveform algorithm as manager, an energy and a feedback
        algorithm.
        """
        return
        """
	::TODO::
	Update this test.
	"""

        # Random 'signal' utilized in the test
        arr = [random.random() for i in xrange(1024)]
        fft_size = 1024

        # Bayes learning parameters
        in_th = 1
        min_th = 0.001
        max_th = 20
        delta_th = 0.001
        k = 1

        # Feeback architecture
        bl_algo = BayesLearningThreshold(in_th=in_th,
                                         min_th=min_th,
                                         max_th=max_th,
                                         delta_th=delta_th,
                                         k=k)

        # detectors utilized
        bl = EnergyDetectorC(fft_size, 1, bl_algo)
        ev = WaveformSSArch(fft_size, WaveformDecision(0.7))


        # top block
        t = FeedbackSSArch(block_manager=ev,
                           block_learner=bl,
                           feedback_algorithm=FeedbackAlgorithm(bl_algo, AlwaysTimeFeedback())
                           ### learner, manager, a_feedback_strategy
        )

        source = blocks.vector_source_c(data=arr, vlen=1)
        sink = blocks.probe_signal_f()

        device = RadioDevice()
        device.add_arch(source=source, arch=t, sink=sink, uhd_device=None, name='ss_arch')

        self.tb.add_path(t, device, 'ss')
        self.tb.run()

        # As the waveform will (probably) not detected the channel as occupied, the feedback system should decrease the threshold by 1
        self.assertEqual(0, bl_algo.feedback)
def build_us_block(options):
    """
    Builds the US top block.
    The RX path performs the ED sensing
    The TX path transmits a BER
    @param options
    """

    # TOP BLOCK
    tb = OpERAFlow(name='US')

    # RX PATH
    if not options.tx_only:
        uhd_source = UHDSource(device_addr=options.args)
        uhd_source.samp_rate = 195512

        the_source = uhd_source
        the_sink = blocks.probe_signal_f()

        rx_path = EnergySSArch(fft_size=512,
                               mavg_size=5,
                               algorithm=EnergyDecision(th=0.000005)
                               )


        device_source = RadioDevice()
        device_source.add_arch(source=the_source, arch=rx_path, sink=the_sink, uhd_device=None, name="source")

        ###tb.add_arch( abstract_arch = rx_path, radio_device = device_source, name_of_arch = 'rx')
        tb.ad_radio(device_source, 'rx')

    # TX PATH
    tx_path = PacketGMSKTx(name='a')
    Logger.add_to_print_list("a_bit_rate", 'bps')

    uhd_sink = UHDSink(device_addr = options.args)
    uhd_sink.samp_rate = options.samp_rate

    the_source = None
    the_sink = uhd_sink
    uhd_device = uhd_sink
    radio_sink = RadioDevice()
    #::TODO:: conferir se arch é mesmo  tx_path, e fazer essa verificacao do tx_path e rx_path para todos os outros arquivos
    radio_sink.add_arch(source=the_source, arch=tx_path, sink=the_sink, uhd_device=uhd_device, name="sink")

    ###tb.add_arch( tx_path, radio_sink, 'tx', connection_type = OpERAFlow.CONN_SINK)
    tb.add_radio(radio_sink, 'tx')

    return tb
Beispiel #10
0
	def set_window_and_reconnect(self, window):
		'''
		Must be called while the flowgraph is locked already.
		'''
		window = int(window)
		self.disconnect_all()
		self.__sink = blocks.probe_signal_f()
		self.connect(
			self,
			blocks.complex_to_mag_squared(),
			blocks.stream_to_vector(itemsize=gr.sizeof_float, nitems_per_block=window),
			blocks.max_ff(window),
			self.__sink)
		
		# shortcut method implementation
		self.level = self.__sink.level
Beispiel #11
0
 def set_window_and_reconnect(self, window):
     '''
     Must be called while the flowgraph is locked already.
     '''
     # Use a power-of-2 window size to satisfy gnuradio allocation alignment without going overboard.
     window = int(2 ** math.floor(math.log(window, 2)))
     self.disconnect_all()
     self.__sink = blocks.probe_signal_f()
     self.connect(
         self,
         blocks.complex_to_mag_squared(),
         blocks.stream_to_vector(itemsize=gr.sizeof_float, nitems_per_block=window),
         blocks.max_ff(window),
         self.__sink)
     
     # shortcut method implementation
     self.level = self.__sink.level
Beispiel #12
0
def build_radio(options):
    """
    @param options
    """
    radio = RadioDevice(name='radio')

    #############################
    #
    # RX PATH - sensing and packet
    #
    #############################
    ss_and_rx_source = UHDSource("addr=%s" % options.my_ip)

    ss_sink = blocks.probe_signal_f()
    ss_path = EnergySSArch(fft_size=512, mavg_size=5, algorithm=EnergyDecision(th=5.0/10**4))
    radio.add_arch(source=ss_and_rx_source,
                   sink=ss_sink,
                   arch=ss_path,
                   name='ss',
                   uhd_device=ss_and_rx_source)

    pkt_rx_path = PacketGMSKRx(callback=PktQueue())
    radio.add_arch(source=ss_and_rx_source,
                   sink=None,
                   arch=pkt_rx_path,
                   name='rx',
                   uhd_device=ss_and_rx_source)


    #############################
    #
    # TX PATH - packet
    #
    #############################
    uhd_sink = UHDSink("addr=%s" % options.my_ip)
    pkt_tx_path = PacketGMSKTx()

    radio.add_arch(source=None,
                   sink=uhd_sink,
                   arch=pkt_tx_path,
                   name='tx',
                   uhd_device=uhd_sink)

    radio.set_samp_rate(200e3)
    return radio
def build_us_block(options):
    """
    Builds the US top block.
    The RX path performs the ED sensing.
    The TX path transmits a BER.
    @param options
    """
    # TOP BLOCK
    tb = OpERAFlow(name='US')

    # RX PATH
    uhd_source = UHDSource(device_addr=options.args)
    uhd_source.samp_rate = 195512
    #::TODO:: nova versao do radiodevice --> atualizar
    the_source = uhd_source
    the_sink = blocks.probe_signal_f()
    ###device_source = RadioDevice(the_source = uhd_source, the_sink = blocks.probe_signal_f() )
    device_source = RadioDevice()
    device_source.add_arch(source=the_source, arch=None, sink=the_sink, uhd_device=None, name="source")

    # ::TODO:: energyssarch NAO tem o parametro device!!!
    rx_path = EnergySSArch(device=device_source,
                           fft_size=512,
                           mavg_size=5,
                           algorithm=None)
            #algorithm = EnergyDecision( th = 0.00000001 ))

    ## tb.add_arch( abstract_arch = rx_path, radio_device = device_source, name_of_arch = 'rx')
    tb.add_radio(device_source, "rx")

    # TX PATH
    tx_path = PacketGMSKTx()

    uhd_sink = UHDSink(device_addr=options.args)
    uhd_sink.samp_rate = options.samp_rate

    the_source = None
    the_sink = uhd_sink
    uhd_device = uhd_sink
    radio_sink = RadioDevice()
    radio_sink.add_arch(source=the_source, arch=None, sink=the_sink, uhd_device=uhd_device, name="sink")
    ####tb.add_arch( tx_path, radio_sink, 'tx', connection_type = OpERAFlow.CONN_SINK)
    tb.add_radio(radio_sink, "sink")

    return tb
    def device_definition():
        """
        Definition of the devices used in the program.
        """

        tb = OpERAFlow(name='US')

        uhd_source = UHDSource()
        uhd_source.samp_rate = 195512

        energy = EnergySSArch(fft_size=512, mavg_size=5, algorithm=EnergyDecision(th=0))

        radio = RadioDevice(name="radio")
        radio.add_arch(source=uhd_source, arch=energy, sink=blocks.probe_signal_f(), uhd_device=uhd_source, name='ss')

        tb.add_radio(radio, "radio")

        return tb, radio
Beispiel #15
0
    def test_uhd_001(self):
        """

        """
        rx_uhd = PacketGMSKRx(10)

        source = blocks.vector_source_c( [1] * 8 )
        sink = blocks.probe_signal_f()

        dev = RadioDevice()
        dev.add_arch(source=source, arch=rx_uhd, sink=sink, uhd_device=None, name='rx_uhd')
        
        rx_uhd.set_radio_device(dev)
        my_radio = rx_uhd.radio
        print my_radio

        samp_rate_radio = rx_uhd.radio._get_samp_rate
        print samp_rate_radio

        str_radio = rx_uhd.radio.my_str
        print str_radio
Beispiel #16
0
 def __init__(self, input_rate, baud):
     gr.hier_block2.__init__(
         self, 'RTTY FSK demodulator',
         gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
         gr.io_signature(1, 1, gr.sizeof_float * 1),
     )
     
     self.bit_time = bit_time = input_rate / baud
     
     fsk_deviation_hz = 85  # TODO param or just don't care
     
     self.__dc_blocker = grfilter.dc_blocker_ff(int(bit_time * _HALF_BITS_PER_CODE * 10), False)
     self.__quadrature_demod = analog.quadrature_demod_cf(-input_rate / (2 * math.pi * fsk_deviation_hz))
     self.__freq_probe = blocks.probe_signal_f()
     
     self.connect(
         self,
         self.__quadrature_demod,
         self.__dc_blocker,
         digital.binary_slicer_fb(),
         blocks.char_to_float(scale=1),
         self)
     self.connect(self.__dc_blocker, self.__freq_probe)
    def test_003(self):
        """
        Test EDTopBlock with the input (1, 1, 1, 1, 1, 1, 1, 1).
        """
        arr = (1, 1, 1, 1, 1, 1, 1, 1)
        expected_out = 8

        ed = EnergySSArch(fft_size=len(arr),
                          mavg_size=8,
                          algorithm=EnergyDecision(expected_out - 1)
                          )

        src = blocks.vector_source_c(data=arr, vlen=1)
        sink = blocks.probe_signal_f()

        device = RadioDevice()
        device.add_arch(source=src, arch=ed, sink=sink, uhd_device=None, name='ed')

        self.tb.add_radio(device, 'ed')
        self.tb.run()

        ##self.assertEqual(1 , device.sink.level()) # didn't work
        self.assertEqual(1, device.output()[0])
    def test_002(self):
        """
        Test a sequence with float number (0.1, 0.1, 0.1, 0.1).
        """
        # input and expected results
        src_data = (0.1, 0.1, 0.1, 0.1)
        expected_result = 0

        # blocks
        fft_size = len(src_data)
        mavg_size = 1

        src = blocks.vector_source_c(data=src_data)
        ed = EnergyDetectorC(fft_size, mavg_size, EnergyDecision(1))

        dst = blocks.probe_signal_f()

        # flowgraph
        self.tb.connect(src, ed, dst)
        self.tb.run()

        result_data = dst.level()
        self.assertEqual(expected_result, result_data)
Beispiel #19
0
    def __init__(self):
        gr.top_block.__init__(self)

        options = get_options()

        self.ifreq = options.frequency
        self.rfgain = options.gain

        self.src = osmosdr.source(options.args)
        self.src.set_center_freq(self.ifreq)
        self.src.set_sample_rate(int(options.sample_rate))

        if self.rfgain is None:
            self.src.set_gain_mode(1)
            self.iagc = 1
            self.rfgain = 0
        else:
            self.iagc = 0
            self.src.set_gain_mode(0)
            self.src.set_gain(self.rfgain)

        # may differ from the requested rate
        sample_rate = self.src.get_sample_rate()
        sys.stderr.write("sample rate: %d\n" % (sample_rate))

        bitrate = 8000

        first_decim = 125

        out_sample_rate = sample_rate / first_decim
        sys.stderr.write("output sample rate: %d\n" % (out_sample_rate))

        sps = out_sample_rate / bitrate
        sys.stderr.write("samples per symbol: %d\n" % (sps))

        self.offset = options.offset
        sys.stderr.write("offset is: %dHz\n" % self.offset)

        taps = filter.firdes.low_pass(1.0, sample_rate, options.low_pass,
                                      options.low_pass * 0.2,
                                      filter.firdes.WIN_HANN)
        self.tuner = filter.freq_xlating_fir_filter_ccf(
            first_decim, taps, self.offset, sample_rate)

        self.demod = digital.gmsk_demod(samples_per_symbol=sps)

        self.output = blocks.file_sink(gr.sizeof_char, options.output_file)

        self.connect((self.src, 0), (self.tuner, 0))
        self.connect((self.tuner, 0), (self.demod, 0))
        self.connect((self.demod, 0), (self.output, 0))

        self.fm_demod = analog.fm_demod_cf(sample_rate / first_decim, 1, 5000,
                                           3000, 4000)
        self.integrate = blocks.integrate_ff(32000)
        self.probe = blocks.probe_signal_f()

        self.connect((self.tuner, 0), (self.fm_demod, 0))
        self.connect((self.fm_demod, 0), (self.integrate, 0))
        self.connect((self.integrate, 0), (self.probe, 0))

        def _variable_function_probe_0_probe():
            while True:
                freq = self.tuner.center_freq()
                freq2 = freq + 0.2 * self.probe.level()
                print "Autotune: fix=%f old=%i new=%i" % (
                    self.probe.level(), self.ifreq + freq, self.ifreq + freq2)
                self.tuner.set_center_freq(freq2)
                time.sleep(5.0)

        _variable_function_probe_0_thread = threading.Thread(
            target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()
Beispiel #20
0
 def __init__(self):
     gr.top_block.__init__(self, "Bpsk Receiverpoly")
     
     ##################################################
     # Variables
     ##################################################
     self.sps = sps = 8
     self.probe_var = probe_var = 0
     self.nfilts = nfilts = 32
     self.eb = eb = 0.35
     self.SNR = SNR = 500
     self.transistion = transistion = 100
     self.timing_loop_bw = timing_loop_bw = 6.28/100.0
     self.sideband_rx = sideband_rx = 500
     self.sideband = sideband = 500
     self.samp_rate = samp_rate = 48000
     self.rrc_taps = rrc_taps = firdes.root_raised_cosine(nfilts/16, nfilts/16, 1.0/float(sps), 0.35, 11*sps*nfilts/16)
     self.qpsk = qpsk = digital.constellation_rect(([0.707+0.707j, -0.707+0.707j, -0.707-0.707j, 0.707-0.707j]), ([0, 1, 2, 3]), 4, 2, 2, 1, 1).base()
     self.probe_var_n = probe_var_n = 0
     self.preamble = preamble = [1,-1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1]
     self.phase_bw = phase_bw = 6.28/100.0
     self.noise_amp = noise_amp = probe_var/(10**(SNR/20))
     self.matched_filter = matched_filter = firdes.root_raised_cosine(nfilts, nfilts, 1, eb, int(11*sps*nfilts))
     self.interpolation = interpolation = 60000
     self.eq_gain = eq_gain = 0.01
     self.delay = delay = 0
     self.decimation = decimation = 1
     self.constel = constel = digital.constellation_calcdist(([1,- 1]), ([0,1]), 2, 1).base()
     self.carrier = carrier = 10000
     self.arity = arity = 2
     
     ##################################################
     # Blocks
     ##################################################
     self.probe_rms = blocks.probe_signal_f()
     self.probe_avg_n = blocks.probe_signal_f()
     self.rational_resampler_xxx_0_0 = filter.rational_resampler_ccc(
                                                                     interpolation=decimation,
                                                                     decimation=interpolation,
                                                                     taps=(rrc_taps),
                                                                     fractional_bw=None,
                                                                     )
     def _probe_var_n_probe():
           while True:
                 val = self.probe_avg_n.level()
                 try:
                     self.set_probe_var_n(val)
                 except AttributeError:
                     pass
                 time.sleep(1.0 / (10))
     _probe_var_n_thread = threading.Thread(target=_probe_var_n_probe)
     _probe_var_n_thread.daemon = True
     _probe_var_n_thread.start()
     def _probe_var_probe():
         while True:
             val = self.probe_rms.level()
             try:
                 self.set_probe_var(val)
             except AttributeError:
                 pass
             time.sleep(1.0 / (10))
     _probe_var_thread = threading.Thread(target=_probe_var_probe)
     _probe_var_thread.daemon = True
     _probe_var_thread.start()
     self.freq_xlating_fir_filter_xxx_0_0 = filter.freq_xlating_fir_filter_ccc(1, (filter.firdes.low_pass(1, samp_rate*10, sideband_rx,1000)), carrier, samp_rate)
     self.digital_pfb_clock_sync_xxx_0 = digital.pfb_clock_sync_ccf(sps, timing_loop_bw, (rrc_taps), nfilts*2, nfilts/2, 1.5, 1)
     self.digital_diff_decoder_bb_0 = digital.diff_decoder_bb(2)
     self.digital_constellation_decoder_cb_0 = digital.constellation_decoder_cb(constel)
     
     script, SNRinput, inputwav, outputBinary, delay= argv
     
     self.blocks_wavfile_source_0 = blocks.wavfile_source(inputwav, False)
     self.blocks_throttle_1_0_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True)
     self.blocks_rms_xx_1 = blocks.rms_cf(0.01)
     self.blocks_rms_xx_0 = blocks.rms_cf(0.01)
     self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
     self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1, outputBinary, False)
     self.blocks_file_sink_0.set_unbuffered(False)
     self.blocks_delay_1 = blocks.delay(gr.sizeof_char*1, int(delay))
     self.blocks_add_xx_0 = blocks.add_vcc(1)
     self.analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, noise_amp, 0)
     
     ##################################################
     # Connections
     ##################################################
     self.connect((self.analog_noise_source_x_0, 0), (self.blocks_add_xx_0, 1))
     self.connect((self.analog_noise_source_x_0, 0), (self.blocks_rms_xx_1, 0))
     self.connect((self.blocks_add_xx_0, 0), (self.digital_pfb_clock_sync_xxx_0, 0))
     self.connect((self.blocks_delay_1, 0), (self.blocks_file_sink_0, 0))
     self.connect((self.blocks_float_to_complex_0, 0), (self.freq_xlating_fir_filter_xxx_0_0, 0))
     self.connect((self.blocks_rms_xx_0, 0), (self.probe_rms, 0))
     self.connect((self.blocks_rms_xx_1, 0), (self.probe_avg_n, 0))
     self.connect((self.blocks_throttle_1_0_0, 0), (self.blocks_add_xx_0, 0))
     self.connect((self.blocks_throttle_1_0_0, 0), (self.blocks_rms_xx_0, 0))
     self.connect((self.blocks_wavfile_source_0, 0), (self.blocks_float_to_complex_0, 0))
     self.connect((self.digital_constellation_decoder_cb_0, 0), (self.digital_diff_decoder_bb_0, 0))
     self.connect((self.digital_diff_decoder_bb_0, 0), (self.blocks_delay_1, 0))
     self.connect((self.digital_pfb_clock_sync_xxx_0, 0), (self.digital_constellation_decoder_cb_0, 0))
     self.connect((self.freq_xlating_fir_filter_xxx_0_0, 0), (self.rational_resampler_xxx_0_0, 0))
     self.connect((self.rational_resampler_xxx_0_0, 0), (self.blocks_throttle_1_0_0, 0))
Beispiel #21
0
    def __init__(self, port=65400, address="addr=192.168.10.2", seed1=1088):
        gr.top_block.__init__(self, "Ue")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Ue")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "UE")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Parameters
        ##################################################
        self.port = port
        self.address = address
        self.seed1 = seed1

        ##################################################
        # Variables
        ##################################################
        self.seed2 = seed2 = seed1 + 384
        self.pilot_symbols = pilot_symbols = ((
            1,
            1,
            1,
            -1,
        ), )
        self.pilot_carriers = pilot_carriers = ((
            -21,
            -7,
            7,
            21,
        ), )
        self.payload_mod = payload_mod = digital.constellation_qpsk()
        self.occupied_carriers = occupied_carriers = (
            range(-26, -21) + range(-20, -7) + range(-6, 0) + range(1, 7) +
            range(8, 21) + range(22, 27), )
        self.header_mod = header_mod = digital.constellation_bpsk()
        self.fft_len = fft_len = 64
        self.sync_word2 = sync_word2 = [
            0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1,
            1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 0, 1, -1, 1, 1, 1, -1,
            1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1,
            -1, 0, 0, 0, 0, 0
        ]
        self.sync_word1 = sync_word1 = [
            0., 0., 0., 0., 0., 0., 0., 1.41421356, 0., -1.41421356, 0.,
            1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0.,
            1.41421356, 0., -1.41421356, 0., 1.41421356, 0., -1.41421356, 0.,
            -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., 1.41421356, 0.,
            -1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0.,
            -1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0.,
            -1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0.,
            0., 0., 0., 0., 0.
        ]
        self.seed6 = seed6 = seed1 + 4590
        self.seed5 = seed5 = seed2 + 851
        self.seed4 = seed4 = seed1 + 9027
        self.seed3 = seed3 = seed1 + 2791
        self.samp_rate = samp_rate = 500000
        self.payload_equalizer = payload_equalizer = digital.ofdm_equalizer_simpledfe(
            fft_len, payload_mod.base(), occupied_carriers, pilot_carriers,
            pilot_symbols, 0, 1)
        self.packet_length_tag_key = packet_length_tag_key = "packet_len"
        self.packet_len = packet_len = 12
        self.noise_power = noise_power = 0
        self.length_tag_key = length_tag_key = "frame_len"
        self.header_equalizer = header_equalizer = digital.ofdm_equalizer_simpledfe(
            fft_len, header_mod.base(), occupied_carriers, pilot_carriers,
            pilot_symbols, 0, 1)
        self.h_2 = h_2 = 0
        self.h_1 = h_1 = 0
        self.h_0 = h_0 = 1

        ##################################################
        # Blocks
        ##################################################
        self.s_2 = blocks.probe_signal_c()
        self.s_1 = blocks.probe_signal_c()
        self.s_0 = blocks.probe_signal_c()
        self.noise_variance = blocks.probe_signal_f()

        def _noise_power_probe():
            while True:
                val = self.noise_variance.level()
                try:
                    self.set_noise_power(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _noise_power_thread = threading.Thread(target=_noise_power_probe)
        _noise_power_thread.daemon = True
        _noise_power_thread.start()

        def _h_2_probe():
            while True:
                val = self.s_2.level()
                try:
                    self.set_h_2(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _h_2_thread = threading.Thread(target=_h_2_probe)
        _h_2_thread.daemon = True
        _h_2_thread.start()

        def _h_1_probe():
            while True:
                val = self.s_1.level()
                try:
                    self.set_h_1(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _h_1_thread = threading.Thread(target=_h_1_probe)
        _h_1_thread.daemon = True
        _h_1_thread.start()

        def _h_0_probe():
            while True:
                val = self.s_0.level()
                try:
                    self.set_h_0(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _h_0_thread = threading.Thread(target=_h_0_probe)
        _h_0_thread.daemon = True
        _h_0_thread.start()
        self.uhd_usrp_source_0 = uhd.usrp_source(
            ",".join((address, "")),
            uhd.stream_args(
                cpu_format="fc32",
                channels=range(1),
            ),
        )
        self.uhd_usrp_source_0.set_samp_rate(samp_rate)
        self.uhd_usrp_source_0.set_center_freq(450e6, 0)
        self.uhd_usrp_source_0.set_gain(0, 0)
        self.uhd_usrp_source_0.set_antenna("RX2", 0)
        self.qtgui_time_sink_x_0_0 = qtgui.time_sink_f(
            1024,  #size
            samp_rate,  #samp_rate
            "",  #name
            1  #number of inputs
        )
        self.qtgui_time_sink_x_0_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0_0.set_y_axis(-1, 1)

        self.qtgui_time_sink_x_0_0.set_y_label("Amplitude", "")

        self.qtgui_time_sink_x_0_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                                    qtgui.TRIG_SLOPE_POS, 0.0,
                                                    0, 0, "")
        self.qtgui_time_sink_x_0_0.enable_autoscale(True)
        self.qtgui_time_sink_x_0_0.enable_grid(False)

        labels = ["", "", "", "", "", "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "blue"
        ]
        styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_time_sink_x_0_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_time_sink_x_0_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_0_win = sip.wrapinstance(
            self.qtgui_time_sink_x_0_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_time_sink_x_0_0_win)
        self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
            1024,  #size
            samp_rate,  #samp_rate
            "",  #name
            1  #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0.set_y_axis(-1, 1)

        self.qtgui_time_sink_x_0.set_y_label("Amplitude", "")

        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                                  qtgui.TRIG_SLOPE_POS, 0.0, 0,
                                                  0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(True)
        self.qtgui_time_sink_x_0.enable_grid(False)

        labels = ["", "", "", "", "", "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "blue"
        ]
        styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_time_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_win = sip.wrapinstance(
            self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
            1024,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate,  #bw
            "",  #name
            1  #number of inputs
        )
        self.qtgui_freq_sink_x_0.set_update_time(0.10)
        self.qtgui_freq_sink_x_0.set_y_axis(-140, 10)
        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0,
                                                  "")
        self.qtgui_freq_sink_x_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0.enable_grid(False)
        self.qtgui_freq_sink_x_0.set_fft_average(1.0)

        if complex == type(float()):
            self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)

        labels = ["", "", "", "", "", "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "dark blue"
        ]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_freq_sink_x_0_win = sip.wrapinstance(
            self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_freq_sink_x_0_win)
        self.projectGT_variance_cc_0 = projectGT.variance_cc(5000)
        self.projectGT_IA_vectors_vcvc_0 = projectGT.IA_vectors_vcvc(
            fft_len, noise_power, 1, 2, (15, 25, 40, 45), length_tag_key)
        self.ofdm_rx_phase_1_0 = ofdm_rx_phase_1(
            pilot_symbols=pilot_symbols,
            header_mod=header_mod,
            payload_mod=payload_mod,
            sync_word2=sync_word2,
            sync_word1=sync_word1,
            fft_len=fft_len,
            packet_len=packet_len,
            occupied_carriers=occupied_carriers,
            pilot_carriers=pilot_carriers,
            samp_rate=samp_rate,
        )
        self.channels_channel_model_4_0 = channels.channel_model(
            noise_voltage=0.1,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0, ),
            noise_seed=seed6,
            block_tags=False)
        self.channels_channel_model_4 = channels.channel_model(
            noise_voltage=0.1,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0, ),
            noise_seed=seed4,
            block_tags=False)
        self.channels_channel_model_3_0 = channels.channel_model(
            noise_voltage=0.05,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0, ),
            noise_seed=seed5,
            block_tags=False)
        self.channels_channel_model_3 = channels.channel_model(
            noise_voltage=0.1,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0, ),
            noise_seed=seed3,
            block_tags=False)
        self.channels_channel_model_2 = channels.channel_model(
            noise_voltage=0.11,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0, ),
            noise_seed=seed2,
            block_tags=False)
        self.channels_channel_model_1 = channels.channel_model(
            noise_voltage=0.12,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0, ),
            noise_seed=seed1,
            block_tags=False)
        self.channels_channel_model_0 = channels.channel_model(
            noise_voltage=0.000,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=((h_0, h_1, h_2)),
            noise_seed=0,
            block_tags=False)
        self.blocks_vector_to_stream_1 = blocks.vector_to_stream(
            gr.sizeof_gr_complex * 1, fft_len)
        self.blocks_vector_to_stream_0 = blocks.vector_to_stream(
            gr.sizeof_gr_complex * 1, fft_len)
        self.blocks_udp_sink_0 = blocks.udp_sink(gr.sizeof_gr_complex * 1,
                                                 "134.214.146.135", port, 1472,
                                                 True)
        self.blocks_tag_debug_3 = blocks.tag_debug(gr.sizeof_gr_complex * 1,
                                                   "IA", "")
        self.blocks_tag_debug_3.set_display(True)
        self.blocks_tag_debug_1 = blocks.tag_debug(
            gr.sizeof_gr_complex * fft_len, "chnl_intrf", "")
        self.blocks_tag_debug_1.set_display(False)
        self.blocks_tag_debug_0 = blocks.tag_debug(gr.sizeof_char * 1,
                                                   "Payload_intrf", "")
        self.blocks_tag_debug_0.set_display(False)
        self.blocks_null_source_3_0 = blocks.null_source(gr.sizeof_gr_complex *
                                                         1)
        self.blocks_null_source_3 = blocks.null_source(gr.sizeof_gr_complex *
                                                       1)
        self.blocks_null_source_2_0 = blocks.null_source(gr.sizeof_gr_complex *
                                                         1)
        self.blocks_null_source_2 = blocks.null_source(gr.sizeof_gr_complex *
                                                       1)
        self.blocks_null_source_1 = blocks.null_source(gr.sizeof_gr_complex *
                                                       1)
        self.blocks_null_source_0 = blocks.null_source(gr.sizeof_gr_complex *
                                                       1)
        self.blocks_float_to_complex_1_0 = blocks.float_to_complex(1)
        self.blocks_float_to_complex_1 = blocks.float_to_complex(1)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_complex_to_mag_squared_0_0 = blocks.complex_to_mag_squared(
            1)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.blocks_complex_to_mag_3_0 = blocks.complex_to_mag(1)
        self.blocks_complex_to_mag_3 = blocks.complex_to_mag(1)
        self.blocks_complex_to_mag_2_0 = blocks.complex_to_mag(1)
        self.blocks_complex_to_mag_2 = blocks.complex_to_mag(1)
        self.blocks_complex_to_mag_1 = blocks.complex_to_mag(1)
        self.blocks_complex_to_mag_0 = blocks.complex_to_mag(1)
        self.blocks_add_const_vxx_1_0 = blocks.add_const_vcc((0.0, ))
        self.blocks_add_const_vxx_1 = blocks.add_const_vcc((0.1, ))
        self.blocks_add_const_vxx_0 = blocks.add_const_vcc((0.8, ))

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_add_const_vxx_0, 0), (self.s_0, 0))
        self.connect((self.blocks_add_const_vxx_1, 0), (self.s_1, 0))
        self.connect((self.blocks_add_const_vxx_1_0, 0), (self.s_2, 0))
        self.connect((self.blocks_complex_to_mag_0, 0),
                     (self.blocks_float_to_complex_0, 0))
        self.connect((self.blocks_complex_to_mag_1, 0),
                     (self.blocks_float_to_complex_0, 1))
        self.connect((self.blocks_complex_to_mag_2, 0),
                     (self.blocks_float_to_complex_1, 0))
        self.connect((self.blocks_complex_to_mag_2_0, 0),
                     (self.blocks_float_to_complex_1_0, 0))
        self.connect((self.blocks_complex_to_mag_3, 0),
                     (self.blocks_float_to_complex_1, 1))
        self.connect((self.blocks_complex_to_mag_3_0, 0),
                     (self.blocks_float_to_complex_1_0, 1))
        self.connect((self.blocks_complex_to_mag_squared_0, 0),
                     (self.qtgui_time_sink_x_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0_0, 0),
                     (self.qtgui_time_sink_x_0_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.blocks_add_const_vxx_0, 0))
        self.connect((self.blocks_float_to_complex_1, 0),
                     (self.blocks_add_const_vxx_1, 0))
        self.connect((self.blocks_float_to_complex_1_0, 0),
                     (self.blocks_add_const_vxx_1_0, 0))
        self.connect((self.blocks_null_source_0, 0),
                     (self.channels_channel_model_1, 0))
        self.connect((self.blocks_null_source_1, 0),
                     (self.channels_channel_model_2, 0))
        self.connect((self.blocks_null_source_2, 0),
                     (self.channels_channel_model_3, 0))
        self.connect((self.blocks_null_source_2_0, 0),
                     (self.channels_channel_model_3_0, 0))
        self.connect((self.blocks_null_source_3, 0),
                     (self.channels_channel_model_4, 0))
        self.connect((self.blocks_null_source_3_0, 0),
                     (self.channels_channel_model_4_0, 0))
        self.connect((self.blocks_vector_to_stream_0, 0),
                     (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.blocks_vector_to_stream_1, 0),
                     (self.blocks_complex_to_mag_squared_0_0, 0))
        self.connect((self.channels_channel_model_0, 0),
                     (self.ofdm_rx_phase_1_0, 0))
        self.connect((self.channels_channel_model_0, 0),
                     (self.projectGT_variance_cc_0, 0))
        self.connect((self.channels_channel_model_1, 0),
                     (self.blocks_complex_to_mag_0, 0))
        self.connect((self.channels_channel_model_2, 0),
                     (self.blocks_complex_to_mag_1, 0))
        self.connect((self.channels_channel_model_3, 0),
                     (self.blocks_complex_to_mag_2, 0))
        self.connect((self.channels_channel_model_3_0, 0),
                     (self.blocks_complex_to_mag_2_0, 0))
        self.connect((self.channels_channel_model_4, 0),
                     (self.blocks_complex_to_mag_3, 0))
        self.connect((self.channels_channel_model_4_0, 0),
                     (self.blocks_complex_to_mag_3_0, 0))
        self.connect((self.ofdm_rx_phase_1_0, 2), (self.blocks_tag_debug_0, 0))
        self.connect((self.ofdm_rx_phase_1_0, 0), (self.blocks_tag_debug_1, 0))
        self.connect((self.ofdm_rx_phase_1_0, 0),
                     (self.blocks_vector_to_stream_0, 0))
        self.connect((self.ofdm_rx_phase_1_0, 1),
                     (self.blocks_vector_to_stream_1, 0))
        self.connect((self.projectGT_IA_vectors_vcvc_0, 0),
                     (self.blocks_tag_debug_3, 0))
        self.connect((self.projectGT_IA_vectors_vcvc_0, 0),
                     (self.blocks_udp_sink_0, 0))
        self.connect((self.projectGT_variance_cc_0, 0),
                     (self.noise_variance, 0))
        self.connect((self.uhd_usrp_source_0, 0),
                     (self.channels_channel_model_0, 0))
        self.connect((self.uhd_usrp_source_0, 0),
                     (self.qtgui_freq_sink_x_0, 0))
        self.connect((self.ofdm_rx_phase_1_0, 1),
                     (self.projectGT_IA_vectors_vcvc_0, 0))
        self.connect((self.ofdm_rx_phase_1_0, 0),
                     (self.projectGT_IA_vectors_vcvc_0, 1))
Beispiel #22
0
    def __init__(self,
                 angle=0,
                 samp_rate=1e6,
                 threshold_dB=-70,
                 rx_gain=0,
                 samp_rate_sink=8000,
                 tx_amp=10e-3,
                 lowpass_cutoff_freq=1700,
                 RF=2.49e9,
                 fft_len=pow(2, 20),
                 speed_samp_rate=1,
                 DC_filter_num_elements=4,
                 highpass_cutoff_freq=0):
        grc_wxgui.top_block_gui.__init__(
            self, title="CW Doppler Radar Simulator Single Target")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Parameters
        ##################################################
        self.angle = angle
        self.samp_rate = samp_rate
        self.threshold_dB = threshold_dB
        self.rx_gain = rx_gain
        self.samp_rate_sink = samp_rate_sink
        self.tx_amp = tx_amp
        self.lowpass_cutoff_freq = lowpass_cutoff_freq
        self.RF = RF
        self.fft_len = fft_len
        self.speed_samp_rate = speed_samp_rate
        self.DC_filter_num_elements = DC_filter_num_elements
        self.highpass_cutoff_freq = highpass_cutoff_freq

        ##################################################
        # Variables
        ##################################################
        self.target_speed = target_speed = 0
        self.target_direction = target_direction = 0
        self.tx_amp_tuner = tx_amp_tuner = tx_amp
        self.threshold_dB_tuner = threshold_dB_tuner = threshold_dB
        self.speed_textbox = speed_textbox = target_speed
        self.rx_gain_tuner = rx_gain_tuner = rx_gain
        self.lowpass_cutoff_freq_tuner = lowpass_cutoff_freq_tuner = lowpass_cutoff_freq
        self.highpass_cutoff_freq_tuner = highpass_cutoff_freq_tuner = highpass_cutoff_freq
        self.doppler_freq_sim_tuner = doppler_freq_sim_tuner = 100
        self.direction_textbox = direction_textbox = target_direction
        self.angle_tuner = angle_tuner = angle
        self.RF_tuner = RF_tuner = RF

        ##################################################
        # Blocks
        ##################################################
        _tx_amp_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._tx_amp_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_tx_amp_tuner_sizer,
            value=self.tx_amp_tuner,
            callback=self.set_tx_amp_tuner,
            label="TX Signal Amp",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._tx_amp_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_tx_amp_tuner_sizer,
            value=self.tx_amp_tuner,
            callback=self.set_tx_amp_tuner,
            minimum=0,
            maximum=100e-3,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_tx_amp_tuner_sizer, 0, 17, 1, 26)
        _threshold_dB_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._threshold_dB_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_threshold_dB_tuner_sizer,
            value=self.threshold_dB_tuner,
            callback=self.set_threshold_dB_tuner,
            label="Detected Target Threshold (dB)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._threshold_dB_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_threshold_dB_tuner_sizer,
            value=self.threshold_dB_tuner,
            callback=self.set_threshold_dB_tuner,
            minimum=-90,
            maximum=-30,
            num_steps=60,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_threshold_dB_tuner_sizer, 2, 0, 1, 17)
        self.speed_probe = blocks.probe_signal_f()
        self.notebook = self.notebook = wx.Notebook(self.GetWin(),
                                                    style=wx.NB_TOP)
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook),
                              "FFT CW Doppler Radar Receiver")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook),
                              "Frequency/Time CW Doppler Radar Receiver")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook),
                              "FFT CW Doppler Radar Receiver Full Spectrum")
        self.GridAdd(self.notebook, 5, 0, 13, 75)
        _lowpass_cutoff_freq_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._lowpass_cutoff_freq_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_lowpass_cutoff_freq_tuner_sizer,
            value=self.lowpass_cutoff_freq_tuner,
            callback=self.set_lowpass_cutoff_freq_tuner,
            label="Lowpass Cutoff Frequency (Hz)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._lowpass_cutoff_freq_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_lowpass_cutoff_freq_tuner_sizer,
            value=self.lowpass_cutoff_freq_tuner,
            callback=self.set_lowpass_cutoff_freq_tuner,
            minimum=0,
            maximum=3000,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_lowpass_cutoff_freq_tuner_sizer, 1, 43, 1, 32)
        _highpass_cutoff_freq_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._highpass_cutoff_freq_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_highpass_cutoff_freq_tuner_sizer,
            value=self.highpass_cutoff_freq_tuner,
            callback=self.set_highpass_cutoff_freq_tuner,
            label="High-Pass Cutoff Frequency (Hz)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._highpass_cutoff_freq_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_highpass_cutoff_freq_tuner_sizer,
            value=self.highpass_cutoff_freq_tuner,
            callback=self.set_highpass_cutoff_freq_tuner,
            minimum=0,
            maximum=1600,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_highpass_cutoff_freq_tuner_sizer, 0, 43, 1, 32)
        _doppler_freq_sim_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._doppler_freq_sim_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_doppler_freq_sim_tuner_sizer,
            value=self.doppler_freq_sim_tuner,
            callback=self.set_doppler_freq_sim_tuner,
            label="Doppler Frequency Simulator (Hz)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._doppler_freq_sim_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_doppler_freq_sim_tuner_sizer,
            value=self.doppler_freq_sim_tuner,
            callback=self.set_doppler_freq_sim_tuner,
            minimum=-2000,
            maximum=2000,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_doppler_freq_sim_tuner_sizer, 2, 17, 1, 58)
        self.direction_probe = blocks.probe_signal_i()
        _angle_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._angle_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_angle_tuner_sizer,
            value=self.angle_tuner,
            callback=self.set_angle_tuner,
            label="Angle of Approach of the Target (Deg)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._angle_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_angle_tuner_sizer,
            value=self.angle_tuner,
            callback=self.set_angle_tuner,
            minimum=0,
            maximum=89,
            num_steps=890,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_angle_tuner_sizer, 1, 17, 1, 26)
        _RF_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._RF_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_RF_tuner_sizer,
            value=self.RF_tuner,
            callback=self.set_RF_tuner,
            label="Radar Frequency (Hz)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._RF_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_RF_tuner_sizer,
            value=self.RF_tuner,
            callback=self.set_RF_tuner,
            minimum=2.4e9,
            maximum=2.5e9,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_RF_tuner_sizer, 1, 0, 1, 17)
        self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c(
            self.notebook.GetPage(1).GetWin(),
            baseband_freq=0,
            dynamic_range=100,
            ref_level=0,
            ref_scale=2.0,
            sample_rate=samp_rate_sink,
            fft_size=1024,
            fft_rate=15,
            average=True,
            avg_alpha=None,
            title="Time/Frequency CW Doppler Radar",
            win=window.blackmanharris,
        )
        self.notebook.GetPage(1).Add(self.wxgui_waterfallsink2_0.win)
        self.wxgui_fftsink2_full_spectrum = fftsink2.fft_sink_c(
            self.notebook.GetPage(2).GetWin(),
            baseband_freq=0,
            y_per_div=10,
            y_divs=10,
            ref_level=0,
            ref_scale=2.0,
            sample_rate=samp_rate,
            fft_size=4096,
            fft_rate=15,
            average=False,
            avg_alpha=None,
            title="FFT CW Doppler Radar Receiver Full Spectrum",
            peak_hold=False,
            win=window.blackmanharris,
        )
        self.notebook.GetPage(2).Add(self.wxgui_fftsink2_full_spectrum.win)
        self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
            self.notebook.GetPage(0).GetWin(),
            baseband_freq=0,
            y_per_div=10,
            y_divs=10,
            ref_level=0,
            ref_scale=2.0,
            sample_rate=samp_rate_sink,
            fft_size=1024,
            fft_rate=15,
            average=False,
            avg_alpha=None,
            title="FFT CW Doppler Radar Receiver ",
            peak_hold=False,
            win=window.blackmanharris,
        )
        self.notebook.GetPage(0).Add(self.wxgui_fftsink2_0.win)
        self.tx_signal = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, 0,
                                             0.5, 0)

        def _target_speed_probe():
            while True:
                val = self.speed_probe.level()
                try:
                    self.set_target_speed(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (2))

        _target_speed_thread = threading.Thread(target=_target_speed_probe)
        _target_speed_thread.daemon = True
        _target_speed_thread.start()

        def _target_direction_probe():
            while True:
                val = self.direction_probe.level()
                try:
                    ##############################################
                    if val == 1:  #if the value is 1 the target is approaching.
                        val = "Approaching"
                    elif val == 2:  #if the value is 2 the target is receding.
                        val = "Receding"
                    elif val == 0:  #if the value is 0 there is no target in sight.
                        val = "No Target Detected"
                    self.set_target_direction(val)
                    ###############################################
                except AttributeError:
                    pass
                time.sleep(1.0 / (2))

        _target_direction_thread = threading.Thread(
            target=_target_direction_probe)
        _target_direction_thread.daemon = True
        _target_direction_thread.start()
        self._speed_textbox_text_box = forms.text_box(
            parent=self.GetWin(),
            value=self.speed_textbox,
            callback=self.set_speed_textbox,
            label="Target Speed (Kph)",
            converter=forms.float_converter(),
        )
        self.GridAdd(self._speed_textbox_text_box, 3, 0, 1, 17)
        self.rx_signal_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE,
                                               doppler_freq_sim_tuner,
                                               tx_amp_tuner, 0)
        _rx_gain_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._rx_gain_tuner_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_rx_gain_tuner_sizer,
            value=self.rx_gain_tuner,
            callback=self.set_rx_gain_tuner,
            label="USRP RX Gain (dB)",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._rx_gain_tuner_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_rx_gain_tuner_sizer,
            value=self.rx_gain_tuner,
            callback=self.set_rx_gain_tuner,
            minimum=0,
            maximum=70,
            num_steps=70,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.GridAdd(_rx_gain_tuner_sizer, 0, 0, 1, 17)
        self.rational_resampler = filter.rational_resampler_ccc(
            interpolation=1,
            decimation=int(samp_rate / samp_rate_sink),
            taps=None,
            fractional_bw=None,
        )
        self.mixer = blocks.multiply_vcc(1)
        self.fft = fft.fft_vcc(fft_len, True, (window.blackmanharris(fft_len)),
                               True, 1)
        self._direction_textbox_text_box = forms.text_box(
            parent=self.GetWin(),
            value=self.direction_textbox,
            callback=self.set_direction_textbox,
            label="Target Direction",
            converter=forms.str_converter(),
        )
        self.GridAdd(self._direction_textbox_text_box, 4, 0, 1, 17)
        self.cwradar_vector_flip_ff = cwradar.vector_flip_ff(fft_len / 2)
        self.cwradar_doppler_velocity_single_target_ff_0 = cwradar.doppler_velocity_single_target_ff(
            fft_len / 2, samp_rate, RF_tuner, threshold_dB_tuner, angle_tuner,
            lowpass_cutoff_freq_tuner, highpass_cutoff_freq_tuner)
        self.blocks_vector_to_stream_0_0 = blocks.vector_to_stream(
            gr.sizeof_float * 1, fft_len)
        self.blocks_vector_to_stream_0 = blocks.vector_to_stream(
            gr.sizeof_float * 1, fft_len)
        self.blocks_throttle_0_1_0 = blocks.throttle(gr.sizeof_gr_complex * 1,
                                                     samp_rate, True)
        self.blocks_stream_to_vector_1_0 = blocks.stream_to_vector(
            gr.sizeof_float * 1, fft_len / 2)
        self.blocks_stream_to_vector_1 = blocks.stream_to_vector(
            gr.sizeof_float * 1, fft_len / 2)
        self.blocks_stream_to_vector_0 = blocks.stream_to_vector(
            gr.sizeof_gr_complex * 1, fft_len)
        self.blocks_keep_m_in_n_0_0 = blocks.keep_m_in_n(
            gr.sizeof_float, fft_len / 2, fft_len, fft_len / 2)
        self.blocks_keep_m_in_n_0 = blocks.keep_m_in_n(gr.sizeof_float,
                                                       fft_len / 2, fft_len, 0)
        self.blocks_complex_to_mag = blocks.complex_to_mag(fft_len)
        self.blocks_add_xx_1 = blocks.add_vcc(1)
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        self.awgn_channel_simulator = analog.noise_source_c(
            analog.GR_GAUSSIAN, 1e-3, 0)
        self.DC_filter_0 = blocks.multiply_const_vff(
            ([0] * DC_filter_num_elements + [1] *
             ((fft_len / 2) - DC_filter_num_elements)))
        self.DC_filter = blocks.multiply_const_vff(
            ([0] * DC_filter_num_elements + [1] *
             ((fft_len / 2) - DC_filter_num_elements)))

        ##################################################
        # Connections
        ##################################################
        self.connect((self.awgn_channel_simulator, 0),
                     (self.blocks_add_xx_1, 0))
        self.connect((self.tx_signal, 0), (self.blocks_add_xx_1, 1))
        self.connect((self.rx_signal_0, 0), (self.blocks_add_xx_1, 2))
        self.connect((self.mixer, 0), (self.blocks_throttle_0_1_0, 0))
        self.connect((self.mixer, 0), (self.blocks_stream_to_vector_0, 0))
        self.connect((self.blocks_throttle_0_1_0, 0),
                     (self.wxgui_fftsink2_full_spectrum, 0))
        self.connect((self.rational_resampler, 0), (self.wxgui_fftsink2_0, 0))
        self.connect((self.blocks_throttle_0_1_0, 0),
                     (self.rational_resampler, 0))
        self.connect((self.rational_resampler, 0),
                     (self.wxgui_waterfallsink2_0, 0))
        self.connect((self.blocks_add_xx_1, 0), (self.mixer, 1))
        self.connect((self.blocks_stream_to_vector_0, 0), (self.fft, 0))
        self.connect((self.fft, 0), (self.blocks_complex_to_mag, 0))
        self.connect((self.blocks_complex_to_mag, 0),
                     (self.blocks_vector_to_stream_0, 0))
        self.connect((self.blocks_complex_to_mag, 0),
                     (self.blocks_vector_to_stream_0_0, 0))
        self.connect((self.blocks_vector_to_stream_0_0, 0),
                     (self.blocks_keep_m_in_n_0_0, 0))
        self.connect((self.blocks_keep_m_in_n_0, 0),
                     (self.blocks_stream_to_vector_1, 0))
        self.connect((self.blocks_keep_m_in_n_0_0, 0),
                     (self.blocks_stream_to_vector_1_0, 0))
        self.connect((self.blocks_vector_to_stream_0, 0),
                     (self.blocks_keep_m_in_n_0, 0))
        self.connect((self.blocks_stream_to_vector_1_0, 0),
                     (self.DC_filter_0, 0))
        self.connect((self.blocks_stream_to_vector_1, 0),
                     (self.cwradar_vector_flip_ff, 0))
        self.connect((self.cwradar_vector_flip_ff, 0), (self.DC_filter, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.mixer, 0))
        self.connect((self.tx_signal, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.awgn_channel_simulator, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.DC_filter_0, 0),
                     (self.cwradar_doppler_velocity_single_target_ff_0, 1))
        self.connect((self.DC_filter, 0),
                     (self.cwradar_doppler_velocity_single_target_ff_0, 0))
        self.connect((self.cwradar_doppler_velocity_single_target_ff_0, 1),
                     (self.direction_probe, 0))
        self.connect((self.cwradar_doppler_velocity_single_target_ff_0, 0),
                     (self.speed_probe, 0))
Beispiel #23
0
    def __init__(self):
        gr.top_block.__init__(self, "If Else")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("If Else")
        qtgui.util.check_set_qss()
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "if_else")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())


        ##################################################
        # Variables
        ##################################################
        self.variable_function_probe_0 = variable_function_probe_0 = 0
        self.samp_rate = samp_rate = 32000
        self.freq = freq = 1000
        self.ampl = ampl = 1

        ##################################################
        # Blocks
        ##################################################
        self.probe = blocks.probe_signal_f()
        self._freq_tool_bar = Qt.QToolBar(self)
        self._freq_tool_bar.addWidget(Qt.QLabel("freq"+": "))
        self._freq_line_edit = Qt.QLineEdit(str(self.freq))
        self._freq_tool_bar.addWidget(self._freq_line_edit)
        self._freq_line_edit.returnPressed.connect(
        	lambda: self.set_freq(int(str(self._freq_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._freq_tool_bar)
        self._ampl_tool_bar = Qt.QToolBar(self)
        self._ampl_tool_bar.addWidget(Qt.QLabel("ampl"+": "))
        self._ampl_line_edit = Qt.QLineEdit(str(self.ampl))
        self._ampl_tool_bar.addWidget(self._ampl_line_edit)
        self._ampl_line_edit.returnPressed.connect(
        	lambda: self.set_ampl(int(str(self._ampl_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._ampl_tool_bar)

        self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
        	1024, #size
        	samp_rate, #samp_rate
        	'QT GUI Plot', #name
        	1 #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0.set_y_axis(-1, 1)

        self.qtgui_time_sink_x_0.set_y_label('Amplitude', "")

        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(False)
        self.qtgui_time_sink_x_0.enable_grid(False)
        self.qtgui_time_sink_x_0.enable_axis_labels(True)
        self.qtgui_time_sink_x_0.enable_control_panel(False)
        self.qtgui_time_sink_x_0.enable_stem_plot(False)

        if not True:
          self.qtgui_time_sink_x_0.disable_legend()

        labels = ['', '', '', '', '',
                  '', '', '', '', '']
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "blue"]
        styles = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1,
                   -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_time_sink_x_0_win)
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1, samp_rate,True)
        self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate, analog.GR_SIN_WAVE, freq, ampl, 0)
        self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate, analog.GR_SQR_WAVE, 0.1, 1, 0)

        def _variable_function_probe_0_probe():
            while True:
                val = self.probe.level()
                print val
                if val == 1:
                    self.set_ampl(1)
                    self.set_freq(1000)
                else:
                    self.set_ampl(.3)
                    self.set_freq(100)
                try:
                    self.set_variable_function_probe_0(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _variable_function_probe_0_thread = threading.Thread(target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_throttle_0, 0))
        self.connect((self.analog_sig_source_x_1, 0), (self.qtgui_time_sink_x_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.probe, 0))
    def __init__(self, meta_rate=10):
        gr.top_block.__init__(self, "FOX1D Receiver, Pipe to FoxTelem")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("FOX1D Receiver, Pipe to FoxTelem")
        qtgui.util.check_set_qss()
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "fox1d_rx_pipe_2")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Parameters
        ##################################################
        self.meta_rate = meta_rate

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 250e3
        self.decim = decim = 5
        self.baud = baud = 9600

        self.xlate_taps_0 = xlate_taps_0 = firdes.low_pass(
            1.0, samp_rate, samp_rate / 2, 1000, firdes.WIN_HAMMING, 6.76)

        self.xlate_taps = xlate_taps = firdes.low_pass(1.0, samp_rate, 15e3,
                                                       1000,
                                                       firdes.WIN_HAMMING,
                                                       6.76)

        self.volume_0 = volume_0 = 0.01
        self.volume = volume = 0.01
        self.throttle_factor = throttle_factor = 1
        self.samps_per_symb = samps_per_symb = samp_rate / decim / baud
        self.rf_lpf_cutoff = rf_lpf_cutoff = 8e3
        self.fsk_deviation_hz = fsk_deviation_hz = 4000
        self.fll_loop_bw_fine = fll_loop_bw_fine = 0.0001
        self.fll_loop_bw = fll_loop_bw = math.pi / 200
        self.doppler_func = doppler_func = 0
        self.audio_lpf_cutoff = audio_lpf_cutoff = 6e3

        ##################################################
        # Blocks
        ##################################################
        self.doppler_probe = blocks.probe_signal_f()
        self._volume_0_tool_bar = Qt.QToolBar(self)
        self._volume_0_tool_bar.addWidget(Qt.QLabel("volume_0" + ": "))
        self._volume_0_line_edit = Qt.QLineEdit(str(self.volume_0))
        self._volume_0_tool_bar.addWidget(self._volume_0_line_edit)
        self._volume_0_line_edit.returnPressed.connect(
            lambda: self.set_volume_0(
                eng_notation.str_to_num(
                    str(self._volume_0_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._volume_0_tool_bar, 10, 0, 1, 2)
        for r in range(10, 11):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 2):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._volume_tool_bar = Qt.QToolBar(self)
        self._volume_tool_bar.addWidget(Qt.QLabel("volume" + ": "))
        self._volume_line_edit = Qt.QLineEdit(str(self.volume))
        self._volume_tool_bar.addWidget(self._volume_line_edit)
        self._volume_line_edit.returnPressed.connect(lambda: self.set_volume(
            eng_notation.str_to_num(
                str(self._volume_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._volume_tool_bar, 7, 4, 1, 2)
        for r in range(7, 8):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 6):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._throttle_factor_tool_bar = Qt.QToolBar(self)
        self._throttle_factor_tool_bar.addWidget(
            Qt.QLabel("throttle_factor" + ": "))
        self._throttle_factor_line_edit = Qt.QLineEdit(
            str(self.throttle_factor))
        self._throttle_factor_tool_bar.addWidget(
            self._throttle_factor_line_edit)
        self._throttle_factor_line_edit.returnPressed.connect(
            lambda: self.set_throttle_factor(
                eng_notation.str_to_num(
                    str(self._throttle_factor_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._throttle_factor_tool_bar, 6, 4, 1,
                                       2)
        for r in range(6, 7):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 6):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._rf_lpf_cutoff_tool_bar = Qt.QToolBar(self)
        self._rf_lpf_cutoff_tool_bar.addWidget(
            Qt.QLabel("rf_lpf_cutoff" + ": "))
        self._rf_lpf_cutoff_line_edit = Qt.QLineEdit(str(self.rf_lpf_cutoff))
        self._rf_lpf_cutoff_tool_bar.addWidget(self._rf_lpf_cutoff_line_edit)
        self._rf_lpf_cutoff_line_edit.returnPressed.connect(
            lambda: self.set_rf_lpf_cutoff(
                eng_notation.str_to_num(
                    str(self._rf_lpf_cutoff_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._rf_lpf_cutoff_tool_bar, 6, 0, 1,
                                       2)
        for r in range(6, 7):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 2):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._fll_loop_bw_fine_tool_bar = Qt.QToolBar(self)
        self._fll_loop_bw_fine_tool_bar.addWidget(
            Qt.QLabel("fll_loop_bw_fine" + ": "))
        self._fll_loop_bw_fine_line_edit = Qt.QLineEdit(
            str(self.fll_loop_bw_fine))
        self._fll_loop_bw_fine_tool_bar.addWidget(
            self._fll_loop_bw_fine_line_edit)
        self._fll_loop_bw_fine_line_edit.returnPressed.connect(
            lambda: self.set_fll_loop_bw_fine(
                eng_notation.str_to_num(
                    str(self._fll_loop_bw_fine_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._fll_loop_bw_fine_tool_bar, 7, 2,
                                       1, 2)
        for r in range(7, 8):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(2, 4):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._fll_loop_bw_tool_bar = Qt.QToolBar(self)
        self._fll_loop_bw_tool_bar.addWidget(Qt.QLabel("fll_loop_bw" + ": "))
        self._fll_loop_bw_line_edit = Qt.QLineEdit(str(self.fll_loop_bw))
        self._fll_loop_bw_tool_bar.addWidget(self._fll_loop_bw_line_edit)
        self._fll_loop_bw_line_edit.returnPressed.connect(
            lambda: self.set_fll_loop_bw(
                eng_notation.str_to_num(
                    str(self._fll_loop_bw_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._fll_loop_bw_tool_bar, 6, 2, 1, 2)
        for r in range(6, 7):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(2, 4):
            self.top_grid_layout.setColumnStretch(c, 1)

        def _doppler_func_probe():
            while True:
                val = self.doppler_probe.level()
                try:
                    self.set_doppler_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (100))

        _doppler_func_thread = threading.Thread(target=_doppler_func_probe)
        _doppler_func_thread.daemon = True
        _doppler_func_thread.start()

        self._audio_lpf_cutoff_tool_bar = Qt.QToolBar(self)
        self._audio_lpf_cutoff_tool_bar.addWidget(
            Qt.QLabel("audio_lpf_cutoff" + ": "))
        self._audio_lpf_cutoff_line_edit = Qt.QLineEdit(
            str(self.audio_lpf_cutoff))
        self._audio_lpf_cutoff_tool_bar.addWidget(
            self._audio_lpf_cutoff_line_edit)
        self._audio_lpf_cutoff_line_edit.returnPressed.connect(
            lambda: self.set_audio_lpf_cutoff(
                eng_notation.str_to_num(
                    str(self._audio_lpf_cutoff_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._audio_lpf_cutoff_tool_bar, 7, 0,
                                       1, 2)
        for r in range(7, 8):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 2):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.rational_resampler_xxx_1 = filter.rational_resampler_ccc(
            interpolation=1,
            decimation=4,
            taps=None,
            fractional_bw=None,
        )
        self.rational_resampler_xxx_0_0 = filter.rational_resampler_ccc(
            interpolation=1,
            decimation=4,
            taps=None,
            fractional_bw=None,
        )
        self.rational_resampler_xxx_0 = filter.rational_resampler_ccc(
            interpolation=48,
            decimation=50,
            taps=None,
            fractional_bw=None,
        )
        self.qtgui_waterfall_sink_x_0_0 = qtgui.waterfall_sink_c(
            2048,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate / decim,  #bw
            "corrected",  #name
            1  #number of inputs
        )
        self.qtgui_waterfall_sink_x_0_0.set_update_time(0.010)
        self.qtgui_waterfall_sink_x_0_0.enable_grid(False)
        self.qtgui_waterfall_sink_x_0_0.enable_axis_labels(True)

        if not True:
            self.qtgui_waterfall_sink_x_0_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
            self.qtgui_waterfall_sink_x_0_0.set_plot_pos_half(not True)

        labels = ['', '', '', '', '', '', '', '', '', '']
        colors = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_waterfall_sink_x_0_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_waterfall_sink_x_0_0.set_line_label(i, labels[i])
            self.qtgui_waterfall_sink_x_0_0.set_color_map(i, colors[i])
            self.qtgui_waterfall_sink_x_0_0.set_line_alpha(i, alphas[i])

        self.qtgui_waterfall_sink_x_0_0.set_intensity_range(-80, 0)

        self._qtgui_waterfall_sink_x_0_0_win = sip.wrapinstance(
            self.qtgui_waterfall_sink_x_0_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_0_win, 2,
                                       4, 2, 4)
        for r in range(2, 4):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 8):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
            2048,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate / decim,  #bw
            "Pre-D",  #name
            1  #number of inputs
        )
        self.qtgui_waterfall_sink_x_0.set_update_time(0.010)
        self.qtgui_waterfall_sink_x_0.enable_grid(False)
        self.qtgui_waterfall_sink_x_0.enable_axis_labels(True)

        if not True:
            self.qtgui_waterfall_sink_x_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
            self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)

        labels = ['', '', '', '', '', '', '', '', '', '']
        colors = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_waterfall_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
            self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])

        self.qtgui_waterfall_sink_x_0.set_intensity_range(-80, 0)

        self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(
            self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_win, 0,
                                       4, 2, 4)
        for r in range(0, 2):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 8):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
            1024,  #size
            samp_rate / 5 / 50 * 48,  #samp_rate
            "",  #name
            1  #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0.set_y_axis(-1, 1)

        self.qtgui_time_sink_x_0.set_y_label('Amplitude', "")

        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                                  qtgui.TRIG_SLOPE_POS, 0.0, 0,
                                                  0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(False)
        self.qtgui_time_sink_x_0.enable_grid(False)
        self.qtgui_time_sink_x_0.enable_axis_labels(True)
        self.qtgui_time_sink_x_0.enable_control_panel(False)
        self.qtgui_time_sink_x_0.enable_stem_plot(False)

        if not True:
            self.qtgui_time_sink_x_0.disable_legend()

        labels = ['', '', '', '', '', '', '', '', '', '']
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "blue"
        ]
        styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_time_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_win = sip.wrapinstance(
            self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_time_sink_x_0_win, 8, 2, 1,
                                       6)
        for r in range(8, 9):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(2, 8):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_number_sink_0_0_0_0_0 = qtgui.number_sink(
            gr.sizeof_float, 0, qtgui.NUM_GRAPH_NONE, 1)
        self.qtgui_number_sink_0_0_0_0_0.set_update_time(0.10)
        self.qtgui_number_sink_0_0_0_0_0.set_title("")

        labels = ['SNR', '', '', '', '', '', '', '', '', '']
        units = ['dB', '', '', '', '', '', '', '', '', '']
        colors = [("blue", "red"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        for i in xrange(1):
            self.qtgui_number_sink_0_0_0_0_0.set_min(i, 0)
            self.qtgui_number_sink_0_0_0_0_0.set_max(i, 30)
            self.qtgui_number_sink_0_0_0_0_0.set_color(i, colors[i][0],
                                                       colors[i][1])
            if len(labels[i]) == 0:
                self.qtgui_number_sink_0_0_0_0_0.set_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_number_sink_0_0_0_0_0.set_label(i, labels[i])
            self.qtgui_number_sink_0_0_0_0_0.set_unit(i, units[i])
            self.qtgui_number_sink_0_0_0_0_0.set_factor(i, factor[i])

        self.qtgui_number_sink_0_0_0_0_0.enable_autoscale(False)
        self._qtgui_number_sink_0_0_0_0_0_win = sip.wrapinstance(
            self.qtgui_number_sink_0_0_0_0_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_number_sink_0_0_0_0_0_win,
                                       6, 6, 1, 1)
        for r in range(6, 7):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(6, 7):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_number_sink_0_0_0_0 = qtgui.number_sink(
            gr.sizeof_float, 0, qtgui.NUM_GRAPH_NONE, 1)
        self.qtgui_number_sink_0_0_0_0.set_update_time(0.010)
        self.qtgui_number_sink_0_0_0_0.set_title("")

        labels = ['Freq Offset', 'Phase', 'Error', '', '', '', '', '', '', '']
        units = ['Hz', '', '', '', '', '', '', '', '', '']
        colors = [("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        for i in xrange(1):
            self.qtgui_number_sink_0_0_0_0.set_min(i, -32767)
            self.qtgui_number_sink_0_0_0_0.set_max(i, 32767)
            self.qtgui_number_sink_0_0_0_0.set_color(i, colors[i][0],
                                                     colors[i][1])
            if len(labels[i]) == 0:
                self.qtgui_number_sink_0_0_0_0.set_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_number_sink_0_0_0_0.set_label(i, labels[i])
            self.qtgui_number_sink_0_0_0_0.set_unit(i, units[i])
            self.qtgui_number_sink_0_0_0_0.set_factor(i, factor[i])

        self.qtgui_number_sink_0_0_0_0.enable_autoscale(False)
        self._qtgui_number_sink_0_0_0_0_win = sip.wrapinstance(
            self.qtgui_number_sink_0_0_0_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_number_sink_0_0_0_0_win, 6,
                                       7, 1, 1)
        for r in range(6, 7):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(7, 8):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_freq_sink_x_2 = qtgui.freq_sink_f(
            2048,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate,  #bw
            "",  #name
            1  #number of inputs
        )
        self.qtgui_freq_sink_x_2.set_update_time(0.10)
        self.qtgui_freq_sink_x_2.set_y_axis(-140, 10)
        self.qtgui_freq_sink_x_2.set_y_label('Relative Gain', 'dB')
        self.qtgui_freq_sink_x_2.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0,
                                                  "")
        self.qtgui_freq_sink_x_2.enable_autoscale(False)
        self.qtgui_freq_sink_x_2.enable_grid(False)
        self.qtgui_freq_sink_x_2.set_fft_average(1.0)
        self.qtgui_freq_sink_x_2.enable_axis_labels(True)
        self.qtgui_freq_sink_x_2.enable_control_panel(False)

        if not True:
            self.qtgui_freq_sink_x_2.disable_legend()

        if "float" == "float" or "float" == "msg_float":
            self.qtgui_freq_sink_x_2.set_plot_pos_half(not False)

        labels = ['', '', '', '', '', '', '', '', '', '']
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "dark blue"
        ]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_2.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_2.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_2.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_2.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_2.set_line_alpha(i, alphas[i])

        self._qtgui_freq_sink_x_2_win = sip.wrapinstance(
            self.qtgui_freq_sink_x_2.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_2_win, 12, 0, 1,
                                       8)
        for r in range(12, 13):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 8):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_freq_sink_x_1 = qtgui.freq_sink_f(
            1024,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate / decim / 50 * 48,  #bw
            "",  #name
            1  #number of inputs
        )
        self.qtgui_freq_sink_x_1.set_update_time(0.10)
        self.qtgui_freq_sink_x_1.set_y_axis(-140, 10)
        self.qtgui_freq_sink_x_1.set_y_label('Relative Gain', 'dB')
        self.qtgui_freq_sink_x_1.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0,
                                                  "")
        self.qtgui_freq_sink_x_1.enable_autoscale(False)
        self.qtgui_freq_sink_x_1.enable_grid(False)
        self.qtgui_freq_sink_x_1.set_fft_average(1.0)
        self.qtgui_freq_sink_x_1.enable_axis_labels(True)
        self.qtgui_freq_sink_x_1.enable_control_panel(False)

        if not True:
            self.qtgui_freq_sink_x_1.disable_legend()

        if "float" == "float" or "float" == "msg_float":
            self.qtgui_freq_sink_x_1.set_plot_pos_half(not False)

        labels = ['', '', '', '', '', '', '', '', '', '']
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "dark blue"
        ]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_1.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_1.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_1.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_1.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_1.set_line_alpha(i, alphas[i])

        self._qtgui_freq_sink_x_1_win = sip.wrapinstance(
            self.qtgui_freq_sink_x_1.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_1_win, 10, 2, 1,
                                       6)
        for r in range(10, 11):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(2, 8):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
            2048,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate / decim,  #bw
            "Pre-D",  #name
            2  #number of inputs
        )
        self.qtgui_freq_sink_x_0.set_update_time(0.010)
        self.qtgui_freq_sink_x_0.set_y_axis(-60, 0)
        self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB')
        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0,
                                                  "")
        self.qtgui_freq_sink_x_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0.enable_grid(True)
        self.qtgui_freq_sink_x_0.set_fft_average(0.2)
        self.qtgui_freq_sink_x_0.enable_axis_labels(True)
        self.qtgui_freq_sink_x_0.enable_control_panel(False)

        if not True:
            self.qtgui_freq_sink_x_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
            self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)

        labels = ['pre-d', 'corr', '', '', '', '', '', '', '', '']
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "dark blue"
        ]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(2):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_freq_sink_x_0_win = sip.wrapinstance(
            self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win, 0, 0, 4,
                                       4)
        for r in range(0, 4):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 4):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.low_pass_filter_0_0_0 = filter.fir_filter_fff(
            1,
            firdes.low_pass(1, samp_rate / 5 / 50 * 48, audio_lpf_cutoff, 2e3,
                            firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0_0 = filter.fir_filter_ccf(
            1,
            firdes.low_pass(1, samp_rate / decim, rf_lpf_cutoff, 2e3,
                            firdes.WIN_HAMMING, 6.76))
        self.freq_xlating_fir_filter_xxx_0_0 = filter.freq_xlating_fir_filter_ccc(
            1, (xlate_taps_0), doppler_func, samp_rate)
        self.freq_xlating_fir_filter_xxx_0 = filter.freq_xlating_fir_filter_ccc(
            decim, (xlate_taps), 0, samp_rate)
        self.digital_fll_band_edge_cc_0_0 = digital.fll_band_edge_cc(
            samps_per_symb, .5, 1024, fll_loop_bw_fine)
        self.digital_fll_band_edge_cc_0 = digital.fll_band_edge_cc(
            samps_per_symb, .5, 1024, fll_loop_bw)
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex * 1,
                                                 samp_rate * throttle_factor,
                                                 True)
        self.blocks_tagged_stream_to_pdu_0_0 = blocks.tagged_stream_to_pdu(
            blocks.float_t, 'snr')
        self.blocks_tagged_stream_to_pdu_0 = blocks.tagged_stream_to_pdu(
            blocks.float_t, 'rfo')
        self.blocks_stream_to_tagged_stream_0_0 = blocks.stream_to_tagged_stream(
            gr.sizeof_float, 1, 1, "snr")
        self.blocks_stream_to_tagged_stream_0 = blocks.stream_to_tagged_stream(
            gr.sizeof_float, 1, 1, "rfo")
        self.blocks_socket_pdu_0_0 = blocks.socket_pdu("TCP_SERVER", '0.0.0.0',
                                                       '52002', 10000, False)
        self.blocks_socket_pdu_0 = blocks.socket_pdu("TCP_SERVER", '0.0.0.0',
                                                     '52001', 10000, False)
        self.blocks_null_sink_0_0 = blocks.null_sink(gr.sizeof_float * 1)
        self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_float * 1)
        self.blocks_nlog10_ff_0_1 = blocks.nlog10_ff(10, 1, 0)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_const_vxx_1 = blocks.multiply_const_vff(
            (-1 * samp_rate / decim / (2 * math.pi), ))
        self.blocks_multiply_const_vxx_0_0 = blocks.multiply_const_vff(
            (volume_0, ))
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff(
            (volume, ))
        self.blocks_moving_average_xx_0_0_1 = blocks.moving_average_ff(
            10000, 0.0001, 4000, 1)
        self.blocks_moving_average_xx_0 = blocks.moving_average_ff(
            100000, 0.00001, 4000, 1)
        self.blocks_keep_one_in_n_0_0 = blocks.keep_one_in_n(
            gr.sizeof_float * 1, int(samp_rate * meta_rate))
        self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(
            gr.sizeof_float * 1, int(samp_rate / 4 * meta_rate))
        self.blocks_file_source_0 = blocks.file_source(
            gr.sizeof_gr_complex * 1,
            '/home/zleffke/captures/fox1d/20180914/FOX-1D_USRP_20180914_145014.657610_UTC_250k.fc32',
            False)
        self.blocks_file_source_0.set_begin_tag(pmt.PMT_NIL)
        self.blocks_divide_xx_0 = blocks.divide_ff(1)
        self.blocks_complex_to_mag_squared_0_0 = blocks.complex_to_mag_squared(
            1)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.audio_sink_0 = audio.sink(48000, '', True)
        self.analog_wfm_rcv_0 = analog.wfm_rcv(
            quad_rate=int(samp_rate),
            audio_decimation=1,
        )
        self.analog_sig_source_x_0 = analog.sig_source_c(
            samp_rate, analog.GR_COS_WAVE, samp_rate / 2, 1, 0)
        self.analog_quadrature_demod_cf_0 = analog.quadrature_demod_cf(
            (samp_rate / decim) / (2 * math.pi * fsk_deviation_hz / 8.0))
        self.analog_agc2_xx_0 = analog.agc2_cc(1e-1, 1e-2, 1.0, 1.0)
        self.analog_agc2_xx_0.set_max_gain(65536)

        ##################################################
        # Connections
        ##################################################
        self.msg_connect((self.blocks_tagged_stream_to_pdu_0, 'pdus'),
                         (self.blocks_socket_pdu_0, 'pdus'))
        self.msg_connect((self.blocks_tagged_stream_to_pdu_0_0, 'pdus'),
                         (self.blocks_socket_pdu_0_0, 'pdus'))
        self.connect((self.analog_agc2_xx_0, 0),
                     (self.freq_xlating_fir_filter_xxx_0, 0))
        self.connect((self.analog_agc2_xx_0, 0),
                     (self.freq_xlating_fir_filter_xxx_0_0, 0))
        self.connect((self.analog_quadrature_demod_cf_0, 0),
                     (self.low_pass_filter_0_0_0, 0))
        self.connect((self.analog_sig_source_x_0, 0),
                     (self.blocks_multiply_xx_0, 1))
        self.connect((self.analog_wfm_rcv_0, 0),
                     (self.blocks_multiply_const_vxx_0_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0, 0),
                     (self.blocks_divide_xx_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0_0, 0),
                     (self.blocks_divide_xx_0, 1))
        self.connect((self.blocks_divide_xx_0, 0),
                     (self.blocks_nlog10_ff_0_1, 0))
        self.connect((self.blocks_file_source_0, 0),
                     (self.blocks_throttle_0, 0))
        self.connect((self.blocks_keep_one_in_n_0, 0),
                     (self.blocks_stream_to_tagged_stream_0_0, 0))
        self.connect((self.blocks_keep_one_in_n_0_0, 0),
                     (self.blocks_stream_to_tagged_stream_0, 0))
        self.connect((self.blocks_moving_average_xx_0, 0),
                     (self.blocks_keep_one_in_n_0_0, 0))
        self.connect((self.blocks_moving_average_xx_0, 0),
                     (self.doppler_probe, 0))
        self.connect((self.blocks_moving_average_xx_0, 0),
                     (self.qtgui_number_sink_0_0_0_0, 0))
        self.connect((self.blocks_moving_average_xx_0_0_1, 0),
                     (self.blocks_keep_one_in_n_0, 0))
        self.connect((self.blocks_moving_average_xx_0_0_1, 0),
                     (self.qtgui_number_sink_0_0_0_0_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.audio_sink_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.qtgui_freq_sink_x_1, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.qtgui_time_sink_x_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0_0, 0),
                     (self.qtgui_freq_sink_x_2, 0))
        self.connect((self.blocks_multiply_const_vxx_1, 0),
                     (self.blocks_moving_average_xx_0, 0))
        self.connect((self.blocks_multiply_xx_0, 0),
                     (self.rational_resampler_xxx_1, 0))
        self.connect((self.blocks_nlog10_ff_0_1, 0),
                     (self.blocks_moving_average_xx_0_0_1, 0))
        self.connect((self.blocks_stream_to_tagged_stream_0, 0),
                     (self.blocks_tagged_stream_to_pdu_0, 0))
        self.connect((self.blocks_stream_to_tagged_stream_0_0, 0),
                     (self.blocks_tagged_stream_to_pdu_0_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.analog_agc2_xx_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0, 1),
                     (self.blocks_multiply_const_vxx_1, 0))
        self.connect((self.digital_fll_band_edge_cc_0, 0),
                     (self.blocks_multiply_xx_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0, 2),
                     (self.blocks_null_sink_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0, 3),
                     (self.blocks_null_sink_0_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0, 0),
                     (self.low_pass_filter_0_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0, 0),
                     (self.rational_resampler_xxx_0_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0_0, 0),
                     (self.qtgui_freq_sink_x_0, 1))
        self.connect((self.digital_fll_band_edge_cc_0_0, 0),
                     (self.qtgui_waterfall_sink_x_0_0, 0))
        self.connect((self.digital_fll_band_edge_cc_0_0, 0),
                     (self.rational_resampler_xxx_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0),
                     (self.digital_fll_band_edge_cc_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0),
                     (self.qtgui_freq_sink_x_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0),
                     (self.qtgui_waterfall_sink_x_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0_0, 0),
                     (self.analog_wfm_rcv_0, 0))
        self.connect((self.low_pass_filter_0_0, 0),
                     (self.digital_fll_band_edge_cc_0_0, 0))
        self.connect((self.low_pass_filter_0_0_0, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.rational_resampler_xxx_0, 0),
                     (self.analog_quadrature_demod_cf_0, 0))
        self.connect((self.rational_resampler_xxx_0_0, 0),
                     (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.rational_resampler_xxx_1, 0),
                     (self.blocks_complex_to_mag_squared_0_0, 0))
    def __init__(self, system, site_uuid, overseer_uuid):

        gr.top_block.__init__(self, "p25 receiver")

        #set globals
        self.is_locked = False
        self.system = system
        self.instance_uuid = '%s' % uuid.uuid4()

        self.log = logging.getLogger('overseer.p25_control_demod.%s' %
                                     self.instance_uuid)
        self.protocol_log = logging.getLogger('protocol.%s' %
                                              self.instance_uuid)
        self.log.info('Initializing instance: %s site: %s overseer: %s' %
                      (self.instance_uuid, site_uuid, overseer_uuid))

        self.site_uuid = site_uuid
        self.overseer_uuid = overseer_uuid

        self.control_channel = system['channels'][
            system['default_control_channel']]
        self.control_channel_i = system['default_control_channel']

        self.channel_identifier_table = {}

        try:
            self.modulation = system['modulation']
        except:
            self.modulation = 'C4FM'

        self.channel_rate = 12500
        symbol_rate = 4800

        self.site_detail = {}
        self.site_detail['WACN ID'] = None
        self.site_detail['System ID'] = None
        self.site_detail['Control Channel'] = None
        self.site_detail['System Service Class'] = None
        self.site_detail['Site ID'] = None
        self.site_detail['RF Sub-system ID'] = None
        self.site_detail['RFSS Network Connection'] = None

        self.bad_messages = 0
        self.total_messages = 0
        self.quality = []

        self.keep_running = True

        self.source = None

        # channel filter
        channel_rate = self.channel_rate * 2
        self.control_prefilter = filter.freq_xlating_fir_filter_ccc(
            1, (1, ), 0, channel_rate)

        # power squelch
        #power_squelch = gr.pwr_squelch_cc(squelch, 1e-3, 0, True)
        #self.connect(self.channel_filter, power_squelch)

        autotuneq = gr.msg_queue(2)
        self.demod_watcher = demod_watcher(self)
        self.symbol_deviation = 600.0

        if self.modulation == 'C4FM':
            # FM demodulator
            fm_demod_gain = channel_rate / (2.0 * pi * self.symbol_deviation)
            self.fm_demod = fm_demod = analog.quadrature_demod_cf(
                fm_demod_gain)

            moving_sum = blocks.moving_average_ff(10000, 1, 40000)
            subtract = blocks.sub_ff(1)
            divide_const = blocks.multiply_const_vff((0.0001, ))
            self.probe = blocks.probe_signal_f()
            self.connect(self.fm_demod, moving_sum, divide_const, self.probe)

            # symbol filter
            symbol_decim = 1
            samples_per_symbol = channel_rate // symbol_rate
            symbol_coeffs = (1.0 / samples_per_symbol, ) * samples_per_symbol
            symbol_filter = filter.fir_filter_fff(symbol_decim, symbol_coeffs)

            demod_fsk4 = op25.fsk4_demod_ff(autotuneq, channel_rate,
                                            symbol_rate)
        elif self.modulation == 'CQPSK':
            # FM demodulator
            fm_demod_gain = channel_rate / (2.0 * pi * self.symbol_deviation)
            self.fm_demod = fm_demod = analog.quadrature_demod_cf(
                fm_demod_gain)

            moving_sum = blocks.moving_average_ff(10000, 1, 40000)
            subtract = blocks.sub_ff(1)
            divide_const = blocks.multiply_const_vff((0.0001, ))
            self.probe = blocks.probe_signal_f()
            self.connect(fm_demod, moving_sum, divide_const, self.probe)

            #self.resampler = filter.pfb.arb_resampler_ccf(float(48000)/float(channel_rate))
            self.resampler = blocks.multiply_const_cc(1.0)
            self.agc = analog.feedforward_agc_cc(1024, 1.0)
            self.symbol_filter_c = blocks.multiply_const_cc(1.0)

            gain_mu = 0.025
            omega = float(channel_rate) / float(symbol_rate)
            gain_omega = 0.1 * gain_mu * gain_mu

            alpha = 0.04
            beta = 0.125 * alpha * alpha
            fmax = 1200  # Hz
            fmax = 2 * pi * fmax / float(channel_rate)

            self.clock = repeater.gardner_costas_cc(omega, gain_mu, gain_omega,
                                                    alpha, beta, fmax, -fmax)
            self.diffdec = digital.diff_phasor_cc()
            self.to_float = blocks.complex_to_arg()
            self.rescale = blocks.multiply_const_ff((1 / (pi / 4)))

    # symbol slicer
        levels = [-2.0, 0.0, 2.0, 4.0]
        slicer = op25.fsk4_slicer_fb(levels)

        # frame decoder
        self.decodequeue = decodequeue = gr.msg_queue(1000)
        qsink = blocks.message_sink(gr.sizeof_char, self.decodequeue, False)
        self.decoder = decoder = repeater.p25_frame_assembler(
            '', 0, 0, False, True, True, autotuneq, False, False)

        if self.modulation == 'C4FM':
            self.connect(self.control_prefilter, fm_demod, symbol_filter,
                         demod_fsk4, slicer, decoder, qsink)
        elif self.modulation == 'CQPSK':
            self.connect(self.resampler, self.agc, self.symbol_filter_c,
                         self.clock, self.diffdec, self.to_float, self.rescale,
                         slicer, decoder, qsink)

##################################################
# Threads
##################################################
        self.connector = frontend_connector()
        self.client_redis = client_redis()
        self.redis_demod_publisher = redis_demod_publisher(parent_demod=self)

        quality_check_0 = threading.Thread(target=self.quality_check)
        quality_check_0.daemon = True
        quality_check_0.start()
        # Adjust the channel offset
        #
        self.tune_next_control_channel()

        #self.receive_engine()

        receive_engine = threading.Thread(target=self.receive_engine)
        receive_engine.daemon = True
        receive_engine.start()
Beispiel #26
0
    def __init__(self, freq=394e6, gain=0, sample_rate=2400000, args="",
            channel_bw=12500, listen_port=60100, ppm=0,
            output="channel%d.bits", output_offset=None, auto_tune=-1):
        gr.top_block.__init__(self, "TETRAPOL multichannel reciever")

        ##################################################
        # Parameters and variables
        ##################################################
        self.freq = freq
        self.gain = gain
        self.sample_rate = sample_rate
        self.args = args
        self.channel_bw = channel_bw
        self.listen_port = listen_port
        self.ppm = ppm
        self.output = output
        self.auto_tune = auto_tune
# TODO: parametrize
        self.debug = True
        self.channels = channels = int(sample_rate/channel_bw)
        channel_symb_rate = 8000
        samples_per_symbol = 2
        self.channel_samp_rate = channel_samp_rate = \
                channel_symb_rate * samples_per_symbol
        afc_period = 6
        self.afc_gain = 1
        self.afc_ppm_threshold = 100
        if output_offset is None:
            self.output_offset = 0
        else:
            self.output_offset = output_offset - ((channels - 1) // 2)

        ##################################################
        # Blocks - RPC server
        ##################################################
        self.xmlrpc_server_0 = SimpleXMLRPCServer.SimpleXMLRPCServer(
                ("localhost", listen_port), allow_none=True)
        self.xmlrpc_server_0.register_instance(self)
        threading.Thread(target=self.xmlrpc_server_0.serve_forever).start()

        ##################################################
        # Blocks - RX, demod, sink
        ##################################################
        self.src = osmosdr.source( args="numchan=" + str(1) + " " + "" + self.args )
        self.src.set_sample_rate(sample_rate)
        self.src.set_center_freq(freq, 0)
        self.src.set_freq_corr(ppm, 0)
# TODO: manual gain control
        self.src.set_gain_mode(True, 0)
        #self.src.set_gain(gain, 0)

        self.freq_xlating = freq_xlating_fft_filter_ccc(1, (1, ), 0, sample_rate)
        bw = (9200 + self.afc_ppm_threshold)/2
        self.channelizer = pfb.channelizer_ccf(
              channels,
              firdes.low_pass(1, sample_rate, bw, bw*0.15, firdes.WIN_HANN),
              float(channel_samp_rate)/(sample_rate/channels),
              100)
        self.connect(
                (self.src, 0),
                (self.freq_xlating, 0),
                (self.channelizer, 0))

        self.valves = []
        self.gmsk_demods = []
        self.file_sinks = []
        even_no_of_chs = not (channels % 2)
        center_ch = channels // 2
        for ch_in in range(0, channels):
            ch_out = (ch_in + center_ch + 1) % channels
            if ch_out == center_ch and even_no_of_chs:
                null_sink = blocks.null_sink(gr.sizeof_gr_complex)
                self.connect(
                        (self.channelizer, ch_out),
                        (null_sink, 0))
                continue
            valve = grc_blks2.valve(item_size=gr.sizeof_gr_complex, open=True)
            gmsk_demod = digital.gmsk_demod(
                    samples_per_symbol=samples_per_symbol,
                    gain_mu=0.050,
                    mu=0.5,
                    omega_relative_limit=0.005,
                    freq_error=0.0,
                    verbose=False,
                    log=False,
                    )
            o = output % (ch_in + self.output_offset)
            file_sink = blocks.file_sink(gr.sizeof_char, o, False)
            file_sink.set_unbuffered(True)

            self.connect(
                    (self.channelizer, ch_out),
                    (valve, 0),
                    (gmsk_demod, 0),
                    (file_sink, 0))

            self.valves.append(valve)
            self.gmsk_demods.append(gmsk_demod)
            self.file_sinks.append(file_sink)

        ##################################################
        # Blocks - automatic fine tune
        ##################################################
        self.afc_selector = grc_blks2.selector(
            item_size=gr.sizeof_gr_complex*1,
            num_inputs=channels - even_no_of_chs,
            num_outputs=1,
            input_index=0,
            output_index=0,
        )
        if auto_tune != -1:
            self.afc_selector.set_input_index(auto_tune)

        self.afc_demod = analog.quadrature_demod_cf(channel_samp_rate/(2*math.pi))
        afc_samp = channel_samp_rate * afc_period / 2
        self.afc_avg = blocks.moving_average_ff(afc_samp, 1./afc_samp*self.afc_gain)
        self.afc_probe = blocks.probe_signal_f()
        def _afc_probe():
            while True:
                time.sleep(afc_period)
                if self.auto_tune == -1:
                    continue
                err = self.afc_probe.level()
                if abs(err) < self.afc_ppm_threshold:
                    continue
                freq = self.freq_xlating.center_freq + err * self.afc_gain
                if self.debug:
                    print "freq err: % .0f\tfreq: %f" % (err, freq)
                self.freq_xlating.set_center_freq(freq)

        self._afc_err_thread = threading.Thread(target=_afc_probe)
        self._afc_err_thread.daemon = True
        self._afc_err_thread.start()

        for ch_in in range(0, channels - even_no_of_chs):
            ch_out = (ch_in + center_ch + 1) % channels
            self.connect((self.channelizer, ch_out), (self.afc_selector, ch_in))
        self.connect((self.afc_selector, 0),
                (self.afc_demod, 0),
                (self.afc_avg, 0),
                (self.afc_probe, 0))

        ##################################################
        # Blocks - signal strenght indication
        ##################################################
        self.pwr_probes = []
        for ch in range(self.channels - even_no_of_chs):
            ch = (ch + center_ch + 1) % channels
            pwr_probe = analog.probe_avg_mag_sqrd_c(0, 1./channel_samp_rate)
            self.connect((self.channelizer, ch), (pwr_probe, 0))
            self.pwr_probes.append(pwr_probe)
    def __init__(self):
        gr.top_block.__init__(self, "NFM SCANNER")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("NFM SCANNER")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "scanner")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.freqd = freqd = 0
        self.stop_scan_a = stop_scan_a = 0
        self.freq_set = freq_set = freqd
        self.variable_qtgui_label_0 = variable_qtgui_label_0 = stop_scan_a
        self.sql = sql = -50
        self.samp_rate = samp_rate = 32000
        self.s_rate = s_rate = 2
        self.r_rate = r_rate = 240000
        self.hold_scan = hold_scan = 0
        self.gain = gain = 30
        self.frequency = frequency = freq_set / 1000000

        ##################################################
        # Blocks
        ##################################################
        self.stop_scan = blocks.probe_signal_f()

        def _stop_scan_a_probe():
            while True:
                val = self.stop_scan.level()
                try:
                    self.set_stop_scan_a(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (100))

        _stop_scan_a_thread = threading.Thread(target=_stop_scan_a_probe)
        _stop_scan_a_thread.daemon = True
        _stop_scan_a_thread.start()
        self._sql_range = Range(-100, 0, 1, -50, 50)
        self._sql_win = RangeWidget(self._sql_range, self.set_sql, "squelch",
                                    "dial", float)
        self.top_layout.addWidget(self._sql_win)
        self._s_rate_options = (
            .5,
            1,
            2,
            5,
            10,
        )
        self._s_rate_labels = (
            ".5Hz",
            "1Hz",
            "2Hz",
            "5Hz",
            "10Hz",
        )
        self._s_rate_tool_bar = Qt.QToolBar(self)
        self._s_rate_tool_bar.addWidget(Qt.QLabel("SCAN RATE" + ": "))
        self._s_rate_combo_box = Qt.QComboBox()
        self._s_rate_tool_bar.addWidget(self._s_rate_combo_box)
        for label in self._s_rate_labels:
            self._s_rate_combo_box.addItem(label)
        self._s_rate_callback = lambda i: Qt.QMetaObject.invokeMethod(
            self._s_rate_combo_box, "setCurrentIndex",
            Qt.Q_ARG("int", self._s_rate_options.index(i)))
        self._s_rate_callback(self.s_rate)
        self._s_rate_combo_box.currentIndexChanged.connect(
            lambda i: self.set_s_rate(self._s_rate_options[i]))
        self.top_layout.addWidget(self._s_rate_tool_bar)
        _hold_scan_check_box = Qt.QCheckBox("hold_scan")
        self._hold_scan_choices = {True: 1, False: 0}
        self._hold_scan_choices_inv = dict(
            (v, k) for k, v in self._hold_scan_choices.iteritems())
        self._hold_scan_callback = lambda i: Qt.QMetaObject.invokeMethod(
            _hold_scan_check_box, "setChecked",
            Qt.Q_ARG("bool", self._hold_scan_choices_inv[i]))
        self._hold_scan_callback(self.hold_scan)
        _hold_scan_check_box.stateChanged.connect(
            lambda i: self.set_hold_scan(self._hold_scan_choices[bool(i)]))
        self.top_layout.addWidget(_hold_scan_check_box)
        self._gain_range = Range(0, 50, 1, 30, 25)
        self._gain_win = RangeWidget(self._gain_range, self.set_gain, "GAIN",
                                     "dial", float)
        self.top_layout.addWidget(self._gain_win)
        self.freqb = blocks.probe_signal_f()
        self._variable_qtgui_label_0_tool_bar = Qt.QToolBar(self)

        if None:
            self._variable_qtgui_label_0_formatter = None
        else:
            self._variable_qtgui_label_0_formatter = lambda x: x

        self._variable_qtgui_label_0_tool_bar.addWidget(
            Qt.QLabel("scan" + ": "))
        self._variable_qtgui_label_0_label = Qt.QLabel(
            str(
                self._variable_qtgui_label_0_formatter(
                    self.variable_qtgui_label_0)))
        self._variable_qtgui_label_0_tool_bar.addWidget(
            self._variable_qtgui_label_0_label)
        self.top_layout.addWidget(self._variable_qtgui_label_0_tool_bar)

        self.valve = grc_blks2.valve(item_size=gr.sizeof_float * 1,
                                     open=bool(stop_scan_a or hold_scan))
        self.rtlsdr_source_0 = osmosdr.source(args="numchan=" + str(1) + " " +
                                              "")
        self.rtlsdr_source_0.set_sample_rate(r_rate)
        self.rtlsdr_source_0.set_center_freq(freq_set - 100000, 0)
        self.rtlsdr_source_0.set_freq_corr(0, 0)
        self.rtlsdr_source_0.set_dc_offset_mode(2, 0)
        self.rtlsdr_source_0.set_iq_balance_mode(0, 0)
        self.rtlsdr_source_0.set_gain_mode(True, 0)
        self.rtlsdr_source_0.set_gain(gain, 0)
        self.rtlsdr_source_0.set_if_gain(20, 0)
        self.rtlsdr_source_0.set_bb_gain(20, 0)
        self.rtlsdr_source_0.set_antenna("", 0)
        self.rtlsdr_source_0.set_bandwidth(r_rate, 0)

        self.qtgui_sink_x_0 = qtgui.sink_c(
            1024,  #fftsize
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            freq_set,  #fc
            r_rate,  #bw
            "",  #name
            True,  #plotfreq
            True,  #plotwaterfall
            False,  #plottime
            False,  #plotconst
        )
        self.qtgui_sink_x_0.set_update_time(1.0 / 10)
        self._qtgui_sink_x_0_win = sip.wrapinstance(
            self.qtgui_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_sink_x_0_win)

        self.qtgui_sink_x_0.enable_rf_freq(True)

        self.low_pass_filter_0 = filter.fir_filter_ccf(
            5, firdes.low_pass(1, r_rate, 7500, 5000, firdes.WIN_HAMMING,
                               6.76))
        self._frequency_tool_bar = Qt.QToolBar(self)

        if None:
            self._frequency_formatter = None
        else:
            self._frequency_formatter = lambda x: x

        self._frequency_tool_bar.addWidget(Qt.QLabel("frequency" + ": "))
        self._frequency_label = Qt.QLabel(
            str(self._frequency_formatter(self.frequency)))
        self._frequency_tool_bar.addWidget(self._frequency_label)
        self.top_layout.addWidget(self._frequency_tool_bar)

        def _freqd_probe():
            while True:
                val = self.freqb.level()
                try:
                    self.set_freqd(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (s_rate))

        _freqd_thread = threading.Thread(target=_freqd_probe)
        _freqd_thread.daemon = True
        _freqd_thread.start()
        self.freqa = blocks.file_source(
            gr.sizeof_float * 1,
            "/home/jed/radio/PROJECTS/scanner/freqtest.dat", True)
        self.blocks_threshold_ff_0 = blocks.threshold_ff(
            0.0000000001, .0001, 0)
        self.blocks_multiply_xx_2 = blocks.multiply_vff(1)
        self.blocks_multiply_xx_1 = blocks.multiply_vff(1)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_delay_0 = blocks.delay(gr.sizeof_float * 1, 10)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self.audio_sink_0 = audio.sink(48000, "", True)
        self.analog_sig_source_x_0 = analog.sig_source_c(
            r_rate, analog.GR_COS_WAVE, -100000, 1, 0)
        self.analog_pwr_squelch_xx_0 = analog.pwr_squelch_cc(
            sql, 1e-3, 5, False)
        self.analog_nbfm_rx_0 = analog.nbfm_rx(
            audio_rate=48000,
            quad_rate=r_rate / 5,
            tau=75e-6,
            max_dev=5.0e3,
        )

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_nbfm_rx_0, 0), (self.blocks_delay_0, 0))
        self.connect((self.analog_nbfm_rx_0, 0),
                     (self.blocks_multiply_xx_1, 0))
        self.connect((self.analog_nbfm_rx_0, 0),
                     (self.blocks_multiply_xx_1, 1))
        self.connect((self.analog_pwr_squelch_xx_0, 0),
                     (self.analog_nbfm_rx_0, 0))
        self.connect((self.analog_sig_source_x_0, 0),
                     (self.blocks_multiply_xx_0, 1))
        self.connect((self.blocks_add_xx_0, 0),
                     (self.blocks_threshold_ff_0, 0))
        self.connect((self.blocks_delay_0, 0), (self.audio_sink_0, 0))
        self.connect((self.blocks_delay_0, 0), (self.blocks_multiply_xx_2, 1))
        self.connect((self.blocks_delay_0, 0), (self.blocks_multiply_xx_2, 0))
        self.connect((self.blocks_multiply_xx_0, 0),
                     (self.low_pass_filter_0, 0))
        self.connect((self.blocks_multiply_xx_0, 0), (self.qtgui_sink_x_0, 0))
        self.connect((self.blocks_multiply_xx_1, 0), (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_multiply_xx_2, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_threshold_ff_0, 0), (self.stop_scan, 0))
        self.connect((self.freqa, 0), (self.valve, 0))
        self.connect((self.low_pass_filter_0, 0),
                     (self.analog_pwr_squelch_xx_0, 0))
        self.connect((self.rtlsdr_source_0, 0), (self.blocks_multiply_xx_0, 0))
        self.connect((self.valve, 0), (self.freqb, 0))
    def __init__(self, avg_len=256, nfft=2048, path="/captures/20200329", record_hz=10):
        gr.top_block.__init__(self, "/captures/20200329/LRO_RHCP_2020-03-29T20:34:45Z.sigmf-data")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("/captures/20200329/LRO_RHCP_2020-03-29T20:34:45Z.sigmf-data")
        qtgui.util.check_set_qss()
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "lro_playback")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())


        ##################################################
        # Parameters
        ##################################################
        self.avg_len = avg_len
        self.nfft = nfft
        self.path = path
        self.record_hz = record_hz

        ##################################################
        # Variables
        ##################################################
        self.probe_snr_func = probe_snr_func = 0
        self.probe_signal_func = probe_signal_func = 0
        self.probe_offset_func = probe_offset_func = 0
        self.probe_noise_func = probe_noise_func = 0
        self.filename = filename = "LRO_RHCP_2020-03-29T20:34:45Z.sigmf-data"
        self.snr_var = snr_var = "{:3.3f}".format(probe_snr_func)
        self.signal_var = signal_var = "{:3.3f}".format(probe_signal_func)
        self.samp_rate = samp_rate = 250e3
        self.offset_var = offset_var = "{:3.3f}".format(probe_offset_func)
        self.offset_file = offset_file = "{:s}_{:s}".format(filename.split(".")[0], "offset")
        self.noise_var = noise_var = "{:3.3f}".format(probe_noise_func)
        self.variable_tag_object_0 = variable_tag_object_0 = gr.tag_utils.python_to_tag((0, pmt.intern("key"), pmt.intern("value"), pmt.intern("src")))
        self.throttle_factor = throttle_factor = 10
        self.snr_label = snr_label = snr_var
        self.signal_label = signal_label = signal_var
        self.rx_freq = rx_freq = 2271.2e6
        self.offset_label = offset_label = offset_var
        self.offset_fp = offset_fp = "/".join([path,offset_file])
        self.noise_label = noise_label = noise_var
        self.keep_n = keep_n = samp_rate/record_hz
        self.fp = fp = "/".join([path,filename])
        self.file_l = file_l = filename.split(".")[0].split("_")
        self.fft_min = fft_min = -120
        self.fft_max = fft_max = -80
        self.decim = decim = 8
        self.alpha = alpha = 1.0/(samp_rate/record_hz)

        ##################################################
        # Blocks
        ##################################################
        self.probe_offset = blocks.probe_signal_f()
        self._throttle_factor_tool_bar = Qt.QToolBar(self)
        self._throttle_factor_tool_bar.addWidget(Qt.QLabel('Throttle'+": "))
        self._throttle_factor_line_edit = Qt.QLineEdit(str(self.throttle_factor))
        self._throttle_factor_tool_bar.addWidget(self._throttle_factor_line_edit)
        self._throttle_factor_line_edit.returnPressed.connect(
        	lambda: self.set_throttle_factor(eng_notation.str_to_num(str(self._throttle_factor_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._throttle_factor_tool_bar, 10, 2, 1, 1)
        for r in range(10, 11):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(2, 3):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._samp_rate_tool_bar = Qt.QToolBar(self)
        self._samp_rate_tool_bar.addWidget(Qt.QLabel('SAMP_RATE'+": "))
        self._samp_rate_line_edit = Qt.QLineEdit(str(self.samp_rate))
        self._samp_rate_tool_bar.addWidget(self._samp_rate_line_edit)
        self._samp_rate_line_edit.returnPressed.connect(
        	lambda: self.set_samp_rate(eng_notation.str_to_num(str(self._samp_rate_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._samp_rate_tool_bar, 9, 0, 1, 1)
        for r in range(9, 10):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 1):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.probe_snr = blocks.probe_signal_f()
        self.probe_signal = blocks.probe_signal_f()

        def _probe_offset_func_probe():
            while True:
                val = self.probe_offset.level()
                try:
                    self.set_probe_offset_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _probe_offset_func_thread = threading.Thread(target=_probe_offset_func_probe)
        _probe_offset_func_thread.daemon = True
        _probe_offset_func_thread.start()

        self.probe_noise = blocks.probe_signal_f()
        self._fft_min_tool_bar = Qt.QToolBar(self)
        self._fft_min_tool_bar.addWidget(Qt.QLabel('fft_min'+": "))
        self._fft_min_line_edit = Qt.QLineEdit(str(self.fft_min))
        self._fft_min_tool_bar.addWidget(self._fft_min_line_edit)
        self._fft_min_line_edit.returnPressed.connect(
        	lambda: self.set_fft_min(eng_notation.str_to_num(str(self._fft_min_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._fft_min_tool_bar, 9, 2, 1, 1)
        for r in range(9, 10):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(2, 3):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._fft_max_tool_bar = Qt.QToolBar(self)
        self._fft_max_tool_bar.addWidget(Qt.QLabel('fft_max'+": "))
        self._fft_max_line_edit = Qt.QLineEdit(str(self.fft_max))
        self._fft_max_tool_bar.addWidget(self._fft_max_line_edit)
        self._fft_max_line_edit.returnPressed.connect(
        	lambda: self.set_fft_max(eng_notation.str_to_num(str(self._fft_max_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._fft_max_tool_bar, 9, 3, 1, 1)
        for r in range(9, 10):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(3, 4):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._snr_label_tool_bar = Qt.QToolBar(self)

        if None:
          self._snr_label_formatter = None
        else:
          self._snr_label_formatter = lambda x: str(x)

        self._snr_label_tool_bar.addWidget(Qt.QLabel('SNR [dB]'+": "))
        self._snr_label_label = Qt.QLabel(str(self._snr_label_formatter(self.snr_label)))
        self._snr_label_tool_bar.addWidget(self._snr_label_label)
        self.top_grid_layout.addWidget(self._snr_label_tool_bar, 3, 4, 1, 1)
        for r in range(3, 4):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 5):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._signal_label_tool_bar = Qt.QToolBar(self)

        if None:
          self._signal_label_formatter = None
        else:
          self._signal_label_formatter = lambda x: str(x)

        self._signal_label_tool_bar.addWidget(Qt.QLabel('Signal [dBFS]'+": "))
        self._signal_label_label = Qt.QLabel(str(self._signal_label_formatter(self.signal_label)))
        self._signal_label_tool_bar.addWidget(self._signal_label_label)
        self.top_grid_layout.addWidget(self._signal_label_tool_bar, 1, 4, 1, 1)
        for r in range(1, 2):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 5):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.sigmf_source_0 = gr_sigmf.source(fp, "cf32" + ("_le" if sys.byteorder == "little" else "_be"), False)
        self._rx_freq_tool_bar = Qt.QToolBar(self)
        self._rx_freq_tool_bar.addWidget(Qt.QLabel('FREQ'+": "))
        self._rx_freq_line_edit = Qt.QLineEdit(str(self.rx_freq))
        self._rx_freq_tool_bar.addWidget(self._rx_freq_line_edit)
        self._rx_freq_line_edit.returnPressed.connect(
        	lambda: self.set_rx_freq(eng_notation.str_to_num(str(self._rx_freq_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._rx_freq_tool_bar, 9, 1, 1, 1)
        for r in range(9, 10):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(1, 2):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.rational_resampler_xxx_0 = filter.rational_resampler_ccc(
                interpolation=1,
                decimation=decim,
                taps=None,
                fractional_bw=None,
        )
        self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
        	2048, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	0, #fc
        	samp_rate, #bw
        	"", #name
                1 #number of inputs
        )
        self.qtgui_waterfall_sink_x_0.set_update_time(0.010)
        self.qtgui_waterfall_sink_x_0.enable_grid(False)
        self.qtgui_waterfall_sink_x_0.enable_axis_labels(True)

        if not True:
          self.qtgui_waterfall_sink_x_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
          self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)

        labels = ['', '', '', '', '',
                  '', '', '', '', '']
        colors = [0, 0, 0, 0, 0,
                  0, 0, 0, 0, 0]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
            self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])

        self.qtgui_waterfall_sink_x_0.set_intensity_range(fft_min, fft_max)

        self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_win, 4, 0, 4, 4)
        for r in range(4, 8):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 4):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
        	2048, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	0, #fc
        	samp_rate, #bw
        	"RHCP", #name
        	1 #number of inputs
        )
        self.qtgui_freq_sink_x_0.set_update_time(0.010)
        self.qtgui_freq_sink_x_0.set_y_axis(fft_min, fft_max)
        self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB')
        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
        self.qtgui_freq_sink_x_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0.enable_grid(True)
        self.qtgui_freq_sink_x_0.set_fft_average(0.05)
        self.qtgui_freq_sink_x_0.enable_axis_labels(True)
        self.qtgui_freq_sink_x_0.enable_control_panel(False)

        if not False:
          self.qtgui_freq_sink_x_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
          self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)

        labels = ['', '', '', '', '',
                  '', '', '', '', '']
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "dark blue"]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_freq_sink_x_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win, 0, 0, 4, 4)
        for r in range(0, 4):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 4):
            self.top_grid_layout.setColumnStretch(c, 1)

        def _probe_snr_func_probe():
            while True:
                val = self.probe_snr.level()
                try:
                    self.set_probe_snr_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _probe_snr_func_thread = threading.Thread(target=_probe_snr_func_probe)
        _probe_snr_func_thread.daemon = True
        _probe_snr_func_thread.start()


        def _probe_signal_func_probe():
            while True:
                val = self.probe_signal.level()
                try:
                    self.set_probe_signal_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _probe_signal_func_thread = threading.Thread(target=_probe_signal_func_probe)
        _probe_signal_func_thread.daemon = True
        _probe_signal_func_thread.start()


        def _probe_noise_func_probe():
            while True:
                val = self.probe_noise.level()
                try:
                    self.set_probe_noise_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _probe_noise_func_thread = threading.Thread(target=_probe_noise_func_probe)
        _probe_noise_func_thread.daemon = True
        _probe_noise_func_thread.start()

        self._offset_label_tool_bar = Qt.QToolBar(self)

        if None:
          self._offset_label_formatter = None
        else:
          self._offset_label_formatter = lambda x: str(x)

        self._offset_label_tool_bar.addWidget(Qt.QLabel('Offset [Hz]'+": "))
        self._offset_label_label = Qt.QLabel(str(self._offset_label_formatter(self.offset_label)))
        self._offset_label_tool_bar.addWidget(self._offset_label_label)
        self.top_grid_layout.addWidget(self._offset_label_tool_bar, 0, 4, 1, 1)
        for r in range(0, 1):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 5):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._noise_label_tool_bar = Qt.QToolBar(self)

        if None:
          self._noise_label_formatter = None
        else:
          self._noise_label_formatter = lambda x: str(x)

        self._noise_label_tool_bar.addWidget(Qt.QLabel('Noise [dBFS]'+": "))
        self._noise_label_label = Qt.QLabel(str(self._noise_label_formatter(self.noise_label)))
        self._noise_label_tool_bar.addWidget(self._noise_label_label)
        self.top_grid_layout.addWidget(self._noise_label_tool_bar, 2, 4, 1, 1)
        for r in range(2, 3):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(4, 5):
            self.top_grid_layout.setColumnStretch(c, 1)
        self._keep_n_tool_bar = Qt.QToolBar(self)
        self._keep_n_tool_bar.addWidget(Qt.QLabel('keep_n'+": "))
        self._keep_n_line_edit = Qt.QLineEdit(str(self.keep_n))
        self._keep_n_tool_bar.addWidget(self._keep_n_line_edit)
        self._keep_n_line_edit.returnPressed.connect(
        	lambda: self.set_keep_n(eng_notation.str_to_num(str(self._keep_n_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._keep_n_tool_bar, 10, 1, 1, 1)
        for r in range(10, 11):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(1, 2):
            self.top_grid_layout.setColumnStretch(c, 1)
        self.fft_vxx_0_0 = fft.fft_vcc(nfft/decim, True, (window.blackmanharris(nfft/decim)), True, 4)
        self.fft_vxx_0 = fft.fft_vcc(nfft, True, (window.blackmanharris(nfft)), True, 4)
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate*throttle_factor,True)
        self.blocks_tag_share_0 = blocks.tag_share(gr.sizeof_float, gr.sizeof_gr_complex, 1)
        self.blocks_sub_xx_0 = blocks.sub_ff(1)
        self.blocks_stream_to_vector_0_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, nfft/decim)
        self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, nfft)
        self.blocks_nlog10_ff_0_0_0 = blocks.nlog10_ff(10, nfft/decim, -10*math.log10(nfft/decim))
        self.blocks_nlog10_ff_0_0 = blocks.nlog10_ff(10, nfft, -10*math.log10(nfft))
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_const_vxx_0_0 = blocks.multiply_const_vff((samp_rate/(2*math.pi), ))
        self.blocks_moving_average_xx_0_1 = blocks.moving_average_ff(int(samp_rate/record_hz), 1.0/(samp_rate/record_hz), 4000, 1)
        self.blocks_moving_average_xx_0_0 = blocks.moving_average_ff(int(avg_len), 1.0/(avg_len)/(nfft/decim*2), 4000, nfft/decim)
        self.blocks_moving_average_xx_0 = blocks.moving_average_ff(int(avg_len), 1.0/(avg_len)/nfft, 4000, nfft)
        self.blocks_max_xx_0_0 = blocks.max_ff(nfft/decim,1)
        self.blocks_max_xx_0 = blocks.max_ff(nfft,1)
        self.blocks_keep_one_in_n_0_0 = blocks.keep_one_in_n(gr.sizeof_float*1, int(samp_rate/record_hz))
        self.blocks_complex_to_mag_squared_0_0_0 = blocks.complex_to_mag_squared(nfft/decim)
        self.blocks_complex_to_mag_squared_0_0 = blocks.complex_to_mag_squared(nfft)
        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, probe_offset_func+samp_rate/4, 1, 0)
        self.analog_pll_freqdet_cf_0 = analog.pll_freqdet_cf(math.pi/200, math.pi/10, -math.pi/10)
        self._alpha_tool_bar = Qt.QToolBar(self)
        self._alpha_tool_bar.addWidget(Qt.QLabel('alpha'+": "))
        self._alpha_line_edit = Qt.QLineEdit(str(self.alpha))
        self._alpha_tool_bar.addWidget(self._alpha_line_edit)
        self._alpha_line_edit.returnPressed.connect(
        	lambda: self.set_alpha(eng_notation.str_to_num(str(self._alpha_line_edit.text().toAscii()))))
        self.top_grid_layout.addWidget(self._alpha_tool_bar, 10, 0, 1, 1)
        for r in range(10, 11):
            self.top_grid_layout.setRowStretch(r, 1)
        for c in range(0, 1):
            self.top_grid_layout.setColumnStretch(c, 1)



        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_pll_freqdet_cf_0, 0), (self.blocks_tag_share_0, 0))
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_multiply_xx_0, 1))
        self.connect((self.blocks_complex_to_mag_squared_0_0, 0), (self.blocks_moving_average_xx_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0_0_0, 0), (self.blocks_moving_average_xx_0_0, 0))
        self.connect((self.blocks_keep_one_in_n_0_0, 0), (self.probe_offset, 0))
        self.connect((self.blocks_max_xx_0, 0), (self.blocks_sub_xx_0, 0))
        self.connect((self.blocks_max_xx_0, 0), (self.probe_signal, 0))
        self.connect((self.blocks_max_xx_0_0, 0), (self.blocks_sub_xx_0, 1))
        self.connect((self.blocks_max_xx_0_0, 0), (self.probe_noise, 0))
        self.connect((self.blocks_moving_average_xx_0, 0), (self.blocks_nlog10_ff_0_0, 0))
        self.connect((self.blocks_moving_average_xx_0_0, 0), (self.blocks_nlog10_ff_0_0_0, 0))
        self.connect((self.blocks_moving_average_xx_0_1, 0), (self.blocks_keep_one_in_n_0_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0_0, 0), (self.blocks_moving_average_xx_0_1, 0))
        self.connect((self.blocks_multiply_xx_0, 0), (self.rational_resampler_xxx_0, 0))
        self.connect((self.blocks_nlog10_ff_0_0, 0), (self.blocks_max_xx_0, 0))
        self.connect((self.blocks_nlog10_ff_0_0_0, 0), (self.blocks_max_xx_0_0, 0))
        self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0))
        self.connect((self.blocks_stream_to_vector_0_0, 0), (self.fft_vxx_0_0, 0))
        self.connect((self.blocks_sub_xx_0, 0), (self.probe_snr, 0))
        self.connect((self.blocks_tag_share_0, 0), (self.blocks_multiply_const_vxx_0_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.analog_pll_freqdet_cf_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.blocks_multiply_xx_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.blocks_stream_to_vector_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.blocks_tag_share_0, 1))
        self.connect((self.blocks_throttle_0, 0), (self.qtgui_freq_sink_x_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.qtgui_waterfall_sink_x_0, 0))
        self.connect((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_0_0, 0))
        self.connect((self.fft_vxx_0_0, 0), (self.blocks_complex_to_mag_squared_0_0_0, 0))
        self.connect((self.rational_resampler_xxx_0, 0), (self.blocks_stream_to_vector_0_0, 0))
        self.connect((self.sigmf_source_0, 0), (self.blocks_throttle_0, 0))
Beispiel #29
0
    def __init__(self):

        # Call the initialization method from the parent class
        gr.top_block.__init__(self)

        # Setup the parser for command line arguments
        parser = OptionParser(option_class=eng_option)
        parser.add_option("-v",
                          "--verbose",
                          action="store_true",
                          dest="verbose",
                          default=False,
                          help="print settings to stdout")
        parser.add_option("-f",
                          "--frequency",
                          type="eng_float",
                          dest="rx_freq",
                          default=98.9E6,
                          help="RX frequency in Hz")
        parser.add_option("-a",
                          "--args",
                          type="string",
                          dest="uhd_args",
                          default='type=b200',
                          help="USRP device args")
        parser.add_option("-c",
                          "--cal",
                          type="eng_float",
                          dest="rssi_cal_offset_dB",
                          default=-50,
                          help="RSSI calibration offset in dB")
        parser.add_option("-g",
                          "--gain",
                          type="eng_float",
                          dest="src_gain_dB",
                          default=50,
                          help="USRP gain in dB")
        parser.add_option("-V",
                          "--volume",
                          type="eng_float",
                          dest="volume_dB",
                          default=30,
                          help="Audio volume in dB")
        parser.add_option("-s",
                          "--soundrate",
                          type="eng_float",
                          dest="snd_card_rate",
                          default=48000,
                          help="Sound card rate in Hz")

        (options, args) = parser.parse_args()
        if len(args) != 0:
            parser.print_help()
            raise SystemExit, 1

        # Define constants
        uhd_args = options.uhd_args
        self.rx_freq = options.rx_freq
        lo_offset_freq = 125E3
        src_samp_rate = 500000
        src_gain_dB = options.src_gain_dB
        rssi_cal_offset_dB = -50
        volume_dB = options.volume_dB
        snd_card_rate = options.snd_card_rate

        # Print some info to stdout for verbose option
        if options.verbose:
            print 'USRP args string "%s" ' % uhd_args
            print 'RX frequency = %f MHz' % (self.rx_freq / 1E6)
            print 'Source sample rate = %i Hz' % src_samp_rate
            print 'USRP gain = %i dB' % src_gain_dB
            print 'RSSI cal offset= %i dB' % rssi_cal_offset_dB
            print 'Audio volume = %i dB' % volume_dB
            print 'Sound card rate = %i Hz' % snd_card_rate

        # Setup the USRP source
        self.src = uhd.usrp_source(uhd_args, uhd.io_type_t.COMPLEX_FLOAT32, 1)
        self.src.set_samp_rate(src_samp_rate)
        self.src.set_center_freq(self.rx_freq - lo_offset_freq, 0)
        self.src.set_gain(src_gain_dB, 0)

        # Generate taps for frequency translating FIR filter
        filter_taps = filter.firdes.low_pass(gain=1.0,
                                             sampling_freq=src_samp_rate,
                                             cutoff_freq=100E3,
                                             transition_width=25E3,
                                             window=filter.firdes.WIN_HAMMING)
        # Frequency translating FIR filter
        fxlate = filter.freq_xlating_fir_filter_ccc(
            decimation=2,
            taps=filter_taps,
            center_freq=lo_offset_freq,
            sampling_freq=src_samp_rate)
        # Wideband FM demodulator
        wbfm = analog.fm_demod_cf(channel_rate=src_samp_rate / 2,
                                  audio_decim=5,
                                  deviation=75000,
                                  audio_pass=15000,
                                  audio_stop=16000,
                                  gain=1.0,
                                  tau=75E-6)

        # Rational resampler
        resamp = filter.rational_resampler_fff(interpolation=snd_card_rate,
                                               decimation=src_samp_rate / 10)

        # Multiply for voulme control
        volume = blocks.multiply_const_ff(10**(volume_dB / 20) - 1)

        # Sound card sink
        sndcard = audio.sink(snd_card_rate, '', True)

        # Connect the blocks for audio monitoring
        self.connect(self.src, fxlate, wbfm, resamp, volume, sndcard)

        # Calculate power for RSSI
        c2magsqr = blocks.complex_to_mag_squared(1)

        # Integrate for mean power and decimate down to 1 Hz
        integrator = blocks.integrate_ff(decim=src_samp_rate / 2)

        # Take 10*Log10 and offset for calibrated power and src gain
        logten = blocks.nlog10_ff(10, 1, rssi_cal_offset_dB - src_gain_dB)

        # Probe the RSSI signal
        self.rssi = blocks.probe_signal_f()

        # Connect the blocks for the RSSI
        self.connect(fxlate, c2magsqr, integrator, logten, self.rssi)
Beispiel #30
0
    def __init__(self, fftsize, samp_rate, gain, c_freq, windows):
		gr.top_block.__init__(self, "CalculateFFT")
        
		#Class variables
		self.samp_rate = samp_rate
		self.gain = gain
		self.fftsize = fftsize
		self.c_freq = c_freq
		self.dump1 = "/tmp/ramdisk/dump1" #View as null sinks
		self.dump2 = "/tmp/ramdisk/dump2"
		self.alpha = 0.01 #Integrate 100 FFTS 0.01
		self.N = 100 #100
		self.probe_var = probe_var = 0
		
		blackman_harris = window.blackmanharris(self.fftsize)
		hanning = window.hanning(self.fftsize)
		rectangular = window.rectangular(self.fftsize)
		self.window = blackman_harris #Default window
		self.select_window = windows
		
		###Selectable FFT Windows###
		if self.select_window == "blackman-harris":
			self.window = blackman_harris
		elif self.select_window == "hanning":	
			self.window = hanning
		elif self.select_window == "rectangular":
			self.window = rectangular
			
		
		########## GNURADIO BLOCKS #########
		####################################
		self.uhd_usrp_source_0 = uhd.usrp_source(
			",".join(("", "master_clock_rate=120e6")), #Set the master_clock_rate, default = 200 MHz, alt 184.32 MHz and 120 MHz (Set)
			uhd.stream_args(
				cpu_format="fc32",
				channels=range(1),
			),
        )
        #Configure USRP channel 0
		self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)
		self.uhd_usrp_source_0.set_center_freq(self.c_freq, 0)
		self.uhd_usrp_source_0.set_gain(self.gain, 0)
		self.uhd_usrp_source_0.set_bandwidth(self.samp_rate, 0)
		self.uhd_usrp_source_0.set_clock_source('internal', 0)
		
		#Signal and reference file sinks
		self.signal_file_sink_1 = blocks.file_sink(gr.sizeof_float*1, self.dump1, False)
		self.signal_file_sink_1.set_unbuffered(False)
		self.signal_file_sink_2 = blocks.file_sink(gr.sizeof_float*1, self.dump2, False)
		self.signal_file_sink_2.set_unbuffered(False)
	
		#Selector for GPIO switch
		self.blks2_selector_0 = grc_blks2.selector(
        	item_size=gr.sizeof_float*1,
        	num_inputs=1,
        	num_outputs=2+1, #+1 for the null sink
        	input_index=0,
        	output_index=0,
        )
		self.blocks_null_sink = blocks.null_sink(gr.sizeof_float*1)
		self.single_pole_iir_filter_xx_0 = filter.single_pole_iir_filter_ff(self.alpha, self.fftsize)
		self.fft_vxx_0 = fft.fft_vcc(self.fftsize, True, (self.window), True, 1)
		self.blocks_vector_to_stream_0 = blocks.vector_to_stream(gr.sizeof_float*1, self.fftsize)
		self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, self.fftsize)
		self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(gr.sizeof_float*self.fftsize, self.N)
		self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(self.fftsize)
	
		#Block connections
		self.connect((self.uhd_usrp_source_0, 0), (self.blocks_stream_to_vector_0, 0))
		self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0))
		self.connect((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_0, 0))
		self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.single_pole_iir_filter_xx_0, 0))
		self.connect((self.single_pole_iir_filter_xx_0, 0), (self.blocks_keep_one_in_n_0, 0))
		self.connect((self.blocks_keep_one_in_n_0, 0), (self.blocks_vector_to_stream_0, 0))
		self.connect((self.blocks_vector_to_stream_0, 0), (self.blks2_selector_0, 0)) 
		
		#Selector connections
		self.connect((self.blks2_selector_0, 1), (self.signal_file_sink_1, 0))
		self.connect((self.blks2_selector_0, 2), (self.signal_file_sink_2, 0))
		
		#Null sink connection
		self.connect((self.blks2_selector_0, 0), (self.blocks_null_sink, 0))
		
		#PROBE SAMPLES
		self.probe_signal = blocks.probe_signal_f()
		self.blocks_complex_to_mag_0 = blocks.complex_to_mag(1)
		
		self.connect((self.blocks_complex_to_mag_0, 0), (self.probe_signal, 0))    
		self.connect((self.uhd_usrp_source_0, 0), (self.blocks_complex_to_mag_0, 0))
		
		#Probe update rate
		def _probe_var_probe():
			while True:
				val = self.probe_signal.level()
				try:
					self.set_probe_var(val)
				except AttributeError:
					pass
				time.sleep(10 / (self.samp_rate)) #Update probe variabel every 10/samp_rate seconds

		_probe_var_thread = threading.Thread(target=_probe_var_probe)
		_probe_var_thread.daemon = True
		_probe_var_thread.start()
Beispiel #31
0
    def __init__(self):
        gr.top_block.__init__(self, "Tetra Rx Multi")

        options = self.get_options()

        ##################################################
        # Variables
        ##################################################
        self.srate_rx = srate_rx = options.sample_rate
        self.channels = srate_rx / 25000
        self.srate_channel = 36000
        self.afc_period = 5
        self.afc_gain = 1.
        self.afc_channel = options.auto_tune or -1
        self.afc_ppm_step = 100
        self.debug = options.debug
        self.last_pwr = -100000
        self.sig_det_period = 1
        self.sig_det_bw = sig_det_bw = options.sig_detection_bw or srate_rx
        if self.sig_det_bw <= 1.:
            self.sig_det_bw *= srate_rx
        self.sig_det_threshold = options.sig_detection_threshold
        self.sig_det_channels = []
        for ch in range(self.channels):
            if ch >= self.channels / 2:
                ch_ = (self.channels - ch - 1)
            else:
                ch_ = ch
            if (float(ch_) / self.channels * 2) <= (self.sig_det_bw /
                                                    srate_rx):
                self.sig_det_channels.append(ch)

        ##################################################
        # RPC server
        ##################################################
        self.xmlrpc_server = SimpleXMLRPCServer.SimpleXMLRPCServer(
            ("localhost", options.listen_port), allow_none=True)
        self.xmlrpc_server.register_instance(self)
        threading.Thread(target=self.xmlrpc_server.serve_forever).start()

        ##################################################
        # Rx Blocks and connections
        ##################################################
        self.src = osmosdr.source(args=options.args)
        self.src.set_sample_rate(srate_rx)
        self.src.set_center_freq(options.frequency, 0)
        self.src.set_freq_corr(options.ppm, 0)
        self.src.set_dc_offset_mode(0, 0)
        self.src.set_iq_balance_mode(0, 0)
        if options.gain is not None:
            self.src.set_gain_mode(False, 0)
            self.src.set_gain(36, 0)
        else:
            self.src.set_gain_mode(True, 0)

        out_type, dst_path = options.output.split("://", 1)
        if out_type == "udp":
            dst_ip, dst_port = dst_path.split(':', 1)

        self.freq_xlating = freq_xlating_fft_filter_ccc(1, (1, ), 0, srate_rx)

        self.channelizer = pfb.channelizer_ccf(
            self.channels,
            (firdes.root_raised_cosine(1, srate_rx, 18000, 0.35, 1024)),
            36. / 25., 100)

        self.squelch = []
        self.digital_mpsk_receiver_cc = []
        self.diff_phasor = []
        self.complex_to_arg = []
        self.multiply_const = []
        self.add_const = []
        self.float_to_uchar = []
        self.map_bits = []
        self.unpack_k_bits = []
        self.blocks_sink = []
        for ch in range(0, self.channels):
            squelch = analog.pwr_squelch_cc(0, 0.001, 0, True)
            mpsk = digital.mpsk_receiver_cc(4, math.pi / 4, math.pi / 100.0,
                                            -0.5, 0.5, 0.25, 0.001, 2, 0.001,
                                            0.001)
            diff_phasor = digital.diff_phasor_cc()
            complex_to_arg = blocks.complex_to_arg(1)
            multiply_const = blocks.multiply_const_vff((2. / math.pi, ))
            add_const = blocks.add_const_vff((1.5, ))
            float_to_uchar = blocks.float_to_uchar()
            map_bits = digital.map_bb(([3, 2, 0, 1, 3]))
            unpack_k_bits = blocks.unpack_k_bits_bb(2)

            if out_type == 'udp':
                sink = blocks.udp_sink(gr.sizeof_gr_char, dst_ip,
                                       int(dst_port) + ch, 1472, True)
            elif out_type == 'file':
                sink = blocks.file_sink(gr.sizeof_char, dst_path % ch, False)
                sink.set_unbuffered(True)
            else:
                raise ValueError("Invalid output URL '%s'" % options.output)

            self.connect((self.channelizer, ch), (squelch, 0), (mpsk, 0),
                         (diff_phasor, 0), (complex_to_arg, 0),
                         (multiply_const, 0), (add_const, 0),
                         (float_to_uchar, 0), (map_bits, 0),
                         (unpack_k_bits, 0), (sink, 0))

            self.squelch.append(squelch)
            self.digital_mpsk_receiver_cc.append(mpsk)
            self.diff_phasor.append(diff_phasor)
            self.complex_to_arg.append(complex_to_arg)
            self.multiply_const.append(multiply_const)
            self.add_const.append(add_const)
            self.float_to_uchar.append(float_to_uchar)
            self.map_bits.append(map_bits)
            self.unpack_k_bits.append(unpack_k_bits)
            self.blocks_sink.append(sink)

        self.connect((self.src, 0), (self.freq_xlating, 0),
                     (self.channelizer, 0))

        ##################################################
        # signal strenght identification
        ##################################################
        self.pwr_probes = []
        for ch in range(self.channels):
            pwr_probe = analog.probe_avg_mag_sqrd_c(0, 1. / self.srate_channel)
            self.pwr_probes.append(pwr_probe)
            self.connect((self.channelizer, ch), (pwr_probe, 0))

        def _sig_det_probe():
            while True:
                pwr = [
                    self.pwr_probes[ch].level() for ch in range(self.channels)
                    if ch in self.sig_det_channels
                ]
                pwr = [10 * math.log10(p) for p in pwr if p > 0.]
                if not pwr:
                    continue
                pwr = min(pwr) + self.sig_det_threshold
                print "Power level for squelch % 5.1f" % pwr
                if abs(pwr - self.last_pwr) > (self.sig_det_threshold / 2):
                    for s in self.squelch:
                        s.set_threshold(pwr)
                    self.last_pwr = pwr
                time.sleep(self.sig_det_period)

        if self.sig_det_threshold is not None:
            self._sig_det_probe_thread = threading.Thread(
                target=_sig_det_probe)
            self._sig_det_probe_thread.daemon = True
            self._sig_det_probe_thread.start()

        ##################################################
        # AFC blocks and connections
        ##################################################
        self.afc_selector = grc_blks2.selector(
            item_size=gr.sizeof_gr_complex,
            num_inputs=self.channels,
            num_outputs=1,
            input_index=0,
            output_index=0,
        )

        self.afc_demod = analog.quadrature_demod_cf(self.srate_channel /
                                                    (2 * math.pi))
        samp_afc = self.srate_channel * self.afc_period / 2
        self.afc_avg = blocks.moving_average_ff(samp_afc,
                                                1. / samp_afc * self.afc_gain)
        self.afc_probe = blocks.probe_signal_f()

        def _afc_probe():
            while True:
                time.sleep(self.afc_period)
                if self.afc_channel == -1:
                    continue
                err = self.afc_probe.level()
                if abs(err) < self.afc_ppm_step:
                    continue
                freq = self.freq_xlating.center_freq + err * self.afc_gain
                if self.debug:
                    print "err: %f\tfreq: %f" % (
                        err,
                        freq,
                    )
                self.freq_xlating.set_center_freq(freq)

        self._afc_err_thread = threading.Thread(target=_afc_probe)
        self._afc_err_thread.daemon = True
        self._afc_err_thread.start()

        for ch in range(self.channels):
            self.connect((self.channelizer, ch), (self.afc_selector, ch))
        self.connect((self.afc_selector, 0), (self.afc_demod, 0),
                     (self.afc_avg, 0), (self.afc_probe, 0))

        if self.afc_channel != -1:
            self.afc_selector.set_input_index(self.afc_channel)
    def __init__(self):
        gr.top_block.__init__(self, "Tetra Rx Multi")

        options = self.get_options()

        ##################################################
        # Variables
        ##################################################
        self.srate_rx = srate_rx = options.sample_rate
        self.channels = srate_rx / 25000
        self.srate_channel = 36000
        self.afc_period = 5
        self.afc_gain = 1.
        self.afc_channel = options.auto_tune or -1
        self.afc_ppm_step = 100
        self.debug = options.debug
        self.last_pwr = -100000
        self.sig_det_period = 1
        self.sig_det_bw = sig_det_bw = options.sig_detection_bw or srate_rx
        if self.sig_det_bw <= 1.:
            self.sig_det_bw *= srate_rx
        self.sig_det_threshold = options.sig_detection_threshold
        self.sig_det_channels = []
        for ch in range(self.channels):
            if ch >= self.channels / 2:
                ch_ = (self.channels - ch - 1)
            else:
                ch_ = ch
            if (float(ch_) / self.channels * 2) <= (self.sig_det_bw / srate_rx):
                self.sig_det_channels.append(ch)

        ##################################################
        # RPC server
        ##################################################
        self.xmlrpc_server = SimpleXMLRPCServer.SimpleXMLRPCServer(
                ("localhost", options.listen_port), allow_none=True)
        self.xmlrpc_server.register_instance(self)
        threading.Thread(target=self.xmlrpc_server.serve_forever).start()

        ##################################################
        # Rx Blocks and connections
        ##################################################
        self.src = osmosdr.source( args=options.args )
        self.src.set_sample_rate(srate_rx)
        self.src.set_center_freq(options.frequency, 0)
        self.src.set_freq_corr(options.ppm, 0)
        self.src.set_dc_offset_mode(0, 0)
        self.src.set_iq_balance_mode(0, 0)
        if options.gain is not None:
            self.src.set_gain_mode(False, 0)
            self.src.set_gain(36, 0)
        else:
            self.src.set_gain_mode(True, 0)

        out_type, dst_path = options.output.split("://", 1)
        if out_type == "udp":
            dst_ip, dst_port = dst_path.split(':', 1)

        self.freq_xlating = freq_xlating_fft_filter_ccc(1, (1, ), 0, srate_rx)

        self.channelizer = pfb.channelizer_ccf(
              self.channels,
              (firdes.root_raised_cosine(1, srate_rx, 18000, 0.35, 1024)),
              36./25.,
              100)

        self.squelch = []
        self.digital_mpsk_receiver_cc = []
        self.diff_phasor = []
        self.complex_to_arg = []
        self.multiply_const = []
        self.add_const = []
        self.float_to_uchar = []
        self.map_bits = []
        self.unpack_k_bits = []
        self.blocks_sink = []
        for ch in range(0, self.channels):
            squelch = analog.pwr_squelch_cc(0, 0.001, 0, True)
            mpsk = digital.mpsk_receiver_cc(
                    4, math.pi/4, math.pi/100.0, -0.5, 0.5, 0.25, 0.001, 2, 0.001, 0.001)
            diff_phasor = digital.diff_phasor_cc()
            complex_to_arg = blocks.complex_to_arg(1)
            multiply_const = blocks.multiply_const_vff((2./math.pi, ))
            add_const = blocks.add_const_vff((1.5, ))
            float_to_uchar = blocks.float_to_uchar()
            map_bits = digital.map_bb(([3, 2, 0, 1, 3]))
            unpack_k_bits = blocks.unpack_k_bits_bb(2)

            if out_type == 'udp':
                sink = blocks.udp_sink(gr.sizeof_gr_char, dst_ip, int(dst_port)+ch, 1472, True)
            elif out_type == 'file':
                sink = blocks.file_sink(gr.sizeof_char, dst_path % ch, False)
                sink.set_unbuffered(True)
            else:
                raise ValueError("Invalid output URL '%s'" % options.output)

            self.connect((self.channelizer, ch),
                    (squelch, 0),
                    (mpsk, 0),
                    (diff_phasor, 0),
                    (complex_to_arg, 0),
                    (multiply_const, 0),
                    (add_const, 0),
                    (float_to_uchar, 0),
                    (map_bits, 0),
                    (unpack_k_bits, 0),
                    (sink, 0))

            self.squelch.append(squelch)
            self.digital_mpsk_receiver_cc.append(mpsk)
            self.diff_phasor.append(diff_phasor)
            self.complex_to_arg.append(complex_to_arg)
            self.multiply_const.append(multiply_const)
            self.add_const.append(add_const)
            self.float_to_uchar.append(float_to_uchar)
            self.map_bits.append(map_bits)
            self.unpack_k_bits.append(unpack_k_bits)
            self.blocks_sink.append(sink)

        self.connect(
                (self.src, 0),
                (self.freq_xlating, 0),
                (self.channelizer, 0))

        ##################################################
        # signal strenght identification
        ##################################################
        self.pwr_probes = []
        for ch in range(self.channels):
            pwr_probe = analog.probe_avg_mag_sqrd_c(0, 1./self.srate_channel)
            self.pwr_probes.append(pwr_probe)
            self.connect((self.channelizer, ch), (pwr_probe, 0))
        def _sig_det_probe():
            while True:
                pwr = [self.pwr_probes[ch].level()
                        for ch in range(self.channels)
                        if ch in self.sig_det_channels]
                pwr = [10 * math.log10(p) for p in pwr if p > 0.]
                if not pwr:
                    continue
                pwr = min(pwr) + self.sig_det_threshold
                print "Power level for squelch % 5.1f" % pwr
                if abs(pwr - self.last_pwr) > (self.sig_det_threshold / 2):
                    for s in self.squelch:
                        s.set_threshold(pwr)
                    self.last_pwr = pwr
                time.sleep(self.sig_det_period)

        if self.sig_det_threshold is not None:
            self._sig_det_probe_thread = threading.Thread(target=_sig_det_probe)
            self._sig_det_probe_thread.daemon = True
            self._sig_det_probe_thread.start()

        ##################################################
        # AFC blocks and connections
        ##################################################
        self.afc_selector = grc_blks2.selector(
                item_size=gr.sizeof_gr_complex,
                num_inputs=self.channels,
                num_outputs=1,
                input_index=0,
                output_index=0,
                )

        self.afc_demod = analog.quadrature_demod_cf(self.srate_channel/(2*math.pi))
        samp_afc = self.srate_channel*self.afc_period / 2
        self.afc_avg = blocks.moving_average_ff(samp_afc, 1./samp_afc*self.afc_gain)
        self.afc_probe = blocks.probe_signal_f()

        def _afc_probe():
            while True:
                time.sleep(self.afc_period)
                if self.afc_channel == -1:
                    continue
                err = self.afc_probe.level()
                if abs(err) < self.afc_ppm_step:
                    continue
                freq = self.freq_xlating.center_freq + err * self.afc_gain
                if self.debug:
                    print "err: %f\tfreq: %f" % (err, freq, )
                self.freq_xlating.set_center_freq(freq)
        self._afc_err_thread = threading.Thread(target=_afc_probe)
        self._afc_err_thread.daemon = True
        self._afc_err_thread.start()

        for ch in range(self.channels):
            self.connect((self.channelizer, ch), (self.afc_selector, ch))
        self.connect(
                (self.afc_selector, 0),
                (self.afc_demod, 0),
                (self.afc_avg, 0),
                (self.afc_probe, 0))

        if self.afc_channel != -1:
            self.afc_selector.set_input_index(self.afc_channel)
    def __init__(self, ebn0_db=3.3, spread_factor=2**10, tailbiting=True):
        gr.top_block.__init__(self, "LECIM DSSS TxRx BER test")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("LECIM DSSS TxRx BER test")
        qtgui.util.check_set_qss()
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "dsss_sim_perfekt_sync_fg")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        self._lock = threading.RLock()

        ##################################################
        # Parameters
        ##################################################
        self.ebn0_db = ebn0_db
        self.spread_factor = spread_factor
        self.tailbiting = tailbiting

        ##################################################
        # Variables
        ##################################################
        self.cc_poly = cc_poly = [121, 91]
        self.pdu_size = pdu_size = 32
        self.noise = noise = (
            np.sqrt(1 * spread_factor / 10**(ebn0_db / 10.0)) * 1.0)
        self.len_tag_var = len_tag_var = "packet_len"

        self.cc_encoder_terminated = cc_encoder_terminated = map(
            (lambda a: fec.cc_encoder_make(32 * 8, 7, 2, (cc_poly), 0, fec.
                                           CC_TERMINATED, True)), range(0, 1))

        self.cc_encoder_tailbiting = cc_encoder_tailbiting = map(
            (lambda a: fec.cc_encoder_make(32 * 8, 7, 2, (cc_poly), 0, fec.
                                           CC_TAILBITING, False)), range(0, 1))

        self.cc_decoder_terminated = cc_decoder_terminated = map(
            (lambda a: fec.cc_decoder.make(32 * 8, 7, 2, (cc_poly), 0, -1, fec.
                                           CC_TERMINATED, True)), range(0, 1))

        self.cc_decoder_tailbiting = cc_decoder_tailbiting = map(
            (lambda a: fec.cc_decoder.make(32 * 8, 7, 2, (cc_poly), 0, -1, fec.
                                           CC_TAILBITING, False)), range(0, 1))

        ##################################################
        # Blocks
        ##################################################
        self.qtgui_number_sink_0_0 = qtgui.number_sink(gr.sizeof_float, 0,
                                                       qtgui.NUM_GRAPH_HORIZ,
                                                       1)
        self.qtgui_number_sink_0_0.set_update_time(0.10)
        self.qtgui_number_sink_0_0.set_title("BER")

        labels = ['', '', '', '', '', '', '', '', '', '']
        units = ['', '', '', '', '', '', '', '', '', '']
        colors = [("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        for i in xrange(1):
            self.qtgui_number_sink_0_0.set_min(i, -1)
            self.qtgui_number_sink_0_0.set_max(i, 1)
            self.qtgui_number_sink_0_0.set_color(i, colors[i][0], colors[i][1])
            if len(labels[i]) == 0:
                self.qtgui_number_sink_0_0.set_label(i, "Data {0}".format(i))
            else:
                self.qtgui_number_sink_0_0.set_label(i, labels[i])
            self.qtgui_number_sink_0_0.set_unit(i, units[i])
            self.qtgui_number_sink_0_0.set_factor(i, factor[i])

        self.qtgui_number_sink_0_0.enable_autoscale(False)
        self._qtgui_number_sink_0_0_win = sip.wrapinstance(
            self.qtgui_number_sink_0_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_number_sink_0_0_win)
        self.probe_ber_running = blocks.probe_signal_f()
        self.lpwan_dsss_spreading_bb_0 = lpwan.dsss_spreading_bb(
            len_tag_var, spread_factor, 123456, False, 0, 0)
        self.lpwan_dsss_normalize_ff_0 = lpwan.dsss_normalize_ff(len_tag_var)
        self.lpwan_dsss_interleaver_bb_0 = lpwan.dsss_interleaver_bb(
            len_tag_var)
        self.lpwan_dsss_diff_decoding_ff_0 = lpwan.dsss_diff_decoding_ff(
            len_tag_var, False, 0)
        self.lpwan_dsss_diff_coding_bb_0 = lpwan.dsss_diff_coding_bb(
            len_tag_var)
        self.lpwan_dsss_despread_simple_cc_0 = lpwan.dsss_despread_simple_cc(
            len_tag_var, spread_factor, 123456, False, 0, 0)
        self.lpwan_dsss_deinterleaver_ff_0 = lpwan.dsss_deinterleaver_ff(
            len_tag_var)
        self.fec_extended_tagged_encoder_0 = fec.extended_tagged_encoder(
            encoder_obj_list=cc_encoder_tailbiting
            if tailbiting else cc_encoder_terminated,
            puncpat='11',
            lentagname=len_tag_var,
            mtu=32)
        self.fec_extended_tagged_decoder_0 = self.fec_extended_tagged_decoder_0 = fec_extended_tagged_decoder_0 = fec.extended_tagged_decoder(
            decoder_obj_list=cc_decoder_tailbiting
            if tailbiting else cc_decoder_terminated,
            ann=None,
            puncpat='11',
            integration_period=10000,
            lentagname=len_tag_var,
            mtu=32)
        self.fec_ber_running = fec.ber_bf(False, 100, -7.0)
        self.digital_chunks_to_symbols_xx_0 = digital.chunks_to_symbols_bc(
            ([-1, 1]), 1)
        self.blocks_stream_to_tagged_stream_0 = blocks.stream_to_tagged_stream(
            gr.sizeof_char, 1, pdu_size, len_tag_var)
        self.blocks_repack_bits_bb_0_0 = blocks.repack_bits_bb(
            1, 8, len_tag_var, False, gr.GR_LSB_FIRST)
        self.blocks_repack_bits_bb_0 = blocks.repack_bits_bb(
            8, 1, len_tag_var, False, gr.GR_LSB_FIRST)
        self.blocks_complex_to_real_0 = blocks.complex_to_real(1)
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        (self.blocks_add_xx_0).set_min_output_buffer(2097152)
        self.analog_random_source_x_0 = blocks.vector_source_b(
            map(int, numpy.random.randint(0, 256, 10000000)), True)
        self.analog_noise_source_x_0 = analog.noise_source_c(
            analog.GR_GAUSSIAN, noise, rnd.randint(0, 10000))

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_noise_source_x_0, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.analog_random_source_x_0, 0),
                     (self.blocks_stream_to_tagged_stream_0, 0))
        self.connect((self.blocks_add_xx_0, 0),
                     (self.lpwan_dsss_despread_simple_cc_0, 0))
        self.connect((self.blocks_complex_to_real_0, 0),
                     (self.lpwan_dsss_deinterleaver_ff_0, 0))
        self.connect((self.blocks_repack_bits_bb_0, 0),
                     (self.fec_extended_tagged_encoder_0, 0))
        self.connect((self.blocks_repack_bits_bb_0_0, 0),
                     (self.fec_ber_running, 1))
        self.connect((self.blocks_stream_to_tagged_stream_0, 0),
                     (self.blocks_repack_bits_bb_0, 0))
        self.connect((self.blocks_stream_to_tagged_stream_0, 0),
                     (self.fec_ber_running, 0))
        self.connect((self.digital_chunks_to_symbols_xx_0, 0),
                     (self.blocks_add_xx_0, 1))
        self.connect((self.fec_ber_running, 0), (self.probe_ber_running, 0))
        self.connect((self.fec_ber_running, 0),
                     (self.qtgui_number_sink_0_0, 0))
        self.connect((self.fec_extended_tagged_decoder_0, 0),
                     (self.blocks_repack_bits_bb_0_0, 0))
        self.connect((self.fec_extended_tagged_encoder_0, 0),
                     (self.lpwan_dsss_interleaver_bb_0, 0))
        self.connect((self.lpwan_dsss_deinterleaver_ff_0, 0),
                     (self.lpwan_dsss_normalize_ff_0, 0))
        self.connect((self.lpwan_dsss_despread_simple_cc_0, 0),
                     (self.lpwan_dsss_diff_decoding_ff_0, 0))
        self.connect((self.lpwan_dsss_diff_coding_bb_0, 0),
                     (self.lpwan_dsss_spreading_bb_0, 0))
        self.connect((self.lpwan_dsss_diff_decoding_ff_0, 0),
                     (self.blocks_complex_to_real_0, 0))
        self.connect((self.lpwan_dsss_interleaver_bb_0, 0),
                     (self.lpwan_dsss_diff_coding_bb_0, 0))
        self.connect((self.lpwan_dsss_normalize_ff_0, 0),
                     (self.fec_extended_tagged_decoder_0, 0))
        self.connect((self.lpwan_dsss_spreading_bb_0, 0),
                     (self.digital_chunks_to_symbols_xx_0, 0))
Beispiel #34
0
	def __init__(self, dab_params, rx_params, verbose=False, debug=False):
		"""
		Hierarchical block for OFDM demodulation

		@param dab_params DAB parameter object (dab.parameters.dab_parameters)
		@param rx_params RX parameter object (dab.parameters.receiver_parameters)
		@param debug enables debug output to files
		@param verbose whether to produce verbose messages
		"""

		self.dp = dp = dab_params
		self.rp = rp = rx_params
		self.verbose = verbose

		if self.rp.softbits:
			gr.hier_block2.__init__(self,"ofdm_demod",
						gr.io_signature (1, 1, gr.sizeof_gr_complex), # input signature
						gr.io_signature2(2, 2, gr.sizeof_float*self.dp.num_carriers*2, gr.sizeof_char)) # output signature
		else:
			gr.hier_block2.__init__(self,"ofdm_demod",
						gr.io_signature (1, 1, gr.sizeof_gr_complex), # input signature
						gr.io_signature2(2, 2, gr.sizeof_char*self.dp.num_carriers/4, gr.sizeof_char)) # output signature

		

		# workaround for a problem that prevents connecting more than one block directly (see trac ticket #161)
		#self.input = gr.kludge_copy(gr.sizeof_gr_complex)
		self.input = blocks.multiply_const_cc(1.0) # FIXME
		self.connect(self, self.input)
		
		# input filtering
		if self.rp.input_fft_filter: 
			if verbose: print "--> RX filter enabled"
			lowpass_taps = filter.firdes_low_pass(1.0,                     # gain
							  dp.sample_rate,          # sampling rate
							  rp.filt_bw,              # cutoff frequency
							  rp.filt_tb,              # width of transition band
							  filter.firdes.WIN_HAMMING)   # Hamming window
			self.fft_filter = filter.fft_filter_ccc(1, lowpass_taps)
		

		# correct sample rate offset, if enabled
		if self.rp.autocorrect_sample_rate:
			if verbose: print "--> dynamic sample rate correction enabled"
			self.rate_detect_ns = dab.detect_null(dp.ns_length, False)
			self.rate_estimator = dab.estimate_sample_rate_bf(dp.sample_rate, dp.frame_length)
			self.rate_prober = blocks.probe_signal_f()
			self.connect(self.input, self.rate_detect_ns, self.rate_estimator, self.rate_prober)
			# self.resample = gr.fractional_interpolator_cc(0, 1)
			self.resample = dab.fractional_interpolator_triggered_update_cc(0,1)
			self.connect(self.rate_detect_ns, (self.resample,1))
			self.updater = Timer(0.1,self.update_correction)
			# self.updater = threading.Thread(target=self.update_correction)
			self.run_interpolater_update_thread = True
			self.updater.setDaemon(True)
			self.updater.start()
		else:
			self.run_interpolater_update_thread = False
			if self.rp.sample_rate_correction_factor != 1:
				if verbose: print "--> static sample rate correction enabled"
				self.resample = gr.fractional_interpolator_cc(0, self.rp.sample_rate_correction_factor)

		# timing and fine frequency synchronisation
		self.sync = dab.ofdm_sync_dab2(self.dp, self.rp, debug)

		# ofdm symbol sampler
		self.sampler = dab.ofdm_sampler(dp.fft_length, dp.cp_length, dp.symbols_per_frame, rp.cp_gap)
		
		# fft for symbol vectors
		self.fft = fft.fft_vcc(dp.fft_length, True, [], True)

		# coarse frequency synchronisation
		self.cfs = dab.ofdm_coarse_frequency_correct(dp.fft_length, dp.num_carriers, dp.cp_length)

		# diff phasor
		self.phase_diff = dab.diff_phasor_vcc(dp.num_carriers)

		# remove pilot symbol
		self.remove_pilot = dab.ofdm_remove_first_symbol_vcc(dp.num_carriers)

		# magnitude equalisation
		if self.rp.equalize_magnitude:
			if verbose: print "--> magnitude equalization enabled"
			self.equalizer = dab.magnitude_equalizer_vcc(dp.num_carriers, rp.symbols_for_magnitude_equalization)

		# frequency deinterleaving
		self.deinterleave = dab.frequency_interleaver_vcc(dp.frequency_deinterleaving_sequence_array)
		
		# symbol demapping
		self.demapper = dab.qpsk_demapper_vcb(dp.num_carriers)

		#
		# connect everything
		#

		if self.rp.autocorrect_sample_rate or self.rp.sample_rate_correction_factor != 1:
			self.connect(self.input, self.resample)
			self.input2 = self.resample
		else:
			self.input2 = self.input
		if self.rp.input_fft_filter:
			self.connect(self.input2, self.fft_filter, self.sync)
		else:
			self.connect(self.input2, self.sync)

		# data stream
		self.connect((self.sync, 0), (self.sampler, 0), self.fft, (self.cfs, 0), self.phase_diff, (self.remove_pilot,0))
		if self.rp.equalize_magnitude:
			self.connect((self.remove_pilot,0), (self.equalizer,0), self.deinterleave)
		else:
			self.connect((self.remove_pilot,0), self.deinterleave)
		if self.rp.softbits:
			if verbose: print "--> using soft bits"
			self.softbit_interleaver = dab.complex_to_interleaved_float_vcf(self.dp.num_carriers)
			self.connect(self.deinterleave, self.softbit_interleaver, (self,0))
		else:
			self.connect(self.deinterleave, self.demapper, (self,0))

		# control stream
		self.connect((self.sync, 1), (self.sampler, 1), (self.cfs, 1), (self.remove_pilot,1))
		if self.rp.equalize_magnitude:
			self.connect((self.remove_pilot,1), (self.equalizer,1), (self,1))
		else:
			self.connect((self.remove_pilot,1), (self,1))
			
		# calculate an estimate of the SNR
		self.phase_var_decim   = blocks.keep_one_in_n(gr.sizeof_gr_complex*self.dp.num_carriers, self.rp.phase_var_estimate_downsample)
		self.phase_var_arg     = blocks.complex_to_arg(dp.num_carriers)
		self.phase_var_v2s     = blocks.vector_to_stream(gr.sizeof_float, dp.num_carriers)
		self.phase_var_mod     = dab.modulo_ff(pi/2)
		self.phase_var_avg_mod = filter.iir_filter_ffd([rp.phase_var_estimate_alpha], [0,1-rp.phase_var_estimate_alpha]) 
		self.phase_var_sub_avg = blocks.sub_ff()
		self.phase_var_sqr     = blocks.multiply_ff()
		self.phase_var_avg     = filter.iir_filter_ffd([rp.phase_var_estimate_alpha], [0,1-rp.phase_var_estimate_alpha]) 
		self.probe_phase_var   = blocks.probe_signal_f()
		self.connect((self.remove_pilot,0), self.phase_var_decim, self.phase_var_arg, self.phase_var_v2s, self.phase_var_mod, (self.phase_var_sub_avg,0), (self.phase_var_sqr,0))
		self.connect(self.phase_var_mod, self.phase_var_avg_mod, (self.phase_var_sub_avg,1))
		self.connect(self.phase_var_sub_avg, (self.phase_var_sqr,1))
		self.connect(self.phase_var_sqr, self.phase_var_avg, self.probe_phase_var)

		# measure processing rate
		self.measure_rate = dab.measure_processing_rate(gr.sizeof_gr_complex, 2000000) 
		self.connect(self.input, self.measure_rate)

		# debugging
		if debug:
			self.connect(self.fft, blocks.file_sink(gr.sizeof_gr_complex*dp.fft_length, "debug/ofdm_after_fft.dat"))
			self.connect((self.cfs,0), blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_after_cfs.dat"))
			self.connect(self.phase_diff, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_diff_phasor.dat"))
			self.connect((self.remove_pilot,0), blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_pilot_removed.dat"))
			self.connect((self.remove_pilot,1), blocks.file_sink(gr.sizeof_char, "debug/ofdm_after_cfs_trigger.dat"))
			self.connect(self.deinterleave, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_deinterleaved.dat"))
			if self.rp.equalize_magnitude:
				self.connect(self.equalizer, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_equalizer.dat"))
			if self.rp.softbits:
				self.connect(self.softbit_interleaver, blocks.file_sink(gr.sizeof_float*dp.num_carriers*2, "debug/softbits.dat"))
Beispiel #35
0
    def __init__(
        self,
        label="IQ",
        sampRate=1.0,
        centerFreq=0.0,
        fftPlotRange=[-120, 0],
        fftSizeN=10,
        rmsGainRange=[0, 11],
        enableSpectrum=True,
        enableTimeWaveform=True,
        enableWaterfall=True,
        enableRssiDisplay=True,
        enableRssi=True,
        fftGainLog=0.0,
        rssiPollRate=1.0,
        updatePeriod=0.1,
        rmsAvgGainExpInit=5,
    ):
        gr.hier_block2.__init__(
            self,
            "Freq and Time Sink (%s)" % (label, ),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(0, 0, 0),
        )
        self.message_port_register_hier_out("freq")
        self.message_port_register_hier_in("freq")

        Qt.QWidget.__init__(self)
        self.top_layout = Qt.QVBoxLayout()
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)
        self.setLayout(self.top_layout)

        self._lock = threading.RLock()

        ##################################################
        # Parameters
        ##################################################
        self.centerFreq = centerFreq
        self.enableRssiDisplay = enableRssiDisplay and enableRssi
        self.enableRssi = enableRssi
        self.enableSpectrum = enableSpectrum
        self.enableTimeWaveform = enableTimeWaveform
        self.enableWaterfall = enableWaterfall
        self.fftGainLog = fftGainLog
        self.fftPlotRange = fftPlotRange
        self.fftSizeN = fftSizeN
        self.label = label
        self.rmsGainRange = rmsGainRange
        self.rssiPollRate = rssiPollRate
        self.sampRate = sampRate
        self.updatePeriod = updatePeriod

        ##################################################
        # Variables
        ##################################################
        self.rssi = rssi = "n/a"
        self.rmsAvgGainExp = rmsAvgGainExp = rmsAvgGainExpInit
        self.fftSize = fftSize = int(2**fftSizeN)
        self.fftGainLinear = fftGainLinear = 10.0**(float(fftGainLog) / 20)
        self.N = N = int(sampRate * updatePeriod)

        ##################################################
        # Blocks
        ##################################################
        self.tabs = Qt.QTabWidget()

        if self.enableSpectrum:
            self.tabs_widget_0 = Qt.QWidget()
            self.tabs_layout_0 = Qt.QBoxLayout(Qt.QBoxLayout.TopToBottom,
                                               self.tabs_widget_0)
            self.tabs_grid_layout_0 = Qt.QGridLayout()
            self.tabs_layout_0.addLayout(self.tabs_grid_layout_0)
            self.tabs.addTab(self.tabs_widget_0, "%s Spectrum" % (label, ))

        if self.enableWaterfall:
            self.tabs_widget_1 = Qt.QWidget()
            self.tabs_layout_1 = Qt.QBoxLayout(Qt.QBoxLayout.TopToBottom,
                                               self.tabs_widget_1)
            self.tabs_grid_layout_1 = Qt.QGridLayout()
            self.tabs_layout_1.addLayout(self.tabs_grid_layout_1)
            self.tabs.addTab(self.tabs_widget_1, "%s Waterfall" % (label, ))

        if self.enableTimeWaveform:
            self.tabs_widget_2 = Qt.QWidget()
            self.tabs_layout_2 = Qt.QBoxLayout(Qt.QBoxLayout.TopToBottom,
                                               self.tabs_widget_2)
            self.tabs_grid_layout_2 = Qt.QGridLayout()
            self.tabs_layout_2.addLayout(self.tabs_grid_layout_2)
            self.tabs.addTab(self.tabs_widget_2,
                             "%s Time Waveform" % (label, ))

        self.top_grid_layout.addWidget(self.tabs, 0, 0, 1, 2)

        if self.enableRssiDisplay:
            self._rmsAvgGainExp_range = Range(rmsGainRange[0], rmsGainRange[1],
                                              1, rmsAvgGainExp, 200)
            self._rmsAvgGainExp_win = RangeWidget(
                self._rmsAvgGainExp_range, self.set_rmsAvgGainExp,
                "Avg\nGain\n2^-[%s]" % (",".join(str(i)
                                                 for i in rmsGainRange)),
                "dial", float)
            self.top_grid_layout.addWidget(self._rmsAvgGainExp_win, 1, 1, 1, 1)

        if self.enableWaterfall:
            self.waterfallSink = qtgui.waterfall_sink_c(
                1024,  #size
                firdes.WIN_BLACKMAN_hARRIS,  #wintype
                centerFreq,  #fc
                sampRate,  #bw
                "",  #name
                1  #number of inputs
            )
            self.waterfallSink.set_update_time(updatePeriod)
            self.waterfallSink.enable_grid(True)

            if not True:
                self.waterfallSink.disable_legend()

            if complex == type(float()):
                self.waterfallSink.set_plot_pos_half(not True)

            labels = ["", "", "", "", "", "", "", "", "", ""]
            colors = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0]
            alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
            for i in xrange(1):
                if len(labels[i]) == 0:
                    self.waterfallSink.set_line_label(i, "Data {0}".format(i))
                else:
                    self.waterfallSink.set_line_label(i, labels[i])
                self.waterfallSink.set_color_map(i, colors[i])
                self.waterfallSink.set_line_alpha(i, alphas[i])

            self.waterfallSink.set_intensity_range(fftPlotRange[0] + 20,
                                                   fftPlotRange[1])

            self._waterfallSink_win = sip.wrapinstance(
                self.waterfallSink.pyqwidget(), Qt.QWidget)
            self.tabs_grid_layout_1.addWidget(self._waterfallSink_win, 0, 0, 1,
                                              1)

        if self.enableTimeWaveform:
            self.timeSink = qtgui.time_sink_c(
                fftSize,  #size
                sampRate,  #samp_rate
                "",  #name
                1  #number of inputs
            )
            self.timeSink.set_update_time(updatePeriod)
            self.timeSink.set_y_axis(-1, 1)

            self.timeSink.set_y_label("Amplitude", "")

            self.timeSink.enable_tags(-1, True)
            self.timeSink.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                           qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
            self.timeSink.enable_autoscale(True)
            self.timeSink.enable_grid(True)
            self.timeSink.enable_control_panel(False)

            if not False:
                self.timeSink.disable_legend()

            labels = ["I", "Q", "", "", "", "", "", "", "", ""]
            widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
            colors = [
                "blue", "green", "green", "black", "cyan", "magenta", "yellow",
                "dark red", "dark green", "blue"
            ]
            styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
            markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
            alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

            for i in xrange(2 * 1):
                if len(labels[i]) == 0:
                    if (i % 2 == 0):
                        self.timeSink.set_line_label(
                            i, "Re{{Data {0}}}".format(i / 2))
                    else:
                        self.timeSink.set_line_label(
                            i, "Im{{Data {0}}}".format(i / 2))
                else:
                    self.timeSink.set_line_label(i, labels[i])
                self.timeSink.set_line_width(i, widths[i])
                self.timeSink.set_line_color(i, colors[i])
                self.timeSink.set_line_style(i, styles[i])
                self.timeSink.set_line_marker(i, markers[i])
                self.timeSink.set_line_alpha(i, alphas[i])

            self._timeSink_win = sip.wrapinstance(self.timeSink.pyqwidget(),
                                                  Qt.QWidget)
            self.tabs_layout_2.addWidget(self._timeSink_win)

        if self.enableRssi:
            self.rmsCalc = blocks.rms_cf(2**-rmsAvgGainExp)
            self.nLog10 = blocks.nlog10_ff(20, 1, 0)
            self.keepOneInN = blocks.keep_one_in_n(gr.sizeof_float * 1,
                                                   N if N > 0 else 1)
            self.rssiProbe = blocks.probe_signal_f()

            def _rssi_probe():
                while True:
                    val = self.rssiProbe.level()
                    try:
                        self.set_rssi(val)
                    except AttributeError:
                        pass
                    time.sleep(1.0 / (rssiPollRate))

            _rssi_thread = threading.Thread(target=_rssi_probe)
            _rssi_thread.daemon = True
            _rssi_thread.start()

        if self.enableRssiDisplay:
            self.numberSInk = qtgui.number_sink(gr.sizeof_float, 0,
                                                qtgui.NUM_GRAPH_HORIZ, 1)
            self.numberSInk.set_update_time(updatePeriod)
            self.numberSInk.set_title("")

            labels = [
                "\n".join((label, "RMS Mag")), "NBDDC", "", "", "", "", "", "",
                "", ""
            ]
            units = ["dBfs", "dBfs", "", "", "", "", "", "", "", ""]
            colors = [
                ("black", "black"), ("black", "black"), ("black", "black"),
                ("black", "black"), ("black", "black"), ("black", "black"),
                ("black", "black"), ("black", "black"), ("black", "black"),
                ("black", "black")
            ]
            factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
            for i in xrange(1):
                self.numberSInk.set_min(i, fftPlotRange[0])
                self.numberSInk.set_max(i, fftPlotRange[1])
                self.numberSInk.set_color(i, colors[i][0], colors[i][1])
                if len(labels[i]) == 0:
                    self.numberSInk.set_label(i, "Data {0}".format(i))
                else:
                    self.numberSInk.set_label(i, labels[i])
                self.numberSInk.set_unit(i, units[i])
                self.numberSInk.set_factor(i, factor[i])

            self.numberSInk.enable_autoscale(False)
            self._numberSInk_win = sip.wrapinstance(
                self.numberSInk.pyqwidget(), Qt.QWidget)
            self.top_grid_layout.addWidget(self._numberSInk_win, 1, 0, 1, 1)

        if self.enableSpectrum:
            self.freqSink = qtgui.freq_sink_c(
                fftSize,  #size
                firdes.WIN_BLACKMAN_hARRIS,  #wintype
                centerFreq,  #fc
                sampRate,  #bw
                "",  #name
                1  #number of inputs
            )
            self.freqSink.set_update_time(updatePeriod)
            self.freqSink.set_y_axis(fftPlotRange[0], fftPlotRange[1])
            self.freqSink.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
            self.freqSink.enable_autoscale(False)
            self.freqSink.enable_grid(True)
            self.freqSink.set_fft_average(1.0)
            self.freqSink.enable_control_panel(False)

            if not False:
                self.freqSink.disable_legend()

            if complex == type(float()):
                self.freqSink.set_plot_pos_half(not True)

            labels = ["", "", "", "", "", "", "", "", "", ""]
            widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
            colors = [
                "dark red", "red", "green", "black", "cyan", "magenta",
                "yellow", "dark red", "dark green", "dark blue"
            ]
            alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
            for i in xrange(1):
                if len(labels[i]) == 0:
                    self.freqSink.set_line_label(i, "Data {0}".format(i))
                else:
                    self.freqSink.set_line_label(i, labels[i])
                self.freqSink.set_line_width(i, widths[i])
                self.freqSink.set_line_color(i, colors[i])
                self.freqSink.set_line_alpha(i, alphas[i])

            self._freqSink_win = sip.wrapinstance(self.freqSink.pyqwidget(),
                                                  Qt.QWidget)
            self.tabs_grid_layout_0.addWidget(self._freqSink_win, 0, 0, 1, 2)

        if self.enableSpectrum or self.enableWaterfall:
            self.fftGainMultiplier = blocks.multiply_const_vcc(
                (fftGainLinear, ))
            _fftsize_probe_thread = threading.Thread(target=self.checkFftScale)
            _fftsize_probe_thread.daemon = True
            _fftsize_probe_thread.start()

        ##################################################
        # Connections
        ##################################################
        if self.enableSpectrum or self.enableWaterfall:
            self.connect((self, 0), (self.fftGainMultiplier, 0))
        if self.enableSpectrum:
            self.connect((self.fftGainMultiplier, 0), (self.freqSink, 0))
            self.msg_connect((self, 'freq'), (self.freqSink, 'freq'))
            self.msg_connect((self.freqSink, 'freq'), (self, 'freq'))
        if self.enableWaterfall:
            self.connect((self.fftGainMultiplier, 0), (self.waterfallSink, 0))
            self.msg_connect((self, 'freq'), (self.waterfallSink, 'freq'))
        if self.enableRssi:
            self.connect((self, 0), (self.rmsCalc, 0))
            self.connect((self.rmsCalc, 0), (self.keepOneInN, 0))
            self.connect((self.keepOneInN, 0), (self.nLog10, 0))
            self.connect((self.nLog10, 0), (self.rssiProbe, 0))
            if self.enableRssiDisplay:
                self.connect((self.nLog10, 0), (self.numberSInk, 0))
        if self.enableTimeWaveform:
            self.connect((self, 0), (self.timeSink, 0))
Beispiel #36
0
    def __init__(self, fftsize, samp_rate, gain, c_freq):
        gr.top_block.__init__(self, "Receiver")

        #Class variables
        self.samp_rate = samp_rate
        self.gain = gain
        self.fftsize = fftsize
        self.c_freq = c_freq
        self.dump1 = "/tmp/ramdisk/dump1"  #View as null sinks
        self.dump2 = "/tmp/ramdisk/dump2"
        self.dump3 = "/tmp/ramdisk/dump3"
        self.dump4 = "/tmp/ramdisk/dump4"
        self.alpha = 0.01  #Integrate 100 FFTS 0.01
        self.N = 100  #100
        self.probe_var = probe_var = 0
        self.probe_var_1 = probe_var_1 = 0

        ########## GNURADIO BLOCKS #########
        ####################################
        self.uhd_usrp_source_0 = uhd.usrp_source(
            ",".join(
                ("", "")
            ),  #Set the master_clock_rate, default = 200 MHz, alt 184.32 MHz and 120 MHz (Set)
            uhd.stream_args(
                cpu_format="fc32",
                channels=range(2),
            ),
        )
        #Configure USRP channel 0
        self.uhd_usrp_source_0.set_antenna("RX2", 0)
        self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)
        self.uhd_usrp_source_0.set_center_freq(self.c_freq, 0)
        self.uhd_usrp_source_0.set_gain(self.gain, 0)
        self.uhd_usrp_source_0.set_bandwidth(self.samp_rate, 0)
        self.uhd_usrp_source_0.set_clock_source('external')

        #Configure USRP channel 1
        self.uhd_usrp_source_0.set_antenna("RX2", 1)
        self.uhd_usrp_source_0.set_center_freq(self.c_freq, 1)
        self.uhd_usrp_source_0.set_gain(self.gain, 1)
        self.uhd_usrp_source_0.set_bandwidth(self.samp_rate, 1)
        #self.uhd_usrp_source_0.set_clock_source('external', 1)

        #Signal and reference file sinks channel 0
        self.signal_file_sink_1 = blocks.file_sink(gr.sizeof_float * 1,
                                                   self.dump1, False)
        self.signal_file_sink_1.set_unbuffered(False)
        self.signal_file_sink_2 = blocks.file_sink(gr.sizeof_float * 1,
                                                   self.dump2, False)
        self.signal_file_sink_2.set_unbuffered(False)

        #Signal and reference file sinks channel 1
        self.signal_file_sink_3 = blocks.file_sink(gr.sizeof_float * 1,
                                                   self.dump3, False)
        self.signal_file_sink_3.set_unbuffered(False)
        self.signal_file_sink_4 = blocks.file_sink(gr.sizeof_float * 1,
                                                   self.dump4, False)
        self.signal_file_sink_4.set_unbuffered(False)

        #Selector for GPIO switch channel 0
        self.blks2_selector_0 = grc_blks2.selector(
            item_size=gr.sizeof_float * 1,
            num_inputs=1,
            num_outputs=3,  #+1 for the null sink
            input_index=0,
            output_index=0,
        )
        #Selector for GPIO switch channel 1
        self.blks2_selector_1 = grc_blks2.selector(
            item_size=gr.sizeof_float * 1,
            num_inputs=1,
            num_outputs=3,  #+1 for the null sink
            input_index=0,
            output_index=0,
        )

        #Div blocks channel 0
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_float * 1)
        self.single_pole_iir_filter_xx_0 = filter.single_pole_iir_filter_ff(
            self.alpha, self.fftsize)
        self.fft_vxx_0 = fft.fft_vcc(self.fftsize, True,
                                     (window.blackmanharris(self.fftsize)),
                                     True,
                                     1)  #Last argument threads, 1 default
        self.blocks_vector_to_stream_0 = blocks.vector_to_stream(
            gr.sizeof_float * 1, self.fftsize)
        self.blocks_stream_to_vector_0 = blocks.stream_to_vector(
            gr.sizeof_gr_complex * 1, self.fftsize)
        self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(
            gr.sizeof_float * self.fftsize, self.N)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(
            self.fftsize)
        #Div blocks channel 1
        self.blocks_null_sink_1 = blocks.null_sink(gr.sizeof_float * 1)
        self.single_pole_iir_filter_xx_1 = filter.single_pole_iir_filter_ff(
            self.alpha, self.fftsize)
        self.fft_vxx_1 = fft.fft_vcc(self.fftsize, True,
                                     (window.blackmanharris(self.fftsize)),
                                     True, 1)
        self.blocks_vector_to_stream_1 = blocks.vector_to_stream(
            gr.sizeof_float * 1, self.fftsize)
        self.blocks_stream_to_vector_1 = blocks.stream_to_vector(
            gr.sizeof_gr_complex * 1, self.fftsize)
        self.blocks_keep_one_in_n_1 = blocks.keep_one_in_n(
            gr.sizeof_float * self.fftsize, self.N)
        self.blocks_complex_to_mag_squared_1 = blocks.complex_to_mag_squared(
            self.fftsize)

        #Block connections channel 0
        self.connect((self.uhd_usrp_source_0, 0),
                     self.blocks_stream_to_vector_0)
        self.connect(self.blocks_stream_to_vector_0, self.fft_vxx_0)
        self.connect(self.fft_vxx_0, self.blocks_complex_to_mag_squared_0)
        self.connect(self.blocks_complex_to_mag_squared_0,
                     self.single_pole_iir_filter_xx_0)
        self.connect(self.single_pole_iir_filter_xx_0,
                     self.blocks_keep_one_in_n_0)
        self.connect(self.blocks_keep_one_in_n_0,
                     self.blocks_vector_to_stream_0)
        self.connect(self.blocks_vector_to_stream_0, self.blks2_selector_0)

        #Block connections channel 1
        self.connect((self.uhd_usrp_source_0, 1),
                     self.blocks_stream_to_vector_1)
        self.connect(self.blocks_stream_to_vector_1, self.fft_vxx_1)
        self.connect(self.fft_vxx_1, self.blocks_complex_to_mag_squared_1)
        self.connect(self.blocks_complex_to_mag_squared_1,
                     self.single_pole_iir_filter_xx_1)
        self.connect(self.single_pole_iir_filter_xx_1,
                     self.blocks_keep_one_in_n_1)
        self.connect(self.blocks_keep_one_in_n_1,
                     self.blocks_vector_to_stream_1)
        self.connect(self.blocks_vector_to_stream_1, self.blks2_selector_1)

        #Selector connections channel 0
        self.connect((self.blks2_selector_0, 1), self.signal_file_sink_1)
        self.connect((self.blks2_selector_0, 2), self.signal_file_sink_2)

        #Selector connections channel 1
        self.connect((self.blks2_selector_1, 1), self.signal_file_sink_3)
        self.connect((self.blks2_selector_1, 2), self.signal_file_sink_4)

        #Null sink connection channel 0
        self.connect((self.blks2_selector_0, 0), self.blocks_null_sink)

        #Null sink connection channel 1
        self.connect((self.blks2_selector_1, 0), self.blocks_null_sink_1)

        #########PROBE SAMPLES channel 0##########
        self.probe_signal = blocks.probe_signal_f()
        self.blocks_complex_to_mag_0 = blocks.complex_to_mag(1)

        self.connect((self.uhd_usrp_source_0, 0),
                     (self.blocks_complex_to_mag_0, 0))
        self.connect((self.blocks_complex_to_mag_0, 0), (self.probe_signal, 0))

        #########PROBE SAMPLES channel 1##########
        self.probe_signal_1 = blocks.probe_signal_f()
        self.blocks_complex_to_mag_1 = blocks.complex_to_mag(1)

        self.connect((self.uhd_usrp_source_0, 1),
                     (self.blocks_complex_to_mag_1, 0))
        self.connect((self.blocks_complex_to_mag_1, 0),
                     (self.probe_signal_1, 0))

        #Probe update rate
        def _probe_var_probe():
            while True:
                val = self.probe_signal.level()
                try:
                    self.set_probe_var(val)
                except AttributeError:
                    pass
                time.sleep(10 / (self.samp_rate)
                           )  #Update probe variabel every 10/samp_rate seconds

        _probe_var_thread = threading.Thread(target=_probe_var_probe)
        _probe_var_thread.daemon = True
        _probe_var_thread.start()

        #Probe update rate
        def _probe_var_probe_1():
            while True:
                val = self.probe_signal_1.level()
                try:
                    self.set_probe_var_1(val)
                except AttributeError:
                    pass
                time.sleep(10 / (self.samp_rate)
                           )  #Update probe variabel every 10/samp_rate seconds

        _probe_var_thread_1 = threading.Thread(target=_probe_var_probe_1)
        _probe_var_thread_1.daemon = True
        _probe_var_thread_1.start()
Beispiel #37
0
    def __init__(self):
        gr.top_block.__init__(self, "Top Block")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Top Block")
        try:
             self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
             pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "top_block")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())


        ##################################################
        # Variables
        ##################################################
        self.offset_tune_freq = offset_tune_freq = -10E3
        self.band_freq = band_freq = 7.055E6
        self.usrp_clk_rate = usrp_clk_rate = 200E6
        self.usrp_ask_freq = usrp_ask_freq = band_freq+offset_tune_freq
        self.usrp_DDC_freq = usrp_DDC_freq = np.round(usrp_ask_freq/usrp_clk_rate* 2**32)/2**32 * usrp_clk_rate
        self.fine_tuner_freq = fine_tuner_freq = 0
        self.coarse_tuner_freq = coarse_tuner_freq = 0
        self.samp_rate = samp_rate = 250000
        self.lo_freq = lo_freq = usrp_DDC_freq + coarse_tuner_freq + fine_tuner_freq - offset_tune_freq
        self.record_check_box = record_check_box = False
        self.file_name_string = file_name_string = str(int(time.mktime(time.gmtime())))+"UTC_"+'{:.6f}'.format(lo_freq)+"Hz"+"_"+str(int(samp_rate/100))+"sps"+".raw"
        self.variable_function_probe_0 = variable_function_probe_0 = 0
        self.file_name = file_name = file_name_string if record_check_box==True else "/dev/null"
        self.volume = volume = 5.0
        self.rx_power_label = rx_power_label = '{:.1f}'.format(variable_function_probe_0)
        self.lo_freq_label = lo_freq_label = '{:.6f}'.format(lo_freq)
        self.gain_offset_dB = gain_offset_dB = 18.86
        self.filter_taps = filter_taps = firdes.low_pass(1.0,2.5,0.1,0.02,firdes.WIN_HAMMING)
        self.filename_label = filename_label = file_name
        self.cw_filter_bw = cw_filter_bw = 1000
        self.RX_power_offset_dB = RX_power_offset_dB = -35.2

        ##################################################
        # Blocks
        ##################################################
        self._volume_layout = Qt.QVBoxLayout()
        self._volume_knob = Qwt.QwtKnob()
        self._volume_knob.setRange(0, 10.0, 1.0)
        self._volume_knob.setValue(self.volume)
        self._volume_knob.valueChanged.connect(self.set_volume)
        self._volume_layout.addWidget(self._volume_knob)
        self._volume_label = Qt.QLabel("Volume")
        self._volume_label.setAlignment(Qt.Qt.AlignTop | Qt.Qt.AlignHCenter)
        self._volume_layout.addWidget(self._volume_label)
        self.top_grid_layout.addLayout(self._volume_layout, 5,6,1,1)
        self._cw_filter_bw_options = (100, 500, 1000, )
        self._cw_filter_bw_labels = ("100 Hz", "500 Hz", "1 kHz", )
        self._cw_filter_bw_tool_bar = Qt.QToolBar(self)
        self._cw_filter_bw_tool_bar.addWidget(Qt.QLabel("CW Filter BW"+": "))
        self._cw_filter_bw_combo_box = Qt.QComboBox()
        self._cw_filter_bw_tool_bar.addWidget(self._cw_filter_bw_combo_box)
        for label in self._cw_filter_bw_labels: self._cw_filter_bw_combo_box.addItem(label)
        self._cw_filter_bw_callback = lambda i: Qt.QMetaObject.invokeMethod(self._cw_filter_bw_combo_box, "setCurrentIndex", Qt.Q_ARG("int", self._cw_filter_bw_options.index(i)))
        self._cw_filter_bw_callback(self.cw_filter_bw)
        self._cw_filter_bw_combo_box.currentIndexChanged.connect(
        	lambda i: self.set_cw_filter_bw(self._cw_filter_bw_options[i]))
        self.top_grid_layout.addWidget(self._cw_filter_bw_tool_bar, 5,5,1,1)
        self.blocks_probe_signal_x_0 = blocks.probe_signal_f()
        def _variable_function_probe_0_probe():
            while True:
                val = self.blocks_probe_signal_x_0.level()
                try:
                    self.set_variable_function_probe_0(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (5))
        _variable_function_probe_0_thread = threading.Thread(target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()
        self.uhd_usrp_source_0 = uhd.usrp_source(
        	",".join(("", "addr=192.168.40.2")),
        	uhd.stream_args(
        		cpu_format="fc32",
        		channels=range(1),
        	),
        )
        self.uhd_usrp_source_0.set_subdev_spec("B:A", 0)
        self.uhd_usrp_source_0.set_samp_rate(samp_rate)
        self.uhd_usrp_source_0.set_center_freq(usrp_ask_freq, 0)
        self.uhd_usrp_source_0.set_gain(6, 0)
        self._rx_power_label_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._rx_power_label_formatter = None
        else:
          self._rx_power_label_formatter = lambda x: x
        
        self._rx_power_label_tool_bar.addWidget(Qt.QLabel("RX Power (dBm)"+": "))
        self._rx_power_label_label = Qt.QLabel(str(self._rx_power_label_formatter(self.rx_power_label)))
        self._rx_power_label_tool_bar.addWidget(self._rx_power_label_label)
        self.top_grid_layout.addWidget(self._rx_power_label_tool_bar, 4,7,1,1)
          
        _record_check_box_check_box = Qt.QCheckBox("Record")
        self._record_check_box_choices = {True: True, False: False}
        self._record_check_box_choices_inv = dict((v,k) for k,v in self._record_check_box_choices.iteritems())
        self._record_check_box_callback = lambda i: Qt.QMetaObject.invokeMethod(_record_check_box_check_box, "setChecked", Qt.Q_ARG("bool", self._record_check_box_choices_inv[i]))
        self._record_check_box_callback(self.record_check_box)
        _record_check_box_check_box.stateChanged.connect(lambda i: self.set_record_check_box(self._record_check_box_choices[bool(i)]))
        self.top_grid_layout.addWidget(_record_check_box_check_box, 6,5,1,1)
        self.rational_resampler_xxx_0 = filter.rational_resampler_fff(
                interpolation=48000,
                decimation=2500,
                taps=None,
                fractional_bw=None,
        )
        self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
        	4096, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	usrp_DDC_freq, #fc
        	samp_rate, #bw
        	"Band Waterfall", #name
                1 #number of inputs
        )
        self.qtgui_waterfall_sink_x_0.set_update_time(0.10)
        self.qtgui_waterfall_sink_x_0.enable_grid(False)
        
        if complex == type(float()):
          self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        colors = [5, 0, 0, 0, 0,
                  0, 0, 0, 0, 0]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
            self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])
        
        self.qtgui_waterfall_sink_x_0.set_intensity_range(-100, -70)
        
        self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_win, 4,0,3,5)
        self.qtgui_freq_sink_x_0_0 = qtgui.freq_sink_c(
        	1024, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	lo_freq, #fc
        	samp_rate/100, #bw
        	str(samp_rate/100) + " Hz Channel Spectrum", #name
        	2 #number of inputs
        )
        self.qtgui_freq_sink_x_0_0.set_update_time(0.10)
        self.qtgui_freq_sink_x_0_0.set_y_axis(-120, -70)
        self.qtgui_freq_sink_x_0_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
        self.qtgui_freq_sink_x_0_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0_0.enable_grid(True)
        self.qtgui_freq_sink_x_0_0.set_fft_average(1.0)
        
        if complex == type(float()):
          self.qtgui_freq_sink_x_0_0.set_plot_pos_half(not True)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "dark blue"]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(2):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0_0.set_line_alpha(i, alphas[i])
        
        self._qtgui_freq_sink_x_0_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_0_win, 0,5,3,5)
        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
        	4096, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	usrp_DDC_freq, #fc
        	samp_rate, #bw
        	"Band Spectrum", #name
        	1 #number of inputs
        )
        self.qtgui_freq_sink_x_0.set_update_time(0.10)
        self.qtgui_freq_sink_x_0.set_y_axis(-110, -60)
        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
        self.qtgui_freq_sink_x_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0.enable_grid(True)
        self.qtgui_freq_sink_x_0.set_fft_average(0.2)
        
        if complex == type(float()):
          self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "dark blue"]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])
        
        self._qtgui_freq_sink_x_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win, 0,0,3,5)
        self.low_pass_filter_0_0 = filter.fir_filter_ccf(1, firdes.low_pass(
        	1, samp_rate/100, 0.9*cw_filter_bw, 0.1*cw_filter_bw, firdes.WIN_BLACKMAN, 6.76))
        self.low_pass_filter_0 = filter.fir_filter_ccf(1, firdes.low_pass(
        	10**(gain_offset_dB/20), samp_rate, 100E3, 20E3, firdes.WIN_HAMMING, 6.76))
        self._lo_freq_label_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._lo_freq_label_formatter = None
        else:
          self._lo_freq_label_formatter = lambda x: x
        
        self._lo_freq_label_tool_bar.addWidget(Qt.QLabel("LO Freq (Hz)"+": "))
        self._lo_freq_label_label = Qt.QLabel(str(self._lo_freq_label_formatter(self.lo_freq_label)))
        self._lo_freq_label_tool_bar.addWidget(self._lo_freq_label_label)
        self.top_grid_layout.addWidget(self._lo_freq_label_tool_bar, 4,6,1,1)
          
        self.hilbert_fc_0_0 = filter.hilbert_fc(65, firdes.WIN_HAMMING, 6.76)
        self.hilbert_fc_0 = filter.hilbert_fc(65, firdes.WIN_HAMMING, 6.76)
        self.freq_xlating_fir_filter_xxx_0 = filter.freq_xlating_fir_filter_ccc(10, (filter_taps), lo_freq - usrp_DDC_freq, samp_rate)
        self.fir_filter_xxx_0_0_0 = filter.fir_filter_ccc(10, (filter_taps))
        self.fir_filter_xxx_0_0_0.declare_sample_delay(0)
        self._fine_tuner_freq_layout = Qt.QVBoxLayout()
        self._fine_tuner_freq_tool_bar = Qt.QToolBar(self)
        self._fine_tuner_freq_layout.addWidget(self._fine_tuner_freq_tool_bar)
        self._fine_tuner_freq_tool_bar.addWidget(Qt.QLabel("Fine Tuner (Hz)"+": "))
        class qwt_counter_pyslot(Qwt.QwtCounter):
            def __init__(self, parent=None):
                Qwt.QwtCounter.__init__(self, parent)
            @pyqtSlot('double')
            def setValue(self, value):
                super(Qwt.QwtCounter, self).setValue(value)
        self._fine_tuner_freq_counter = qwt_counter_pyslot()
        self._fine_tuner_freq_counter.setRange(-500, 500, 1)
        self._fine_tuner_freq_counter.setNumButtons(2)
        self._fine_tuner_freq_counter.setValue(self.fine_tuner_freq)
        self._fine_tuner_freq_tool_bar.addWidget(self._fine_tuner_freq_counter)
        self._fine_tuner_freq_counter.valueChanged.connect(self.set_fine_tuner_freq)
        self._fine_tuner_freq_slider = Qwt.QwtSlider(None, Qt.Qt.Horizontal, Qwt.QwtSlider.BottomScale, Qwt.QwtSlider.BgSlot)
        self._fine_tuner_freq_slider.setRange(-500, 500, 1)
        self._fine_tuner_freq_slider.setValue(self.fine_tuner_freq)
        self._fine_tuner_freq_slider.setMinimumWidth(200)
        self._fine_tuner_freq_slider.valueChanged.connect(self.set_fine_tuner_freq)
        self._fine_tuner_freq_layout.addWidget(self._fine_tuner_freq_slider)
        self.top_grid_layout.addLayout(self._fine_tuner_freq_layout, 3,5,1,5)
        self._filename_label_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._filename_label_formatter = None
        else:
          self._filename_label_formatter = lambda x: x
        
        self._filename_label_tool_bar.addWidget(Qt.QLabel("File Name"+": "))
        self._filename_label_label = Qt.QLabel(str(self._filename_label_formatter(self.filename_label)))
        self._filename_label_tool_bar.addWidget(self._filename_label_label)
        self.top_grid_layout.addWidget(self._filename_label_tool_bar, 6,6,1,3)
          
        self._coarse_tuner_freq_layout = Qt.QVBoxLayout()
        self._coarse_tuner_freq_tool_bar = Qt.QToolBar(self)
        self._coarse_tuner_freq_layout.addWidget(self._coarse_tuner_freq_tool_bar)
        self._coarse_tuner_freq_tool_bar.addWidget(Qt.QLabel("Coarse Tuner (Hz)"+": "))
        class qwt_counter_pyslot(Qwt.QwtCounter):
            def __init__(self, parent=None):
                Qwt.QwtCounter.__init__(self, parent)
            @pyqtSlot('double')
            def setValue(self, value):
                super(Qwt.QwtCounter, self).setValue(value)
        self._coarse_tuner_freq_counter = qwt_counter_pyslot()
        self._coarse_tuner_freq_counter.setRange(-samp_rate/2, samp_rate/2, 100)
        self._coarse_tuner_freq_counter.setNumButtons(2)
        self._coarse_tuner_freq_counter.setValue(self.coarse_tuner_freq)
        self._coarse_tuner_freq_tool_bar.addWidget(self._coarse_tuner_freq_counter)
        self._coarse_tuner_freq_counter.valueChanged.connect(self.set_coarse_tuner_freq)
        self._coarse_tuner_freq_slider = Qwt.QwtSlider(None, Qt.Qt.Horizontal, Qwt.QwtSlider.BottomScale, Qwt.QwtSlider.BgSlot)
        self._coarse_tuner_freq_slider.setRange(-samp_rate/2, samp_rate/2, 100)
        self._coarse_tuner_freq_slider.setValue(self.coarse_tuner_freq)
        self._coarse_tuner_freq_slider.setMinimumWidth(50)
        self._coarse_tuner_freq_slider.valueChanged.connect(self.set_coarse_tuner_freq)
        self._coarse_tuner_freq_layout.addWidget(self._coarse_tuner_freq_slider)
        self.top_grid_layout.addLayout(self._coarse_tuner_freq_layout, 3,0,1,5)
        self.blocks_null_sink_1_0_0 = blocks.null_sink(gr.sizeof_float*1)
        self.blocks_null_sink_1_0 = blocks.null_sink(gr.sizeof_float*1)
        self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, 1, RX_power_offset_dB)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_integrate_xx_0 = blocks.integrate_ff(500)
        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_gr_complex*1, file_name, False)
        self.blocks_file_sink_0.set_unbuffered(False)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.blocks_complex_to_float_1_0 = blocks.complex_to_float(1)
        self.blocks_complex_to_float_0_0 = blocks.complex_to_float(1)
        self.blocks_complex_to_float_0 = blocks.complex_to_float(1)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self._band_freq_options = [1.84E6, 3.598E6, 7.055E6, 2.5E6, 5.0E6, 10.0E6]
        self._band_freq_labels = ["160m", "80m", "40m", "2.5 MHz", "5 MHz", "10 MHz"]
        self._band_freq_tool_bar = Qt.QToolBar(self)
        self._band_freq_tool_bar.addWidget(Qt.QLabel("Band"+": "))
        self._band_freq_combo_box = Qt.QComboBox()
        self._band_freq_tool_bar.addWidget(self._band_freq_combo_box)
        for label in self._band_freq_labels: self._band_freq_combo_box.addItem(label)
        self._band_freq_callback = lambda i: Qt.QMetaObject.invokeMethod(self._band_freq_combo_box, "setCurrentIndex", Qt.Q_ARG("int", self._band_freq_options.index(i)))
        self._band_freq_callback(self.band_freq)
        self._band_freq_combo_box.currentIndexChanged.connect(
        	lambda i: self.set_band_freq(self._band_freq_options[i]))
        self.top_grid_layout.addWidget(self._band_freq_tool_bar, 4,5,1,1)
        self.audio_sink_0 = audio.sink(48000, "", True)
        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate/100, analog.GR_COS_WAVE, 600, 1, 0)
        self.analog_agc3_xx_0 = analog.agc3_cc(1e-1, 1e-4, volume/100, 1, 1)
        self.analog_agc3_xx_0.set_max_gain(2**16)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.fir_filter_xxx_0_0_0, 0))
        self.connect((self.uhd_usrp_source_0, 0), (self.low_pass_filter_0, 0))
        self.connect((self.fir_filter_xxx_0_0_0, 0), (self.blocks_file_sink_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.qtgui_freq_sink_x_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.freq_xlating_fir_filter_xxx_0, 0))
        self.connect((self.fir_filter_xxx_0_0_0, 0), (self.low_pass_filter_0_0, 0))
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_multiply_xx_0, 0))
        self.connect((self.low_pass_filter_0_0, 0), (self.blocks_multiply_xx_0, 1))
        self.connect((self.low_pass_filter_0_0, 0), (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.blocks_integrate_xx_0, 0))
        self.connect((self.blocks_integrate_xx_0, 0), (self.blocks_nlog10_ff_0, 0))
        self.connect((self.blocks_nlog10_ff_0, 0), (self.blocks_probe_signal_x_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.qtgui_waterfall_sink_x_0, 0))
        self.connect((self.blocks_multiply_xx_0, 0), (self.analog_agc3_xx_0, 0))
        self.connect((self.analog_agc3_xx_0, 0), (self.blocks_complex_to_float_1_0, 0))
        self.connect((self.fir_filter_xxx_0_0_0, 0), (self.qtgui_freq_sink_x_0_0, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.rational_resampler_xxx_0, 0))
        self.connect((self.rational_resampler_xxx_0, 0), (self.audio_sink_0, 0))
        self.connect((self.blocks_complex_to_float_0, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_complex_to_float_0_0, 1), (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_complex_to_float_0_0, 0), (self.blocks_null_sink_1_0_0, 0))
        self.connect((self.blocks_complex_to_float_0, 1), (self.blocks_null_sink_1_0, 0))
        self.connect((self.blocks_complex_to_float_1_0, 1), (self.hilbert_fc_0, 0))
        self.connect((self.hilbert_fc_0, 0), (self.blocks_complex_to_float_0, 0))
        self.connect((self.blocks_complex_to_float_1_0, 0), (self.hilbert_fc_0_0, 0))
        self.connect((self.hilbert_fc_0_0, 0), (self.blocks_complex_to_float_0_0, 0))
        self.connect((self.low_pass_filter_0_0, 0), (self.qtgui_freq_sink_x_0_0, 1))
Beispiel #38
0
    def __init__(self):
        gr.top_block.__init__(self, "Perseus Spectrum Sensing")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Perseus Spectrum Sensing")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "perseus_s_sensing")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.variable_funcion = variable_funcion = 0
        self.show_test_statistics = show_test_statistics = False
        self.samp_rate = samp_rate = 20e6
        self.packet_size = packet_size = 8192
        self.oversampling = oversampling = 4
        self.nfft = nfft = 2**15
        self.freq_offset = freq_offset = variable_funcion
        self.decimation = decimation = 40
        self.amplitude = amplitude = 0.125
        self.RF_freq = RF_freq = 943e6
        self.PSD_averaging = PSD_averaging = 600
        self.ENABLE_TX1_variable_check_box = ENABLE_TX1_variable_check_box = True

        ##################################################
        # Blocks
        ##################################################
        self.probe = blocks.probe_signal_f()

        def _variable_funcion_probe():
            while True:
                val = self.probe.level()
                try:
                    self.set_variable_funcion(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (0.1))

        _variable_funcion_thread = threading.Thread(
            target=_variable_funcion_probe)
        _variable_funcion_thread.daemon = True
        _variable_funcion_thread.start()
        _show_test_statistics_check_box = Qt.QCheckBox(
            "Show Test Statistics (ReL and Rs)")
        self._show_test_statistics_choices = {True: True, False: False}
        self._show_test_statistics_choices_inv = dict(
            (v, k) for k, v in self._show_test_statistics_choices.iteritems())
        self._show_test_statistics_callback = lambda i: Qt.QMetaObject.invokeMethod(
            _show_test_statistics_check_box, "setChecked",
            Qt.Q_ARG("bool", self._show_test_statistics_choices_inv[i]))
        self._show_test_statistics_callback(self.show_test_statistics)
        _show_test_statistics_check_box.stateChanged.connect(
            lambda i: self.set_show_test_statistics(
                self._show_test_statistics_choices[bool(i)]))
        self.top_layout.addWidget(_show_test_statistics_check_box)
        self.spectsensing_xs_plot_1 = spectsensing.xs_plot("")
        self._spectsensing_xs_plot_1_win = self.spectsensing_xs_plot_1
        self.top_layout.addWidget(self._spectsensing_xs_plot_1_win)
        self.spectsensing_subband_selector_0 = spectsensing.subband_selector(
            40, "Selection", 0, samp_rate)
        self.spectsensing_ss_subband_plot_0_0 = spectsensing.ss_subband_plot(
            show_test_statistics, "")
        self._spectsensing_ss_subband_plot_0_0_win = self.spectsensing_ss_subband_plot_0_0
        self.top_layout.addWidget(self._spectsensing_ss_subband_plot_0_0_win)
        self.spectsensing_ss_pds_plot_0 = spectsensing.ss_pds_plot(
            nfft, samp_rate, 1024)
        self.spectsensing_ss_edge_plot_0 = spectsensing.ss_edge_plot(
            show_test_statistics, " ")
        self._spectsensing_ss_edge_plot_0_win = self.spectsensing_ss_edge_plot_0
        self.top_layout.addWidget(self._spectsensing_ss_edge_plot_0_win)

        self.spectsensing_compute_statistics_0 = spectsensing.compute_statistics(
            nfft, samp_rate, 0.0065, 1e-9, 1e-9, 40, 54)
        self.qtgui_time_sink_x_0 = qtgui.time_sink_c(
            1020 * 64,  #size
            samp_rate / 40,  #samp_rate
            "",  #name
            1  #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0.set_y_axis(-1, 1)

        self.qtgui_time_sink_x_0.set_y_label("Amplitude", "")

        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                                  qtgui.TRIG_SLOPE_POS, 0.0, 0,
                                                  0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(False)
        self.qtgui_time_sink_x_0.enable_grid(False)
        self.qtgui_time_sink_x_0.enable_control_panel(False)

        if not True:
            self.qtgui_time_sink_x_0.disable_legend()

        labels = ["", "", "", "", "", "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "blue"
        ]
        styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(2 * 1):
            if len(labels[i]) == 0:
                if (i % 2 == 0):
                    self.qtgui_time_sink_x_0.set_line_label(
                        i, "Re{{Data {0}}}".format(i / 2))
                else:
                    self.qtgui_time_sink_x_0.set_line_label(
                        i, "Im{{Data {0}}}".format(i / 2))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_win = sip.wrapinstance(
            self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
        self.nutaq_rtdex_source_S_S_0 = nutaq.rtdex_source(
            "nutaq_carrier_perseus_TX", gr.sizeof_short, 1, 0)
        self.nutaq_rtdex_source_S_S_0.set_type(0)
        self.nutaq_rtdex_source_S_S_0.set_packet_size(1300)
        self.nutaq_rtdex_source_S_S_0.set_channels("0")
        self.nutaq_rtdex_source_S_S = nutaq.rtdex_source(
            "nutaq_carrier_perseus_TX", gr.sizeof_short, 1, 3)
        self.nutaq_rtdex_source_S_S.set_type(0)
        self.nutaq_rtdex_source_S_S.set_packet_size(1200)
        self.nutaq_rtdex_source_S_S.set_channels("3")
        self.nutaq_rtdex_source_0_0_0 = nutaq.rtdex_source(
            "nutaq_carrier_perseus_TX", gr.sizeof_short, 1, 7)
        self.nutaq_rtdex_source_0_0_0.set_type(0)
        self.nutaq_rtdex_source_0_0_0.set_packet_size(packet_size)
        self.nutaq_rtdex_source_0_0_0.set_channels("2")
        (self.nutaq_rtdex_source_0_0_0).set_min_output_buffer(16384)
        self.nutaq_rtdex_sink_0 = nutaq.rtdex_sink("nutaq_carrier_perseus_TX",
                                                   gr.sizeof_short, 1, 7)
        self.nutaq_rtdex_sink_0.set_type(0)
        self.nutaq_rtdex_sink_0.set_packet_size(packet_size)
        self.nutaq_rtdex_sink_0.set_channels("1")
        self.nutaq_radio420_tx_0_0 = nutaq.radio420_tx(
            "nutaq_carrier_perseus_TX", 2, 1)
        self.nutaq_radio420_tx_0_0.set_default_enable(1)
        self.nutaq_radio420_tx_0_0.set_default_tx_freq(RF_freq)
        self.nutaq_radio420_tx_0_0.set_default_reference(1)
        self.nutaq_radio420_tx_0_0.set_default_datarate(samp_rate * 2)
        self.nutaq_radio420_tx_0_0.set_default_calibrate(0)
        self.nutaq_radio420_tx_0_0.set_default_band(0)
        self.nutaq_radio420_tx_0_0.set_default_update_rate(1)
        self.nutaq_radio420_tx_0_0.set_default_tx_vga1_gain(-10)
        self.nutaq_radio420_tx_0_0.set_default_tx_vga2_gain(15)
        self.nutaq_radio420_tx_0_0.set_default_tx_gain3(3)
        self.nutaq_radio420_tx_0_0.set_default_tx_lpf_bandwidth(2)
        self.nutaq_radio420_tx_0_0.set_default_ref_clk_ctrl(0)
        self.nutaq_radio420_tx_0_0.set_default_rf_ctrl(0)
        self.nutaq_radio420_tx_0_0.set_default_tx_gain_ctrl(0)
        self.nutaq_radio420_tx_0_0.set_default_pll_cpld_ctrl(0)

        self.nutaq_radio420_tx_0 = nutaq.radio420_tx(
            "nutaq_carrier_perseus_TX", 1, 0)
        self.nutaq_radio420_tx_0.set_default_enable(1)
        self.nutaq_radio420_tx_0.set_default_tx_freq(RF_freq)
        self.nutaq_radio420_tx_0.set_default_reference(0)
        self.nutaq_radio420_tx_0.set_default_datarate(samp_rate * 2)
        self.nutaq_radio420_tx_0.set_default_calibrate(0)
        self.nutaq_radio420_tx_0.set_default_band(0)
        self.nutaq_radio420_tx_0.set_default_update_rate(1)
        self.nutaq_radio420_tx_0.set_default_tx_vga1_gain(-10)
        self.nutaq_radio420_tx_0.set_default_tx_vga2_gain(15)
        self.nutaq_radio420_tx_0.set_default_tx_gain3(3)
        self.nutaq_radio420_tx_0.set_default_tx_lpf_bandwidth(2)
        self.nutaq_radio420_tx_0.set_default_ref_clk_ctrl(0)
        self.nutaq_radio420_tx_0.set_default_rf_ctrl(0)
        self.nutaq_radio420_tx_0.set_default_tx_gain_ctrl(0)
        self.nutaq_radio420_tx_0.set_default_pll_cpld_ctrl(0)

        self.nutaq_radio420_rx_0_0 = nutaq.radio420_rx(
            "nutaq_carrier_perseus_TX", 2, 3)
        self.nutaq_radio420_rx_0_0.set_default_enable(1)
        self.nutaq_radio420_rx_0_0.set_default_rx_freq(RF_freq)
        self.nutaq_radio420_rx_0_0.set_default_reference(1)
        self.nutaq_radio420_rx_0_0.set_default_datarate(samp_rate * 2)
        self.nutaq_radio420_rx_0_0.set_default_calibrate(0)
        self.nutaq_radio420_rx_0_0.set_default_band(0)
        self.nutaq_radio420_rx_0_0.set_default_update_rate(1)
        self.nutaq_radio420_rx_0_0.set_default_rx_lna_gain(2)
        self.nutaq_radio420_rx_0_0.set_default_rx_vga1_gain(2)
        self.nutaq_radio420_rx_0_0.set_default_rx_gain2(0)
        self.nutaq_radio420_rx_0_0.set_default_rx_gain3(-8)
        self.nutaq_radio420_rx_0_0.set_default_rx_rf_filter(2)
        self.nutaq_radio420_rx_0_0.set_default_rx_lpf_bandwidth(2)
        self.nutaq_radio420_rx_0_0.set_default_ref_clk_ctrl(0)
        self.nutaq_radio420_rx_0_0.set_default_rf_ctrl(0)
        self.nutaq_radio420_rx_0_0.set_default_rx_gain_ctrl(0)
        self.nutaq_radio420_rx_0_0.set_default_pll_cpld_ctrl(0)

        self.nutaq_radio420_rx_0 = nutaq.radio420_rx(
            "nutaq_carrier_perseus_TX", 1, 2)
        self.nutaq_radio420_rx_0.set_default_enable(1)
        self.nutaq_radio420_rx_0.set_default_rx_freq(RF_freq)
        self.nutaq_radio420_rx_0.set_default_reference(0)
        self.nutaq_radio420_rx_0.set_default_datarate(samp_rate * 2)
        self.nutaq_radio420_rx_0.set_default_calibrate(0)
        self.nutaq_radio420_rx_0.set_default_band(0)
        self.nutaq_radio420_rx_0.set_default_update_rate(1)
        self.nutaq_radio420_rx_0.set_default_rx_lna_gain(2)
        self.nutaq_radio420_rx_0.set_default_rx_vga1_gain(2)
        self.nutaq_radio420_rx_0.set_default_rx_gain2(0)
        self.nutaq_radio420_rx_0.set_default_rx_gain3(-8)
        self.nutaq_radio420_rx_0.set_default_rx_rf_filter(2)
        self.nutaq_radio420_rx_0.set_default_rx_lpf_bandwidth(2)
        self.nutaq_radio420_rx_0.set_default_ref_clk_ctrl(0)
        self.nutaq_radio420_rx_0.set_default_rf_ctrl(0)
        self.nutaq_radio420_rx_0.set_default_rx_gain_ctrl(0)
        self.nutaq_radio420_rx_0.set_default_pll_cpld_ctrl(0)

        self.nutaq_custom_register_0_1_1 = nutaq.custom_register(
            "nutaq_carrier_perseus_TX", 9)
        self.nutaq_custom_register_0_1_1.set_index(6)
        self.nutaq_custom_register_0_1_1.set_default_value(PSD_averaging)
        self.nutaq_custom_register_0_1_1.set_update_rate(1)

        self.nutaq_custom_register_0_1_0 = nutaq.custom_register(
            "nutaq_carrier_perseus_TX", 7)
        self.nutaq_custom_register_0_1_0.set_index(2)
        self.nutaq_custom_register_0_1_0.set_update_rate(1)

        self.nutaq_custom_register_0_1 = nutaq.custom_register(
            "nutaq_carrier_perseus_TX", 36)
        self.nutaq_custom_register_0_1.set_index(0)
        self.nutaq_custom_register_0_1.set_update_rate(1)

        self.nutaq_custom_register_0_0_0 = nutaq.custom_register(
            "nutaq_carrier_perseus_TX", 8)
        self.nutaq_custom_register_0_0_0.set_index(3)
        self.nutaq_custom_register_0_0_0.set_default_value(7)
        self.nutaq_custom_register_0_0_0.set_update_rate(1)

        self.nutaq_custom_register_0_0 = nutaq.custom_register(
            "nutaq_carrier_perseus_TX", 5)
        self.nutaq_custom_register_0_0.set_index(4)
        self.nutaq_custom_register_0_0.set_default_value(1)
        self.nutaq_custom_register_0_0.set_update_rate(1)

        self.nutaq_custom_register_0 = nutaq.custom_register(
            "nutaq_carrier_perseus_TX", 4)
        self.nutaq_custom_register_0.set_index(1)
        self.nutaq_custom_register_0.set_default_value(3)
        self.nutaq_custom_register_0.set_update_rate(1)

        self.nutaq_carrier_perseus_TX = nutaq.carrier(
            0, "nutaq_carrier_perseus_TX", "192.168.0.101")
        self._freq_offset_range = Range(-1e7, 1e7, 1e4, variable_funcion, 200)
        self._freq_offset_win = RangeWidget(self._freq_offset_range,
                                            self.set_freq_offset,
                                            "freq_offset", "slider")
        self.top_layout.addWidget(self._freq_offset_win)
        self.digital_gmsk_mod_0 = digital.gmsk_mod(
            samples_per_symbol=oversampling,
            bt=0.71,
            verbose=False,
            log=False,
        )
        self.digital_gmsk_demod_0 = digital.gmsk_demod(
            samples_per_symbol=oversampling,
            gain_mu=0.175,
            mu=0.5,
            omega_relative_limit=0.005,
            freq_error=0.0,
            verbose=False,
            log=False,
        )
        self.blocks_udp_sink_0 = blocks.udp_sink(gr.sizeof_char * 1,
                                                 "192.168.0.100", 1234, 1472,
                                                 True)
        self.blocks_throttle_0 = blocks.throttle(
            gr.sizeof_char * 1,
            2 * 4e3 + 0 * samp_rate / 40 / (oversampling * 8 * 2), True)
        self.blocks_short_to_float_0_1_0 = blocks.short_to_float(1, 2**11)
        self.blocks_short_to_float_0_0_0_0 = blocks.short_to_float(1, 2**11)
        self.blocks_null_sink_1_3 = blocks.null_sink(gr.sizeof_float * 40)
        self.blocks_null_sink_1_2 = blocks.null_sink(gr.sizeof_float * 40)
        self.blocks_null_sink_1_1 = blocks.null_sink(gr.sizeof_float * 40)
        self.blocks_null_sink_1_0 = blocks.null_sink(gr.sizeof_float * 40)
        self.blocks_null_sink_1 = blocks.null_sink(gr.sizeof_float * 40)
        self.blocks_multiply_const_vxx_0_3 = blocks.multiply_const_vff(
            (2.0**(16 * 2), ))
        self.blocks_multiply_const_vxx_0_2 = blocks.multiply_const_vcc(
            (amplitude, ))
        self.blocks_multiply_const_vxx_0_1_1 = blocks.multiply_const_vff(
            (2.0**(16 * 0), ))
        self.blocks_multiply_const_vxx_0_1_0_0 = blocks.multiply_const_vff(
            (2.0**(16 * 1), ))
        self.blocks_multiply_const_vxx_0_1_0 = blocks.multiply_const_vff(
            (2.0**(16 * 1), ))
        self.blocks_multiply_const_vxx_0_1 = blocks.multiply_const_vff(
            (2.0**(16 * 0), ))
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff(
            (2.0**(16 * 2), ))
        self.blocks_interleave_0 = blocks.interleave(gr.sizeof_short * 1, 1)
        self.blocks_float_to_short_0_0_0 = blocks.float_to_short(1, 2**11 - 1)
        self.blocks_float_to_short_0_0 = blocks.float_to_short(1, 2**11 - 1)
        self.blocks_float_to_complex_0_0_0 = blocks.float_to_complex(1)
        self.blocks_file_source_0 = blocks.file_source(
            gr.sizeof_char * 1, "/home/juan/Music/de_mi.mp3", True)
        self.blocks_deinterleave_0_0_1 = blocks.deinterleave(
            gr.sizeof_short * 1, 1)
        self.blocks_deinterleave_0_0_0 = blocks.deinterleave(
            gr.sizeof_short * 1, 1)
        self.blocks_deinterleave_0_0 = blocks.deinterleave(
            gr.sizeof_short * 1, 1)
        self.blocks_complex_to_float_0 = blocks.complex_to_float(1)
        self.blocks_add_xx_0_0 = blocks.add_vff(1)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self.blks2_packet_encoder_0 = grc_blks2.packet_mod_b(
            grc_blks2.packet_encoder(
                samples_per_symbol=2,
                bits_per_symbol=8,
                preamble="",
                access_code="",
                pad_for_usrp=True,
            ),
            payload_length=128,
        )
        self.blks2_packet_decoder_1 = grc_blks2.packet_demod_b(
            grc_blks2.packet_decoder(
                access_code="",
                threshold=-1,
                callback=lambda ok, payload: self.blks2_packet_decoder_1.
                recv_pkt(ok, payload),
            ), )
        _ENABLE_TX1_variable_check_box_check_box = Qt.QCheckBox(
            "Enable Transmission")
        self._ENABLE_TX1_variable_check_box_choices = {
            True: True,
            False: False
        }
        self._ENABLE_TX1_variable_check_box_choices_inv = dict(
            (v, k) for k, v in
            self._ENABLE_TX1_variable_check_box_choices.iteritems())
        self._ENABLE_TX1_variable_check_box_callback = lambda i: Qt.QMetaObject.invokeMethod(
            _ENABLE_TX1_variable_check_box_check_box, "setChecked",
            Qt.Q_ARG("bool", self._ENABLE_TX1_variable_check_box_choices_inv[i]
                     ))
        self._ENABLE_TX1_variable_check_box_callback(
            self.ENABLE_TX1_variable_check_box)
        _ENABLE_TX1_variable_check_box_check_box.stateChanged.connect(
            lambda i: self.set_ENABLE_TX1_variable_check_box(
                self._ENABLE_TX1_variable_check_box_choices[bool(i)]))
        self.top_layout.addWidget(_ENABLE_TX1_variable_check_box_check_box)
        self.DataConversion_reint_short_float_0_3 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0_2_0 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0_2 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0_1_0 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0_1 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0_0_0 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0_0 = DataConversion.reint_short_float(
        )
        self.DataConversion_reint_short_float_0 = DataConversion.reint_short_float(
        )
        self.DataConversion_eaver_resynchronizer_0_0 = DataConversion.eaver_resynchronizer(
            1024)
        self.DataConversion_eaver_resynchronizer_0 = DataConversion.eaver_resynchronizer(
            decimation)

        ##################################################
        # Connections
        ##################################################
        self.msg_connect(
            (self.spectsensing_compute_statistics_0, 'spec_sens_pdus'),
            (self.spectsensing_ss_edge_plot_0, 'pdus'))
        self.msg_connect(
            (self.spectsensing_compute_statistics_0, 'spec_sens_pdus'),
            (self.spectsensing_ss_subband_plot_0_0, 'pdus'))
        self.msg_connect((self.spectsensing_ss_pds_plot_0, 'psd_pdu'),
                         (self.spectsensing_xs_plot_1, 'pdus'))
        self.connect((self.DataConversion_eaver_resynchronizer_0, 1),
                     (self.spectsensing_compute_statistics_0, 1))
        self.connect((self.DataConversion_eaver_resynchronizer_0, 0),
                     (self.spectsensing_compute_statistics_0, 0))
        self.connect((self.DataConversion_eaver_resynchronizer_0_0, 0),
                     (self.spectsensing_ss_pds_plot_0, 0))
        self.connect((self.DataConversion_eaver_resynchronizer_0_0, 1),
                     (self.spectsensing_ss_pds_plot_0, 1))
        self.connect((self.DataConversion_reint_short_float_0, 0),
                     (self.DataConversion_eaver_resynchronizer_0, 0))
        self.connect((self.DataConversion_reint_short_float_0_0, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.DataConversion_reint_short_float_0_0_0, 0),
                     (self.blocks_multiply_const_vxx_0_3, 0))
        self.connect((self.DataConversion_reint_short_float_0_1, 0),
                     (self.blocks_multiply_const_vxx_0_1_0, 0))
        self.connect((self.DataConversion_reint_short_float_0_1_0, 0),
                     (self.blocks_multiply_const_vxx_0_1_0_0, 0))
        self.connect((self.DataConversion_reint_short_float_0_2, 0),
                     (self.blocks_multiply_const_vxx_0_1, 0))
        self.connect((self.DataConversion_reint_short_float_0_2_0, 0),
                     (self.blocks_multiply_const_vxx_0_1_1, 0))
        self.connect((self.DataConversion_reint_short_float_0_3, 0),
                     (self.DataConversion_eaver_resynchronizer_0_0, 0))
        self.connect((self.blks2_packet_decoder_1, 0),
                     (self.blocks_udp_sink_0, 0))
        self.connect((self.blks2_packet_encoder_0, 0),
                     (self.digital_gmsk_mod_0, 0))
        self.connect((self.blocks_add_xx_0, 0),
                     (self.DataConversion_eaver_resynchronizer_0, 1))
        self.connect((self.blocks_add_xx_0_0, 0),
                     (self.DataConversion_eaver_resynchronizer_0_0, 1))
        self.connect((self.blocks_complex_to_float_0, 0),
                     (self.blocks_float_to_short_0_0, 0))
        self.connect((self.blocks_complex_to_float_0, 1),
                     (self.blocks_float_to_short_0_0_0, 0))
        self.connect((self.blocks_deinterleave_0_0, 0),
                     (self.DataConversion_reint_short_float_0, 0))
        self.connect((self.blocks_deinterleave_0_0, 1),
                     (self.DataConversion_reint_short_float_0_0, 0))
        self.connect((self.blocks_deinterleave_0_0, 3),
                     (self.DataConversion_reint_short_float_0_1, 0))
        self.connect((self.blocks_deinterleave_0_0, 2),
                     (self.DataConversion_reint_short_float_0_2, 0))
        self.connect((self.blocks_deinterleave_0_0_0, 1),
                     (self.blocks_short_to_float_0_0_0_0, 0))
        self.connect((self.blocks_deinterleave_0_0_0, 0),
                     (self.blocks_short_to_float_0_1_0, 0))
        self.connect((self.blocks_deinterleave_0_0_1, 1),
                     (self.DataConversion_reint_short_float_0_0_0, 0))
        self.connect((self.blocks_deinterleave_0_0_1, 3),
                     (self.DataConversion_reint_short_float_0_1_0, 0))
        self.connect((self.blocks_deinterleave_0_0_1, 2),
                     (self.DataConversion_reint_short_float_0_2_0, 0))
        self.connect((self.blocks_deinterleave_0_0_1, 0),
                     (self.DataConversion_reint_short_float_0_3, 0))
        self.connect((self.blocks_file_source_0, 0),
                     (self.blocks_throttle_0, 0))
        self.connect((self.blocks_float_to_complex_0_0_0, 0),
                     (self.digital_gmsk_demod_0, 0))
        self.connect((self.blocks_float_to_complex_0_0_0, 0),
                     (self.qtgui_time_sink_x_0, 0))
        self.connect((self.blocks_float_to_short_0_0, 0),
                     (self.blocks_interleave_0, 0))
        self.connect((self.blocks_float_to_short_0_0_0, 0),
                     (self.blocks_interleave_0, 1))
        self.connect((self.blocks_interleave_0, 0),
                     (self.nutaq_rtdex_sink_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0_1, 0),
                     (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_multiply_const_vxx_0_1_0, 0),
                     (self.blocks_add_xx_0, 2))
        self.connect((self.blocks_multiply_const_vxx_0_1_0_0, 0),
                     (self.blocks_add_xx_0_0, 2))
        self.connect((self.blocks_multiply_const_vxx_0_1_1, 0),
                     (self.blocks_add_xx_0_0, 1))
        self.connect((self.blocks_multiply_const_vxx_0_2, 0),
                     (self.blocks_complex_to_float_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0_3, 0),
                     (self.blocks_add_xx_0_0, 0))
        self.connect((self.blocks_short_to_float_0_0_0_0, 0),
                     (self.blocks_float_to_complex_0_0_0, 1))
        self.connect((self.blocks_short_to_float_0_1_0, 0),
                     (self.blocks_float_to_complex_0_0_0, 0))
        self.connect((self.blocks_throttle_0, 0),
                     (self.blks2_packet_encoder_0, 0))
        self.connect((self.digital_gmsk_demod_0, 0),
                     (self.blks2_packet_decoder_1, 0))
        self.connect((self.digital_gmsk_mod_0, 0),
                     (self.blocks_multiply_const_vxx_0_2, 0))
        self.connect((self.nutaq_rtdex_source_0_0_0, 0),
                     (self.blocks_deinterleave_0_0_0, 0))
        self.connect((self.nutaq_rtdex_source_S_S, 0),
                     (self.blocks_deinterleave_0_0, 0))
        self.connect((self.nutaq_rtdex_source_S_S_0, 0),
                     (self.blocks_deinterleave_0_0_1, 0))
        self.connect((self.spectsensing_compute_statistics_0, 0),
                     (self.blocks_null_sink_1, 0))
        self.connect((self.spectsensing_compute_statistics_0, 5),
                     (self.blocks_null_sink_1_0, 0))
        self.connect((self.spectsensing_compute_statistics_0, 2),
                     (self.blocks_null_sink_1_1, 0))
        self.connect((self.spectsensing_compute_statistics_0, 4),
                     (self.blocks_null_sink_1_2, 0))
        self.connect((self.spectsensing_compute_statistics_0, 6),
                     (self.blocks_null_sink_1_3, 0))
        self.connect((self.spectsensing_compute_statistics_0, 7),
                     (self.spectsensing_subband_selector_0, 0))
        self.connect((self.spectsensing_compute_statistics_0, 1),
                     (self.spectsensing_subband_selector_0, 1))
        self.connect((self.spectsensing_compute_statistics_0, 3),
                     (self.spectsensing_subband_selector_0, 2))
        self.connect((self.spectsensing_subband_selector_0, 0),
                     (self.probe, 0))
Beispiel #39
0
    def __init__(self, dab_params, rx_params, verbose=False, debug=False):
        """
		Hierarchical block for OFDM demodulation

		@param dab_params DAB parameter object (grdab.parameters.dab_parameters)
		@param rx_params RX parameter object (grdab.parameters.receiver_parameters)
		@param debug enables debug output to files
		@param verbose whether to produce verbose messages
		"""

        self.dp = dp = dab_params
        self.rp = rp = rx_params
        self.verbose = verbose

        if self.rp.softbits:
            gr.hier_block2.__init__(
                self,
                "ofdm_demod",
                gr.io_signature(1, 1, gr.sizeof_gr_complex),  # input signature
                gr.io_signature(1, 1, gr.sizeof_float * self.dp.num_carriers *
                                2))  # output signature
        else:
            gr.hier_block2.__init__(
                self,
                "ofdm_demod",
                gr.io_signature(1, 1, gr.sizeof_gr_complex),  # input signature
                gr.io_signature(1, 1, gr.sizeof_char * self.dp.num_carriers /
                                4))  # output signature

        # workaround for a problem that prevents connecting more than one block directly (see trac ticket #161)
        #self.input = gr.kludge_copy(gr.sizeof_gr_complex)
        self.input = blocks.multiply_const_cc(1.0)  # FIXME
        self.connect(self, self.input)

        # input filtering
        if self.rp.input_fft_filter:
            if verbose: print("--> RX filter enabled")
            lowpass_taps = filter.firdes_low_pass(
                1.0,  # gain
                dp.sample_rate,  # sampling rate
                rp.filt_bw,  # cutoff frequency
                rp.filt_tb,  # width of transition band
                filter.firdes.WIN_HAMMING)  # Hamming window
            self.fft_filter = filter.fft_filter_ccc(1, lowpass_taps)

        # correct sample rate offset, if enabled
        if self.rp.autocorrect_sample_rate:
            if verbose: print("--> dynamic sample rate correction enabled")
            self.rate_detect_ns = grdab.detect_null(dp.ns_length, False)
            self.rate_estimator = grdab.estimate_sample_rate_bf(
                dp.sample_rate, dp.frame_length)
            self.rate_prober = blocks.probe_signal_f()
            self.connect(self.input, self.rate_detect_ns, self.rate_estimator,
                         self.rate_prober)
            # self.resample = gr.fractional_interpolator_cc(0, 1)
            self.resample = grdab.fractional_interpolator_triggered_update_cc(
                0, 1)
            self.connect(self.rate_detect_ns, (self.resample, 1))
            self.updater = Timer(0.1, self.update_correction)
            # self.updater = threading.Thread(target=self.update_correction)
            self.run_interpolater_update_thread = True
            self.updater.setDaemon(True)
            self.updater.start()
        else:
            self.run_interpolater_update_thread = False
            if self.rp.sample_rate_correction_factor != 1 or self.rp.always_include_resample:
                if verbose: print("--> static sample rate correction enabled")
                self.resample = filter.mmse_resampler_cc(
                    0, self.rp.sample_rate_correction_factor)

        # timing and fine frequency synchronisation
        self.sync = grdab.ofdm_sync_dab2(self.dp, self.rp, debug)

        # ofdm symbol sampler
        self.sampler = grdab.ofdm_sampler(dp.fft_length, dp.cp_length,
                                          dp.symbols_per_frame, rp.cp_gap)

        # fft for symbol vectors
        self.fft = fft.fft_vcc(dp.fft_length, True, [], True)

        # coarse frequency synchronisation
        self.cfs = grdab.ofdm_coarse_frequency_correct(dp.fft_length,
                                                       dp.num_carriers,
                                                       dp.cp_length)

        # diff phasor
        self.phase_diff = grdab.diff_phasor_vcc(dp.num_carriers)

        # remove pilot symbol
        self.remove_pilot = grdab.ofdm_remove_first_symbol_vcc(dp.num_carriers)

        # magnitude equalisation
        if self.rp.equalize_magnitude:
            if verbose: print("--> magnitude equalization enabled")
            self.equalizer = grdab.magnitude_equalizer_vcc(
                dp.num_carriers, rp.symbols_for_magnitude_equalization)

        # frequency deinterleaving
        self.deinterleave = grdab.frequency_interleaver_vcc(
            dp.frequency_deinterleaving_sequence_array)

        # symbol demapping
        self.demapper = grdab.qpsk_demapper_vcb(dp.num_carriers)

        #
        # connect everything
        #

        if self.rp.autocorrect_sample_rate or self.rp.sample_rate_correction_factor != 1 or self.rp.always_include_resample:
            self.connect(self.input, self.resample)
            self.input2 = self.resample
        else:
            self.input2 = self.input
        if self.rp.input_fft_filter:
            self.connect(self.input2, self.fft_filter, self.sync)
        else:
            self.connect(self.input2, self.sync)

        # data stream
        self.connect(self.sync, self.sampler, self.fft, self.cfs,
                     self.phase_diff, self.remove_pilot)
        if self.rp.equalize_magnitude:
            self.connect(self.remove_pilot, self.equalizer, self.deinterleave)
        else:
            self.connect(self.remove_pilot, self.deinterleave)
        if self.rp.softbits:
            if verbose: print("--> using soft bits")
            self.softbit_interleaver = grdab.complex_to_interleaved_float_vcf(
                self.dp.num_carriers)
            self.connect(self.deinterleave, self.softbit_interleaver,
                         (self, 0))
        else:
            self.connect(self.deinterleave, self.demapper, (self, 0))

        # calculate an estimate of the SNR
        self.phase_var_decim = blocks.keep_one_in_n(
            gr.sizeof_gr_complex * self.dp.num_carriers,
            self.rp.phase_var_estimate_downsample)
        self.phase_var_arg = blocks.complex_to_arg(dp.num_carriers)
        self.phase_var_v2s = blocks.vector_to_stream(gr.sizeof_float,
                                                     dp.num_carriers)
        self.phase_var_mod = grdab.modulo_ff(pi / 2)
        self.phase_var_avg_mod = filter.iir_filter_ffd(
            [rp.phase_var_estimate_alpha],
            [0, 1 - rp.phase_var_estimate_alpha])
        self.phase_var_sub_avg = blocks.sub_ff()
        self.phase_var_sqr = blocks.multiply_ff()
        self.phase_var_avg = filter.iir_filter_ffd(
            [rp.phase_var_estimate_alpha],
            [0, 1 - rp.phase_var_estimate_alpha])
        self.probe_phase_var = blocks.probe_signal_f()
        self.connect((self.remove_pilot, 0), self.phase_var_decim,
                     self.phase_var_arg, self.phase_var_v2s,
                     self.phase_var_mod, (self.phase_var_sub_avg, 0),
                     (self.phase_var_sqr, 0))
        self.connect(self.phase_var_mod, self.phase_var_avg_mod,
                     (self.phase_var_sub_avg, 1))
        self.connect(self.phase_var_sub_avg, (self.phase_var_sqr, 1))
        self.connect(self.phase_var_sqr, self.phase_var_avg,
                     self.probe_phase_var)

        # measure processing rate
        self.measure_rate = grdab.measure_processing_rate(
            gr.sizeof_gr_complex, 2000000)
        self.connect(self.input, self.measure_rate)

        # debugging
        if debug:
            self.connect(
                self.fft,
                blocks.file_sink(gr.sizeof_gr_complex * dp.fft_length,
                                 "debug/ofdm_after_fft.dat"))
            self.connect(
                (self.cfs, 0),
                blocks.file_sink(gr.sizeof_gr_complex * dp.num_carriers,
                                 "debug/ofdm_after_cfs.dat"))
            self.connect(
                self.phase_diff,
                blocks.file_sink(gr.sizeof_gr_complex * dp.num_carriers,
                                 "debug/ofdm_diff_phasor.dat"))
            self.connect(
                (self.remove_pilot, 0),
                blocks.file_sink(gr.sizeof_gr_complex * dp.num_carriers,
                                 "debug/ofdm_pilot_removed.dat"))
            self.connect((self.remove_pilot, 1),
                         blocks.file_sink(gr.sizeof_char,
                                          "debug/ofdm_after_cfs_trigger.dat"))
            self.connect(
                self.deinterleave,
                blocks.file_sink(gr.sizeof_gr_complex * dp.num_carriers,
                                 "debug/ofdm_deinterleaved.dat"))
            if self.rp.equalize_magnitude:
                self.connect(
                    self.equalizer,
                    blocks.file_sink(gr.sizeof_gr_complex * dp.num_carriers,
                                     "debug/ofdm_equalizer.dat"))
            if self.rp.softbits:
                self.connect(
                    self.softbit_interleaver,
                    blocks.file_sink(gr.sizeof_float * dp.num_carriers * 2,
                                     "debug/softbits.dat"))
Beispiel #40
0
    def __init__(self):
        gr.top_block.__init__(self, "HFS first channel")

        ##################################################
        # Variables
        ##################################################
        self.snr = snr = 1
        self.vol = vol = 1
        self.tau_a = tau_a = 1 / 100.
        self.tau = tau = 0.002
        self.snr_out_func = snr_out_func = ([0] * 3)
        self.samp_rate = samp_rate = 48000
        self.out_rms_func = out_rms_func = 0
        self.noSpread = noSpread = 1
        self.kN = kN = pow(10.0, (-snr / 20.0))
        self.freqShift = freqShift = 0.0
        self.fd = fd = 1
        self.en_noise = en_noise = 0
        self.doppler_ir = doppler_ir = [
            0.0016502763167573274, 0.0018854799389366934, 0.002149957633383614,
            0.0024466994528029662, 0.002778907461425479, 0.003149998028185868,
            0.003563602180973301, 0.00402356375450247, 0.004533935060796761,
            0.0050989698117900155, 0.005723113028669535, 0.006410987682800636,
            0.007167377828853199, 0.007997208012493867, 0.008905518763040982,
            0.00989743801603955, 0.010978148351927763, 0.012152849984840378,
            0.013426719489994542, 0.014804864318746317, 0.016292273216847054,
            0.01789376273305468, 0.019613920081278834, 0.021457042698902442,
            0.023427074925696508, 0.025527542310538734, 0.027761484135525694,
            0.030131384827462734, 0.03263910500345486, 0.035285812968654906,
            0.03807191754835305, 0.04099700319171279, 0.04405976832879332,
            0.04725796799434838, 0.050588361749672524, 0.05404666793605477,
            0.057627525278984175, 0.06132446283016882, 0.06512987918400244,
            0.0690350318359975, 0.073030037462906, 0.07710388379815894,
            0.08124445365265866, 0.08543856149104095, 0.08967200281887802,
            0.0939296164688993, 0.09819535969651079, 0.10245239580938088,
            0.10668319386560887, 0.1108696397832219, 0.11499315801386097,
            0.11903484274903825, 0.12297559745183839, 0.12679628134392928,
            0.1304778613306593, 0.13400156771907581, 0.1373490519778611,
            0.14050254470705797, 0.14344501193124823, 0.14616030780428022,
            0.14863332181791858, 0.15085011864154488, 0.1527980687853246,
            0.154465968374505, 0.15584414644656272, 0.15692455833401583,
            0.15770086387153975, 0.1581684893637365, 0.15832467246620405,
            0.1581684893637365, 0.15770086387153975, 0.15692455833401583,
            0.15584414644656272, 0.154465968374505, 0.1527980687853246,
            0.15085011864154488, 0.14863332181791858, 0.14616030780428022,
            0.14344501193124823, 0.14050254470705797, 0.1373490519778611,
            0.13400156771907581, 0.1304778613306593, 0.12679628134392928,
            0.12297559745183839, 0.11903484274903825, 0.11499315801386097,
            0.1108696397832219, 0.10668319386560887, 0.10245239580938088,
            0.09819535969651079, 0.0939296164688993, 0.08967200281887802,
            0.08543856149104095, 0.08124445365265866, 0.07710388379815894,
            0.073030037462906, 0.0690350318359975, 0.06512987918400244,
            0.06132446283016882, 0.057627525278984175, 0.05404666793605477,
            0.050588361749672524, 0.04725796799434838, 0.04405976832879332,
            0.04099700319171279, 0.03807191754835305, 0.035285812968654906,
            0.03263910500345486, 0.030131384827462734, 0.027761484135525694,
            0.025527542310538734, 0.023427074925696508, 0.021457042698902442,
            0.019613920081278834, 0.01789376273305468, 0.016292273216847054,
            0.014804864318746317, 0.013426719489994542, 0.012152849984840378,
            0.010978148351927763, 0.00989743801603955, 0.008905518763040982,
            0.007997208012493867, 0.007167377828853199, 0.006410987682800636,
            0.005723113028669535, 0.0050989698117900155, 0.004533935060796761,
            0.00402356375450247, 0.003563602180973301, 0.003149998028185868,
            0.002778907461425479, 0.0024466994528029662, 0.002149957633383614,
            0.0018854799389366934, 0.0016502763167573274
        ]
        self.ampl = ampl = [[1.0, 0.0], [1.0, 0.0]]

        ##################################################
        # Blocks
        ##################################################
        self.snr_out = blocks.probe_signal_f()
        self.out_rms = blocks.probe_signal_f()

        def _snr_out_func_probe():
            while True:

                val = self.snr_out.level()
                try:
                    self.set_snr_out_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _snr_out_func_thread = threading.Thread(target=_snr_out_func_probe)
        _snr_out_func_thread.daemon = True
        _snr_out_func_thread.start()

        self.single_pole_iir_filter_xx_0_0 = filter.single_pole_iir_filter_ff(
            2 * pi * tau_a / samp_rate, 1)
        self.single_pole_iir_filter_xx_0 = filter.single_pole_iir_filter_ff(
            2 * pi * tau_a / samp_rate, 1)

        def _out_rms_func_probe():
            while True:

                val = self.out_rms.level()
                try:
                    self.set_out_rms_func(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _out_rms_func_thread = threading.Thread(target=_out_rms_func_probe)
        _out_rms_func_thread.daemon = True
        _out_rms_func_thread.start()

        self.low_pass_filter_2 = filter.fir_filter_ccf(
            1,
            firdes.low_pass(1, samp_rate, 1550, 100, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_1_0 = filter.interp_fir_filter_ccf(
            int(samp_rate / 100),
            firdes.low_pass(ampl[0][1] * (samp_rate / 100.0), samp_rate, 50,
                            25, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_1 = filter.interp_fir_filter_ccf(
            int(samp_rate / 100),
            firdes.low_pass(ampl[0][0] * (samp_rate / 100.0), samp_rate, 50,
                            25, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0 = filter.fir_filter_ccf(
            1,
            firdes.low_pass(1, samp_rate, 1750 + 100, 600, firdes.WIN_HAMMING,
                            6.76))
        self.epy_block_0_0 = epy_block_0_0.blk(fd=fd)
        self.epy_block_0 = epy_block_0.blk(fd=fd)
        self.blocks_selector_0_0 = blocks.selector(gr.sizeof_gr_complex * 1,
                                                   noSpread, 0)
        self.blocks_selector_0_0.set_enabled(True)
        self.blocks_selector_0 = blocks.selector(gr.sizeof_gr_complex * 1,
                                                 noSpread, 0)
        self.blocks_selector_0.set_enabled(True)
        self.blocks_rms_xx_0_0 = blocks.rms_ff(2 * pi * tau_a * 10 / samp_rate)
        self.blocks_rms_xx_0 = blocks.rms_cf(2 * pi * tau_a * 100 / samp_rate)
        self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, 1, 0)
        self.blocks_multiply_xx_1 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0_0_0_0_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0_0_0_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0_0_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_const_vxx_3 = blocks.multiply_const_ff(en_noise)
        self.blocks_multiply_const_vxx_2_0 = blocks.multiply_const_cc(vol)
        self.blocks_multiply_const_vxx_2 = blocks.multiply_const_cc(vol)
        self.blocks_multiply_const_vxx_1 = blocks.multiply_const_ff(
            2 * sqrt(ampl[0][0]**2 + ampl[0][1]**2) * 2)
        self.blocks_multiply_const_vxx_0_0 = blocks.multiply_const_ff(0.5)
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_ff(0.5)
        self.blocks_float_to_complex_1 = blocks.float_to_complex(1)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_divide_xx_1 = blocks.divide_ff(1)
        self.blocks_delay_0 = blocks.delay(gr.sizeof_gr_complex * 1,
                                           int(tau * samp_rate))
        self.blocks_complex_to_real_0_0 = blocks.complex_to_real(1)
        self.blocks_complex_to_real_0 = blocks.complex_to_real(1)
        self.blocks_complex_to_mag_squared_2_0 = blocks.complex_to_mag_squared(
            1)
        self.blocks_complex_to_mag_squared_2 = blocks.complex_to_mag_squared(1)
        self.blocks_add_xx_1 = blocks.add_vff(1)
        self.blocks_add_xx_0_0 = blocks.add_vcc(1)
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        self.audio_source_0 = audio.source(samp_rate, 'in1', True)
        self.audio_sink_0_0_0 = audio.sink(samp_rate, 'out3', False)
        self.audio_sink_0_0 = audio.sink(samp_rate, 'out2', False)
        self.analog_sig_source_x_2 = analog.sig_source_c(
            samp_rate, analog.GR_COS_WAVE, 1850, 1, 0, 0)
        self.analog_sig_source_x_1 = analog.sig_source_c(
            samp_rate, analog.GR_COS_WAVE, freqShift, 1, 0, 0)
        self.analog_sig_source_x_0_0_0 = analog.sig_source_c(
            samp_rate, analog.GR_COS_WAVE, 1850, 1, 0, 0)
        self.analog_sig_source_x_0_0 = analog.sig_source_c(
            samp_rate, analog.GR_COS_WAVE, -1850, 1, 0, 0)
        self.analog_noise_source_x_1 = analog.noise_source_c(
            analog.GR_GAUSSIAN, 1e-0 * kN, 3)
        self.analog_fastnoise_source_x_2 = analog.fastnoise_source_c(
            analog.GR_GAUSSIAN, 1, 1, 8192)
        self.analog_fastnoise_source_x_1 = analog.fastnoise_source_c(
            analog.GR_GAUSSIAN, 1, 0, 8192)
        self.analog_fastnoise_source_x_0 = analog.fastnoise_source_f(
            analog.GR_GAUSSIAN, 0.3, 0, 8192)
        self.analog_const_source_x_2 = analog.sig_source_f(
            0, analog.GR_CONST_WAVE, 0, 0, 0)
        self.analog_const_source_x_1_0 = analog.sig_source_c(
            0, analog.GR_CONST_WAVE, 0, 0, ampl[0][1])
        self.analog_const_source_x_1 = analog.sig_source_c(
            0, analog.GR_CONST_WAVE, 0, 0, ampl[0][0])
        self.analog_const_source_x_0 = analog.sig_source_f(
            0, analog.GR_CONST_WAVE, 0, 0, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_const_source_x_0, 0),
                     (self.blocks_float_to_complex_0, 1))
        self.connect((self.analog_const_source_x_1, 0),
                     (self.blocks_selector_0, 1))
        self.connect((self.analog_const_source_x_1_0, 0),
                     (self.blocks_selector_0_0, 1))
        self.connect((self.analog_const_source_x_2, 0),
                     (self.blocks_float_to_complex_1, 1))
        self.connect((self.analog_fastnoise_source_x_0, 0),
                     (self.blocks_multiply_const_vxx_3, 0))
        self.connect((self.analog_fastnoise_source_x_1, 0),
                     (self.epy_block_0, 0))
        self.connect((self.analog_fastnoise_source_x_2, 0),
                     (self.epy_block_0_0, 0))
        self.connect((self.analog_noise_source_x_1, 0),
                     (self.low_pass_filter_2, 0))
        self.connect((self.analog_sig_source_x_0_0, 0),
                     (self.blocks_multiply_xx_0, 1))
        self.connect((self.analog_sig_source_x_0_0_0, 0),
                     (self.blocks_multiply_xx_0_0, 1))
        self.connect((self.analog_sig_source_x_1, 0),
                     (self.blocks_multiply_xx_1, 0))
        self.connect((self.analog_sig_source_x_2, 0),
                     (self.blocks_multiply_xx_0_0_0_0_0, 1))
        self.connect((self.audio_source_0, 0),
                     (self.blocks_float_to_complex_0, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.blocks_multiply_xx_1, 1))
        self.connect((self.blocks_add_xx_0_0, 0),
                     (self.blocks_multiply_const_vxx_2, 0))
        self.connect((self.blocks_add_xx_1, 0), (self.audio_sink_0_0, 0))
        self.connect((self.blocks_add_xx_1, 0), (self.blocks_rms_xx_0_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_2, 0),
                     (self.single_pole_iir_filter_xx_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_2_0, 0),
                     (self.single_pole_iir_filter_xx_0_0, 0))
        self.connect((self.blocks_complex_to_real_0, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.blocks_complex_to_real_0_0, 0),
                     (self.blocks_multiply_const_vxx_0_0, 0))
        self.connect((self.blocks_delay_0, 0),
                     (self.blocks_multiply_xx_0_0_0_0, 0))
        self.connect((self.blocks_divide_xx_1, 0),
                     (self.blocks_nlog10_ff_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.blocks_multiply_xx_0, 0))
        self.connect((self.blocks_float_to_complex_1, 0),
                     (self.blocks_multiply_xx_0_0_0_0_0, 2))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_add_xx_1, 0))
        self.connect((self.blocks_multiply_const_vxx_0_0, 0),
                     (self.audio_sink_0_0_0, 0))
        self.connect((self.blocks_multiply_const_vxx_1, 0),
                     (self.blocks_float_to_complex_1, 0))
        self.connect((self.blocks_multiply_const_vxx_2, 0),
                     (self.blocks_complex_to_real_0, 0))
        self.connect((self.blocks_multiply_const_vxx_2_0, 0),
                     (self.blocks_complex_to_real_0_0, 0))
        self.connect((self.blocks_multiply_const_vxx_3, 0),
                     (self.blocks_add_xx_1, 1))
        self.connect((self.blocks_multiply_xx_0, 0),
                     (self.low_pass_filter_0, 0))
        self.connect((self.blocks_multiply_xx_0_0, 0),
                     (self.blocks_delay_0, 0))
        self.connect((self.blocks_multiply_xx_0_0, 0),
                     (self.blocks_multiply_xx_0_0_0, 0))
        self.connect((self.blocks_multiply_xx_0_0, 0),
                     (self.blocks_rms_xx_0, 0))
        self.connect((self.blocks_multiply_xx_0_0_0, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_multiply_xx_0_0_0_0, 0),
                     (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_multiply_xx_0_0_0_0_0, 0),
                     (self.blocks_add_xx_0_0, 1))
        self.connect((self.blocks_multiply_xx_0_0_0_0_0, 0),
                     (self.blocks_complex_to_mag_squared_2_0, 0))
        self.connect((self.blocks_multiply_xx_0_0_0_0_0, 0),
                     (self.blocks_multiply_const_vxx_2_0, 0))
        self.connect((self.blocks_multiply_xx_1, 0),
                     (self.blocks_add_xx_0_0, 0))
        self.connect((self.blocks_multiply_xx_1, 0),
                     (self.blocks_complex_to_mag_squared_2, 0))
        self.connect((self.blocks_nlog10_ff_0, 0), (self.snr_out, 0))
        self.connect((self.blocks_rms_xx_0, 0),
                     (self.blocks_multiply_const_vxx_1, 0))
        self.connect((self.blocks_rms_xx_0_0, 0), (self.out_rms, 0))
        self.connect((self.blocks_selector_0, 0),
                     (self.blocks_multiply_xx_0_0_0, 1))
        self.connect((self.blocks_selector_0_0, 0),
                     (self.blocks_multiply_xx_0_0_0_0, 1))
        self.connect((self.epy_block_0, 0), (self.low_pass_filter_1, 0))
        self.connect((self.epy_block_0_0, 0), (self.low_pass_filter_1_0, 0))
        self.connect((self.low_pass_filter_0, 0),
                     (self.blocks_multiply_xx_0_0, 0))
        self.connect((self.low_pass_filter_1, 0), (self.blocks_selector_0, 0))
        self.connect((self.low_pass_filter_1_0, 0),
                     (self.blocks_selector_0_0, 0))
        self.connect((self.low_pass_filter_2, 0),
                     (self.blocks_multiply_xx_0_0_0_0_0, 0))
        self.connect((self.single_pole_iir_filter_xx_0, 0),
                     (self.blocks_divide_xx_1, 0))
        self.connect((self.single_pole_iir_filter_xx_0_0, 0),
                     (self.blocks_divide_xx_1, 1))
Beispiel #41
0
    def __init__(self):
        gr.top_block.__init__(self, "Testvolts")

        ##################################################
        # Variables - Some get overridden after block definition before connections.
        ##################################################
        self.samp_rate = samp_rate = 48000
        # Initial wavelength assumption, which must be calibrated carefully.
        self.fundamental_wavelength_samples = 800
        # self.probed_rms_volts = probed_rms_volts = 0

        # Things from config file
        # self.avg_length = avg_length = 10000
        self.probe_interval = probe_interval = float(SETTINGS["display"]["probe_interval"])
        self.rms_alpha = rms_alpha = 1

        # Calibration (Conversion) parameters, to convert from sample domain to volts/current domain.
        self.average_rms_slope =     float(SETTINGS["calibration"]["average_rms_slope"])
        self.average_rms_intercept = float(SETTINGS["calibration"]["average_rms_intercept"])

        # RMS Block parameters
        self.voltage_calculation_rms_alpha = float(SETTINGS["calibration"]["voltage_calculation_rms_alpha"])

        # Averaging block parameters
        self.voltage_rms_average_length =  int(SETTINGS["calibration"]["voltage_rms_average_length"])
        self.voltage_rms_average_scale =  float(SETTINGS["calibration"]["voltage_rms_average_scale"])
        self.voltage_rms_max_iter = int(SETTINGS["calibration"]["voltage_rms_max_iter"])

        # for averaging block stuff
        self.last_sampled_wavelength = 1

        # Input source parameters.
        self.audioSource = SETTINGS["input"]["input_type"]

        # Frequency calculation parameters
        self.freq_getfreq_alpha = float(SETTINGS["calibration"]["freq_getfreq_alpha"])
        self.freq_interpolation = float(SETTINGS["calibration"]["freq_interpolation"])
        self.freq_interpolation_multiplier = float(SETTINGS["calibration"]["freq_interpolation_multiplier"])


        self.current_readings = self.getDefaultReadings()



        # AC Volts
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float * 1, samp_rate, True)
        # self.blocks_rms_volts = blocks.rms_ff(self.voltage_calculation_rms_alpha)
        # self.blocks_moving_average_volts = blocks.moving_average_ff(self.voltage_rms_average_length, self.voltage_rms_average_scale, self.voltage_rms_max_iter)
        # self.probe_rms_volts = blocks.probe_signal_f()


        # AC Frequency
        # if (setting_acfreq_enabled() is True):
        self.probe_avgwave = blocks.probe_signal_f()
        self.upsampler = filter.fractional_resampler_ff(0, self.freq_interpolation)
        self.getfreq_block = powerquality.getfreqcpp(self.freq_getfreq_alpha)

        # Streaming support - Permit access to the raw samples to ZeroMQ clients.
        self.zeromq_pub_sink_0 = zeromq.pub_sink(gr.sizeof_float, 1, SETTINGS["tap_rawsamples"]["zmq_bind_uri"], SETTINGS["tap_rawsamples"]["zmq_timeout"], True, -1)

        # TODO: Connect the streaming blocks

        # self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff((-1, ))
        # self.blocks_delay_0 = blocks.delay(gr.sizeof_float*1, self.fundamental_wavelength_samples)
        # self.blocks_add_xx_0 = blocks.add_vff(1)

        # Bias detection - these parameters are tuned to 48khz samp rate: (1 * samp_rate / 60, .00125, 4000)
        if ("bias" in SETTINGS and "bias_avg_num_waves" in SETTINGS["bias"]):
            bias_avg_num_waves = SETTINGS["bias"]["bias_avg_num_waves"]
        else:
            bias_avg_num_waves = 1
        # Calculate the number of samples associated with n wavelengths specified in settings or the default.
        avgBiasNumSamples = bias_avg_num_waves * samp_rate / 60
        self.blocks_bias_moving_average = blocks.moving_average_ff(avgBiasNumSamples, 1.0/avgBiasNumSamples, 4000)
        self.probe_bias = blocks.probe_signal_f()


        ### Calibrate the blocks based on settings from config file
        # self.set_rms_alpha(asdfasdfasdfasdf from settings)

        # Instantiate the message consumer that we'll use to get json messages from the getfreq block
        self.msgConsumer = message_consumer()

        ##################################################
        # RMS Volts Connections
        ##################################################

        # self.connect((self.blocks_rms_volts, 0), (self.blocks_moving_average_volts, 0))
        # self.connect((self.blocks_moving_average_volts, 0), (self.probe_rms_volts, 0))

        # Set up a variable with a default value. Below we'll override the value depending on whether we are reading from file or audio device.
        self.sourceOfSamplesBlock = self.blocks_throttle_0

        # Select input source - wav file or sound card.
        if (self.audioSource == "wav"):
            # Variable source type: wav file
            # self.wavfile_input = blocks.wavfile_source('./samples/sample.wav', False)
            self.input_wav_filename = SETTINGS["input"]["input_wav_filename"]
            self.wavfile_input = blocks.wavfile_source(self.input_wav_filename, True)

            # wav input requires throttle block. Then we connect things to the throttle block directly instead of the wav source.
            self.connect((self.wavfile_input, 0), (self.blocks_throttle_0, 0))

            self.sourceOfSamplesBlock = self.blocks_throttle_0

        else:
            # Variable source type: sound device.
            self.soundcard_device_name = ""
            if (SETTINGS["input"]["input_sound_device"]):
                self.soundcard_device_name = SETTINGS["input"]["input_sound_device"]

            self.soundcard_input = audio.source(samp_rate, self.soundcard_device_name, True)

            # no throttle block needed in the case of sound card

            self.sourceOfSamplesBlock = self.soundcard_input



        # Volts flow
        print "CONNECTIONS: Defining the voltage calculation flow"
        # self.connect((self.sourceOfSamplesBlock , 0), (self.blocks_rms_volts, 0))
        # Hz flow
        print "CONNECTIONS: Defining the frequency calculation flow"
        self.connect((self.sourceOfSamplesBlock , 0), (self.upsampler, 0))
        self.connect((self.upsampler, 0), (self.getfreq_block, 0))
        self.connect((self.getfreq_block, 0), (self.probe_avgwave, 0))

        # Raw Tap port Tap flow
        print "CONNECTIONS: Connecting raw samples tap (ZMQ)"
        self.connect((self.sourceOfSamplesBlock , 0), (self.zeromq_pub_sink_0, 0))

        # Bias Detection flow
        self.connect((self.sourceOfSamplesBlock, 0), (self.blocks_bias_moving_average, 0))
        self.connect((self.blocks_bias_moving_average, 0), (self.probe_bias, 0))

        # Connect our message consumer block to the message output of the getfreq block so we can get messages from it.
        self.msg_connect((self.getfreq_block, 'out'), (self.msgConsumer, 'in_port'))
Beispiel #42
0
    def __init__(self, mode='VOR', zero_point=59, **kwargs):
        self.channel_rate = channel_rate = 40000
        internal_audio_rate = 20000  # TODO over spec'd
        self.zero_point = zero_point

        transition = 5000
        SimpleAudioDemodulator.__init__(self,
                                        mode=mode,
                                        audio_rate=internal_audio_rate,
                                        demod_rate=channel_rate,
                                        band_filter=fm_subcarrier * 1.25 +
                                        fm_deviation + transition / 2,
                                        band_filter_transition=transition,
                                        **kwargs)

        self.dir_rate = dir_rate = 10

        if internal_audio_rate % dir_rate != 0:
            raise ValueError(
                'Audio rate %s is not a multiple of direction-finding rate %s'
                % (internal_audio_rate, dir_rate))
        self.dir_scale = dir_scale = internal_audio_rate // dir_rate
        self.audio_scale = audio_scale = channel_rate // internal_audio_rate

        self.zeroer = blocks.add_const_vff((zero_point * (math.pi / 180), ))

        self.dir_vector_filter = grfilter.fir_filter_ccf(
            1, firdes.low_pass(1, dir_rate, 1, 2, firdes.WIN_HAMMING, 6.76))
        self.am_channel_filter_block = grfilter.fir_filter_ccf(
            1,
            firdes.low_pass(1, channel_rate, 5000, 5000, firdes.WIN_HAMMING,
                            6.76))
        self.goertzel_fm = fft.goertzel_fc(channel_rate,
                                           dir_scale * audio_scale, 30)
        self.goertzel_am = fft.goertzel_fc(internal_audio_rate, dir_scale, 30)
        self.fm_channel_filter_block = grfilter.freq_xlating_fir_filter_ccc(
            1, (firdes.low_pass(1.0, channel_rate, fm_subcarrier / 2,
                                fm_subcarrier / 2, firdes.WIN_HAMMING)),
            fm_subcarrier, channel_rate)
        self.multiply_conjugate_block = blocks.multiply_conjugate_cc(1)
        self.complex_to_arg_block = blocks.complex_to_arg(1)
        self.am_agc_block = analog.feedforward_agc_cc(1024, 1.0)
        self.am_demod_block = analog.am_demod_cf(
            channel_rate=channel_rate,
            audio_decim=audio_scale,
            audio_pass=5000,
            audio_stop=5500,
        )
        self.fm_demod_block = analog.quadrature_demod_cf(1)
        self.phase_agc_fm = analog.agc2_cc(1e-1, 1e-2, 1.0, 1.0)
        self.phase_agc_am = analog.agc2_cc(1e-1, 1e-2, 1.0, 1.0)

        self.probe = blocks.probe_signal_f()

        self.audio_filter_block = grfilter.fir_filter_fff(
            1, design_lofi_audio_filter(internal_audio_rate, False))

        ##################################################
        # Connections
        ##################################################
        # Input
        self.connect(self, self.band_filter_block)
        # AM chain
        self.connect(self.band_filter_block, self.am_channel_filter_block,
                     self.am_agc_block, self.am_demod_block)
        # AM audio
        self.connect(
            self.am_demod_block,
            blocks.multiply_const_ff(1.0 / audio_modulation_index * 0.5),
            self.audio_filter_block)
        self.connect_audio_output(self.audio_filter_block)

        # AM phase
        self.connect(self.am_demod_block, self.goertzel_am, self.phase_agc_am,
                     (self.multiply_conjugate_block, 0))
        # FM phase
        self.connect(self.band_filter_block, self.fm_channel_filter_block,
                     self.fm_demod_block, self.goertzel_fm, self.phase_agc_fm,
                     (self.multiply_conjugate_block, 1))
        # Phase comparison and output
        self.connect(
            self.multiply_conjugate_block,
            self.dir_vector_filter,
            self.complex_to_arg_block,
            blocks.multiply_const_ff(-1),  # opposite angle conventions
            self.zeroer,
            self.probe)
Beispiel #43
0
    def __init__(self, mode='VOR', zero_point=59, **kwargs):
        self.channel_rate = channel_rate = 40000
        internal_audio_rate = 20000  # TODO over spec'd
        self.zero_point = zero_point

        transition = 5000
        SimpleAudioDemodulator.__init__(self,
            mode=mode,
            audio_rate=internal_audio_rate,
            demod_rate=channel_rate,
            band_filter=fm_subcarrier * 1.25 + fm_deviation + transition / 2,
            band_filter_transition=transition,
            **kwargs)

        self.dir_rate = dir_rate = 10

        if internal_audio_rate % dir_rate != 0:
            raise ValueError('Audio rate %s is not a multiple of direction-finding rate %s' % (internal_audio_rate, dir_rate))
        self.dir_scale = dir_scale = internal_audio_rate // dir_rate
        self.audio_scale = audio_scale = channel_rate // internal_audio_rate

        self.zeroer = blocks.add_const_vff((zero_point * (math.pi / 180), ))
        
        self.dir_vector_filter = grfilter.fir_filter_ccf(1, firdes.low_pass(
            1, dir_rate, 1, 2, firdes.WIN_HAMMING, 6.76))
        self.am_channel_filter_block = grfilter.fir_filter_ccf(1, firdes.low_pass(
            1, channel_rate, 5000, 5000, firdes.WIN_HAMMING, 6.76))
        self.goertzel_fm = fft.goertzel_fc(channel_rate, dir_scale * audio_scale, 30)
        self.goertzel_am = fft.goertzel_fc(internal_audio_rate, dir_scale, 30)
        self.fm_channel_filter_block = grfilter.freq_xlating_fir_filter_ccc(1, (firdes.low_pass(1.0, channel_rate, fm_subcarrier / 2, fm_subcarrier / 2, firdes.WIN_HAMMING)), fm_subcarrier, channel_rate)
        self.multiply_conjugate_block = blocks.multiply_conjugate_cc(1)
        self.complex_to_arg_block = blocks.complex_to_arg(1)
        self.am_agc_block = analog.feedforward_agc_cc(1024, 1.0)
        self.am_demod_block = analog.am_demod_cf(
            channel_rate=channel_rate,
            audio_decim=audio_scale,
            audio_pass=5000,
            audio_stop=5500,
        )
        self.fm_demod_block = analog.quadrature_demod_cf(1)
        self.phase_agc_fm = analog.agc2_cc(1e-1, 1e-2, 1.0, 1.0)
        self.phase_agc_am = analog.agc2_cc(1e-1, 1e-2, 1.0, 1.0)
        
        self.probe = blocks.probe_signal_f()
        
        self.audio_filter_block = grfilter.fir_filter_fff(1, design_lofi_audio_filter(internal_audio_rate, False))

        ##################################################
        # Connections
        ##################################################
        # Input
        self.connect(
            self,
            self.band_filter_block)
        # AM chain
        self.connect(
            self.band_filter_block,
            self.am_channel_filter_block,
            self.am_agc_block,
            self.am_demod_block)
        # AM audio
        self.connect(
            self.am_demod_block,
            blocks.multiply_const_ff(1.0 / audio_modulation_index * 0.5),
            self.audio_filter_block)
        self.connect_audio_output(self.audio_filter_block)
        
        # AM phase
        self.connect(
            self.am_demod_block,
            self.goertzel_am,
            self.phase_agc_am,
            (self.multiply_conjugate_block, 0))
        # FM phase
        self.connect(
            self.band_filter_block,
            self.fm_channel_filter_block,
            self.fm_demod_block,
            self.goertzel_fm,
            self.phase_agc_fm,
            (self.multiply_conjugate_block, 1))
        # Phase comparison and output
        self.connect(
            self.multiply_conjugate_block,
            self.dir_vector_filter,
            self.complex_to_arg_block,
            blocks.multiply_const_ff(-1),  # opposite angle conventions
            self.zeroer,
            self.probe)
Beispiel #44
0
    def __init__(self):
        gr.top_block.__init__(self, "Signals")

        ##################################################
        # Variables
        ##################################################
        self.variable_function_probe_0 = variable_function_probe_0 = 0
        self.tune_freq = tune_freq = 315000000
        self.samp_rate = samp_rate = 1.024e6

        ##################################################
        # Blocks
        ##################################################
        self.probe = blocks.probe_signal_f()

        def _variable_function_probe_0_probe():
            sample = []
            while True:
                val = self.probe.level()
                try:
                    self.set_variable_function_probe_0(val)
                    sample.append(val)
                    if (len(sample) >= 10):
                        mid = np.mean(sample)
                        print(mid)
                        allSignals.append(mid)
                        sample = []

                except AttributeError:
                    pass
                time.sleep(1.0 / (100))

        _variable_function_probe_0_thread = threading.Thread(
            target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()

        self.rtlsdr_source_0 = osmosdr.source(args="numchan=" + str(1) + " " +
                                              '')
        self.rtlsdr_source_0.set_sample_rate(samp_rate)
        self.rtlsdr_source_0.set_center_freq(tune_freq, 0)
        self.rtlsdr_source_0.set_freq_corr(0, 0)
        self.rtlsdr_source_0.set_dc_offset_mode(0, 0)
        self.rtlsdr_source_0.set_iq_balance_mode(0, 0)
        self.rtlsdr_source_0.set_gain_mode(False, 0)
        self.rtlsdr_source_0.set_gain(5, 0)
        self.rtlsdr_source_0.set_if_gain(10, 0)
        self.rtlsdr_source_0.set_bb_gain(20, 0)
        self.rtlsdr_source_0.set_antenna('', 0)
        self.rtlsdr_source_0.set_bandwidth(200000, 0)

        self.low_pass_filter_1 = filter.fir_filter_ccf(
            1,
            firdes.low_pass(1, samp_rate, 20000, 10000, firdes.WIN_HAMMING,
                            6.76))
        self.low_pass_filter_0 = filter.fir_filter_ccf(
            5,
            firdes.low_pass(1, samp_rate, 100e3, 10e3, firdes.WIN_HAMMING,
                            6.76))
        self.blocks_complex_to_mag_0 = blocks.complex_to_mag(1)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_complex_to_mag_0, 0), (self.probe, 0))
        self.connect((self.low_pass_filter_0, 0), (self.low_pass_filter_1, 0))
        self.connect((self.low_pass_filter_1, 0),
                     (self.blocks_complex_to_mag_0, 0))
        self.connect((self.rtlsdr_source_0, 0), (self.low_pass_filter_0, 0))
Beispiel #45
0
  def __init__(self):
    gr.top_block.__init__(self)

    options = get_options()

    bitrate = 8000
    channel_bw = options.channel_bandwidth
    chan0_freq = 358400000
    self.rfgain = options.gain

    self.channels = [ int(ch) for ch in options.channels.split(',') if ch ]
    self.ch_freqs = [ ch * channel_bw + chan0_freq for ch in self.channels ]
    self.ch_freqs.extend(
            [ int(f) for f in options.channels_by_freq.split(',') if f ])
    while len(self.channels) < len(self.ch_freqs):
        self.channels.append(-1)

    if options.frequency is None:
        self.ifreq = (max(self.ch_freqs) + min(self.ch_freqs)) / 2
    else:
        self.ifreq = options.frequency

    self.src = osmosdr.source(options.args)
    self.src.set_center_freq(self.ifreq)
    self.src.set_sample_rate(options.sample_rate)
    self.src.set_freq_corr(options.ppm, 0)

    if self.rfgain is None:
        self.src.set_gain_mode(True, 0)
        self.iagc = 1
        self.rfgain = 0
    else:
        self.iagc = 0
        self.src.set_gain_mode(False)
        self.src.set_gain(self.rfgain)
        self.src.set_if_gain(37)

    # may differ from the requested rate
    sample_rate = int(self.src.get_sample_rate())
    sys.stderr.write("sample rate: %d\n" % (sample_rate))

    first_decim = int(options.sample_rate / bitrate / 2)
    sys.stderr.write("decim: %d\n" % (first_decim))

    out_sample_rate=sample_rate/first_decim
    sys.stderr.write("output sample rate: %d\n" % (out_sample_rate))

    sps=out_sample_rate/bitrate
    sys.stderr.write("samples per symbol: %d\n" % (sps))

    self.tuners = []
    self.afc_probes = []
    if len(self.channels) != 1:
        if options.output_file:
            if options.output_file.find('%%') == -1:
                raise ValueError('Output name template missing "%%".')
        elif options.output_pipe:
            if options.output_pipe.find('%%') == -1:
                raise ValueError('Output name template missing "%%".')
        else:
            raise ValueError('WTF')
    for ch in range(0,len(self.channels)):
        bw = (9200 + options.afc_ppm_threshold)/2
        taps = filter.firdes.low_pass(1.0, sample_rate, bw, bw*options.transition_width, filter.firdes.WIN_HANN)
        offset = self.ch_freqs[ch] - self.ifreq
        sys.stderr.write("channel[%d]: %d frequency=%d, offset=%d Hz\n" % (ch, self.channels[ch], self.ch_freqs[ch], offset))


        tuner = filter.freq_xlating_fir_filter_ccc(first_decim, taps, offset, sample_rate)
        self.tuners.append(tuner)

        demod = digital.gmsk_demod(samples_per_symbol=sps)

        fname = self.channels[ch]
        if fname == -1:
            fname = self.ch_freqs[ch]
        if options.output_pipe is None:
            file = options.output_file.replace('%%', str(fname))
            output = blocks.file_sink(gr.sizeof_char, file)
        else:
            cmd = options.output_pipe.replace('%%', str(fname))
            pipe = subprocess.Popen(cmd, stdin=subprocess.PIPE, shell=True)
            fd = pipe.stdin.fileno()
            output = blocks.file_descriptor_sink(gr.sizeof_char, fd)

        self.connect((self.src, 0), (tuner, 0))
        self.connect((tuner, 0), (demod, 0))
        self.connect((demod, 0), (output, 0))

        afc_decimation = 32000
        afc_demod = analog.quadrature_demod_cf(sample_rate/first_decim/(2*math.pi*afc_decimation))
        integrate = blocks.integrate_ff(afc_decimation)
        afc_probe = blocks.probe_signal_f()
        self.afc_probes.append(afc_probe)

        self.connect((tuner, 0), (afc_demod,0))
        self.connect((afc_demod, 0), (integrate,0))
        self.connect((integrate, 0), (afc_probe, 0))

    def _variable_function_probe_0_probe():
        while True:
            time.sleep(options.afc_period)
            for ch in range(0,len(self.channels)):
                err = self.afc_probes[ch].level()
                if abs(err) < options.afc_ppm_threshold:
                    continue
                freq = self.tuners[ch].center_freq() + err * options.afc_gain
                self.tuners[ch].set_center_freq(freq)
                if self.channels[ch] == -1:
                    sys.stderr.write("Freq %d freq err: %5.0f\tfreq: %f\n" % (self.ch_freqs[ch], err, freq))
                else:
                    sys.stderr.write("Chan %d freq err: %5.0f\tfreq: %f\n" % (self.channels[ch], err, freq))
            sys.stderr.write("\n")
    _variable_function_probe_0_thread = threading.Thread(target=_variable_function_probe_0_probe)
    _variable_function_probe_0_thread.daemon = True
    _variable_function_probe_0_thread.start()
Beispiel #46
0
    def __init__(self):
        gr.top_block.__init__(self, "Bpsk Receiverlms")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Bpsk Receiverlms")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "BPSK_ReceiverLMS")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.sps = sps = 8
        self.probe_var_n = probe_var_n = 0
        self.probe_var = probe_var = 0
        self.nfilts = nfilts = 32
        self.eb = eb = 0.35
        self.SNR = SNR = 500
        self.transistion = transistion = 100
        self.timing_loop_bw = timing_loop_bw = 6.28/100.0
        self.sideband_rx = sideband_rx = 500
        self.sideband = sideband = 500
        self.samp_rate = samp_rate = 48000
        self.rrc_taps = rrc_taps = firdes.root_raised_cosine(nfilts/16, nfilts/16, 1.0/float(sps), 0.35, 11*sps*nfilts/16)
        self.qpsk = qpsk = digital.constellation_rect(([0.707+0.707j, -0.707+0.707j, -0.707-0.707j, 0.707-0.707j]), ([0, 1, 2, 3]), 4, 2, 2, 1, 1).base()
        self.preamble = preamble = [1,-1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1]
        self.phase_bw = phase_bw = 6.28/100.0
        self.noise_amp = noise_amp = probe_var/(10**(SNR/20))
        self.matched_filter = matched_filter = firdes.root_raised_cosine(nfilts, nfilts, 1, eb, int(11*sps*nfilts))
        self.interpolation = interpolation = 2000
        self.eq_gain = eq_gain = 0.01
        self.delay = delay = 0
        self.decimation = decimation = 1
        self.constel = constel = digital.constellation_calcdist(([1,- 1]), ([0,1]), 2, 1).base()
        self.carrier = carrier = 10000
        self.arity = arity = 2
        self.Signal_rms = Signal_rms = probe_var
        self.Signal_Noise_amp = Signal_Noise_amp = probe_var_n

        ##################################################
        # Blocks
        ##################################################
        self._timing_loop_bw_range = Range(0.0, 0.2, 0.01, 6.28/100.0, 200)
        self._timing_loop_bw_win = RangeWidget(self._timing_loop_bw_range, self.set_timing_loop_bw, "Time: BW", "counter_slider", float)
        self.top_grid_layout.addWidget(self._timing_loop_bw_win, 0,0)
        self.probe_rms = blocks.probe_signal_f()
        self.probe_avg_n = blocks.probe_signal_f()
        self._phase_bw_range = Range(0.0, 1.0, 0.001, 6.28/100.0, 200)
        self._phase_bw_win = RangeWidget(self._phase_bw_range, self.set_phase_bw, "Phase: Bandwidth", "counter_slider", float)
        self.top_grid_layout.addWidget(self._phase_bw_win, 0,4)
        self._eq_gain_range = Range(0.0, 0.5, 0.001, 0.01, 200)
        self._eq_gain_win = RangeWidget(self._eq_gain_range, self.set_eq_gain, "Equalizer: rate", "slider", float)
        self.top_grid_layout.addWidget(self._eq_gain_win, 1,3)
        self.rational_resampler_xxx_0_0 = filter.rational_resampler_ccc(
                interpolation=decimation,
                decimation=interpolation,
                taps=(rrc_taps),
                fractional_bw=None,
        )
        self.qtgui_sink_x_0 = qtgui.sink_c(
        	1024, #fftsize
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	0, #fc
        	samp_rate, #bw
        	"", #name
        	True, #plotfreq
        	True, #plotwaterfall
        	True, #plottime
        	True, #plotconst
        )
        self.qtgui_sink_x_0.set_update_time(1.0/10)
        self._qtgui_sink_x_0_win = sip.wrapinstance(self.qtgui_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_sink_x_0_win)
        
        self.qtgui_sink_x_0.enable_rf_freq(False)
        
        
          
        def _probe_var_n_probe():
            while True:
                val = self.probe_avg_n.level()
                try:
                    self.set_probe_var_n(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _probe_var_n_thread = threading.Thread(target=_probe_var_n_probe)
        _probe_var_n_thread.daemon = True
        _probe_var_n_thread.start()
        def _probe_var_probe():
            while True:
                val = self.probe_rms.level()
                try:
                    self.set_probe_var(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _probe_var_thread = threading.Thread(target=_probe_var_probe)
        _probe_var_thread.daemon = True
        _probe_var_thread.start()
        self.freq_xlating_fir_filter_xxx_0_0 = filter.freq_xlating_fir_filter_ccc(1, (filter.firdes.low_pass(1, samp_rate*10, sideband_rx,1000)), carrier, samp_rate)
        self.digital_pfb_clock_sync_xxx_0 = digital.pfb_clock_sync_ccf(sps, timing_loop_bw, (rrc_taps), nfilts, nfilts/2, 1.5, 1)
        self.digital_lms_dd_equalizer_cc_1 = digital.lms_dd_equalizer_cc(8, eq_gain, 1, constel)
        self.digital_diff_decoder_bb_0 = digital.diff_decoder_bb(2)
        self.digital_costas_loop_cc_0 = digital.costas_loop_cc(phase_bw, arity, False)
        self.digital_constellation_decoder_cb_0 = digital.constellation_decoder_cb(constel)
        self.blocks_wavfile_source_0 = blocks.wavfile_source("/Users/ahmadtrabousli/Desktop/GnuRadioModems/Impulse Responses/5km_20pc/BPSK_Output/goff_random_20pc_5km_E_no3.wav", False)
        self.blocks_throttle_1_0_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True)
        self.blocks_rms_xx_1 = blocks.rms_cf(0.01)
        self.blocks_rms_xx_0 = blocks.rms_cf(0.01)
        self.blocks_pack_k_bits_bb_0 = blocks.pack_k_bits_bb(8)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_file_sink_0_1 = blocks.file_sink(gr.sizeof_char*1, "/Users/ahmadtrabousli/Desktop/GnuRadioModems/PSK/outputText", False)
        self.blocks_file_sink_0_1.set_unbuffered(False)
        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1, "/Users/ahmadtrabousli/Desktop/GnuRadioModems/PSK/outputBinary", False)
        self.blocks_file_sink_0.set_unbuffered(False)
        self.blocks_delay_1 = blocks.delay(gr.sizeof_char*1, int(delay))
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        self.analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, noise_amp, 0)
        self._Signal_rms_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._Signal_rms_formatter = None
        else:
          self._Signal_rms_formatter = lambda x: x
        
        self._Signal_rms_tool_bar.addWidget(Qt.QLabel("Signal_rms"+": "))
        self._Signal_rms_label = Qt.QLabel(str(self._Signal_rms_formatter(self.Signal_rms)))
        self._Signal_rms_tool_bar.addWidget(self._Signal_rms_label)
        self.top_layout.addWidget(self._Signal_rms_tool_bar)
          
        self._Signal_Noise_amp_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._Signal_Noise_amp_formatter = None
        else:
          self._Signal_Noise_amp_formatter = lambda x: x
        
        self._Signal_Noise_amp_tool_bar.addWidget(Qt.QLabel("Signal_Noise_amp"+": "))
        self._Signal_Noise_amp_label = Qt.QLabel(str(self._Signal_Noise_amp_formatter(self.Signal_Noise_amp)))
        self._Signal_Noise_amp_tool_bar.addWidget(self._Signal_Noise_amp_label)
        self.top_layout.addWidget(self._Signal_Noise_amp_tool_bar)
          

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_noise_source_x_0, 0), (self.blocks_add_xx_0, 1))    
        self.connect((self.analog_noise_source_x_0, 0), (self.blocks_rms_xx_1, 0))    
        self.connect((self.blocks_add_xx_0, 0), (self.digital_pfb_clock_sync_xxx_0, 0))    
        self.connect((self.blocks_delay_1, 0), (self.blocks_file_sink_0, 0))    
        self.connect((self.blocks_float_to_complex_0, 0), (self.freq_xlating_fir_filter_xxx_0_0, 0))    
        self.connect((self.blocks_pack_k_bits_bb_0, 0), (self.blocks_file_sink_0_1, 0))    
        self.connect((self.blocks_rms_xx_0, 0), (self.probe_rms, 0))    
        self.connect((self.blocks_rms_xx_1, 0), (self.probe_avg_n, 0))    
        self.connect((self.blocks_throttle_1_0_0, 0), (self.blocks_add_xx_0, 0))    
        self.connect((self.blocks_throttle_1_0_0, 0), (self.blocks_rms_xx_0, 0))    
        self.connect((self.blocks_wavfile_source_0, 0), (self.blocks_float_to_complex_0, 0))    
        self.connect((self.digital_constellation_decoder_cb_0, 0), (self.digital_diff_decoder_bb_0, 0))    
        self.connect((self.digital_costas_loop_cc_0, 0), (self.digital_constellation_decoder_cb_0, 0))    
        self.connect((self.digital_diff_decoder_bb_0, 0), (self.blocks_delay_1, 0))    
        self.connect((self.digital_diff_decoder_bb_0, 0), (self.blocks_pack_k_bits_bb_0, 0))    
        self.connect((self.digital_lms_dd_equalizer_cc_1, 0), (self.digital_costas_loop_cc_0, 0))    
        self.connect((self.digital_pfb_clock_sync_xxx_0, 0), (self.digital_lms_dd_equalizer_cc_1, 0))    
        self.connect((self.digital_pfb_clock_sync_xxx_0, 0), (self.qtgui_sink_x_0, 0))    
        self.connect((self.freq_xlating_fir_filter_xxx_0_0, 0), (self.rational_resampler_xxx_0_0, 0))    
        self.connect((self.rational_resampler_xxx_0_0, 0), (self.blocks_throttle_1_0_0, 0))    
Beispiel #47
0
    def __init__(self):
        gr.top_block.__init__(self, "Tetra Rx Multi")

        options = self.get_options()

        self.src = blocks.file_source(gr.sizeof_gr_complex * 1,
                                      "/tmp/myout1.ch", False)

        ##################################################
        # Variables
        ##################################################
        self.srate_rx = srate_rx = options.sample_rate
        self.channels = srate_rx / 25000
        self.srate_channel = 36000
        self.afc_period = 15
        self.afc_gain = 0.01
        self.afc_channel = options.auto_tune or -1
        self.afc_ppm_step = 100
        self.debug = options.debug
        self.last_pwr = -100000
        self.sig_det_period = 10
        self.sig_det_bw = sig_det_bw = options.sig_detection_bw or srate_rx
        if self.sig_det_bw <= 1.:
            self.sig_det_bw *= srate_rx
        self.sig_det_threshold = options.sig_detection_threshold
        self.sig_det_channels = []
        for ch in range(self.channels):
            if ch >= self.channels / 2:
                ch_ = (self.channels - ch - 1)
            else:
                ch_ = ch
            if (float(ch_) / self.channels * 2) <= (self.sig_det_bw /
                                                    srate_rx):
                self.sig_det_channels.append(ch)

        self.channels = 10

        ##################################################
        # RPC server
        ##################################################
        self.xmlrpc_server = SimpleXMLRPCServer.SimpleXMLRPCServer(
            ("localhost", options.listen_port), allow_none=True)
        self.xmlrpc_server.register_instance(self)
        threading.Thread(target=self.xmlrpc_server.serve_forever).start()

        ##################################################
        # Rx Blocks and connections
        ##################################################

        out_type, dst_path = options.output.split("://", 1)
        if out_type == "udp":
            dst_ip, dst_port = dst_path.split(':', 1)

        self.blocks_deinterleave_0 = blocks.deinterleave(
            gr.sizeof_gr_complex * 1, 1)

        self.squelch = []
        self.digital_mpsk_receiver_cc = []
        self.diff_phasor = []
        self.complex_to_arg = []
        self.multiply_const = []
        self.add_const = []
        self.float_to_uchar = []
        self.map_bits = []
        self.unpack_k_bits = []
        self.blocks_sink = []
        for ch in range(0, self.channels):
            mpsk = digital.mpsk_receiver_cc(4, math.pi / 4, math.pi / 100.0,
                                            -0.5, 0.5, 0.25, 0.001, 2, 0.001,
                                            0.001)
            diff_phasor = digital.diff_phasor_cc()
            complex_to_arg = blocks.complex_to_arg(1)
            multiply_const = blocks.multiply_const_vff((2. / math.pi, ))
            add_const = blocks.add_const_vff((1.5, ))
            float_to_uchar = blocks.float_to_uchar()
            map_bits = digital.map_bb(([3, 2, 0, 1, 3]))
            unpack_k_bits = blocks.unpack_k_bits_bb(2)

            brmchannels = [
                0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
                18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
                34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
                50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
                66, 67, 68, 69, 70, 71
            ]
            #brmchannels = [11,4,3,64,45,47,53,8,68,6,56,49,17,54,65,5,71,22,48,7,50] # itds kancl
            #brmchannels = [23,13,40,69,59,7,42,54,5,14,4,56,45,46,67,55,66,44,71,49,31,57,0,65,70] # doma - dole
            #brmchannels = [23,13,59,40,69,7,49,60,42,70,4,50,66,67,3,14,57,33,46,22,68,32,39,24,6,12,43,58,48,17,5,56,65,29,54,30,16,52,53,41,47,2,34,44,8] # doma - strecha
            #brmchannels = [67, 7, 23, 70] # doma - strecha - SDS
            #brmchannels = [67, 7, 23, 70,9,71,64,63,62,61,55,51,45,38,37,36,35,31,28,27,26,25,21,20,19,18,15,11,10,1,0] # doma - strecha - komplement

            if out_type == 'udp':
                sink = blocks.udp_sink(gr.sizeof_gr_char, dst_ip,
                                       int(dst_port) + ch, 1472, True)
            elif out_type == 'file':
                sink = blocks.file_sink(gr.sizeof_char, dst_path % ch, False)
                sink.set_unbuffered(True)
            else:
                raise ValueError("Invalid output URL '%s'" % options.output)

            print "connect %i" % ch

            if ch in brmchannels:
                self.connect(
                    (self.blocks_deinterleave_0, ch),
                    #(squelch, 0),
                    (mpsk, 0),
                    (diff_phasor, 0),
                    (complex_to_arg, 0),
                    (multiply_const, 0),
                    (add_const, 0),
                    (float_to_uchar, 0),
                    (map_bits, 0),
                    (unpack_k_bits, 0),
                    (sink, 0))

            self.digital_mpsk_receiver_cc.append(mpsk)
            self.diff_phasor.append(diff_phasor)
            self.complex_to_arg.append(complex_to_arg)
            self.multiply_const.append(multiply_const)
            self.add_const.append(add_const)
            self.float_to_uchar.append(float_to_uchar)
            self.map_bits.append(map_bits)
            self.unpack_k_bits.append(unpack_k_bits)
            self.blocks_sink.append(sink)

        self.connect((self.src, 0), (self.blocks_deinterleave_0, 0))

        ##################################################
        # signal strenght identification
        ##################################################
        '''
        self.pwr_probes = []
        for ch in range(self.channels):
            pwr_probe = analog.probe_avg_mag_sqrd_c(0, 1./self.srate_channel)
            self.pwr_probes.append(pwr_probe)
            print "connect %i"%ch
            self.connect((self.blocks_deinterleave_0, ch), (pwr_probe, 0))
        def _sig_det_probe():
            while True:
                pwr = [self.pwr_probes[ch].level()
                        for ch in range(self.channels)
                        if ch in self.sig_det_channels]
                pwr = [10 * math.log10(p) for p in pwr if p > 0.]
                if not pwr:
                    continue
                pwr = min(pwr) + self.sig_det_threshold
                print "power threshold target %f"%pwr
                if abs(pwr - self.last_pwr) > (self.sig_det_threshold / 2):
                    for s in []:
                        s.set_threshold(pwr)
                    self.last_pwr = pwr
                time.sleep(self.sig_det_period)

        if self.sig_det_threshold is not None:
            self._sig_det_probe_thread = threading.Thread(target=_sig_det_probe)
            self._sig_det_probe_thread.daemon = True
            self._sig_det_probe_thread.start()
        '''
        ##################################################
        # AFC blocks and connections
        ##################################################
        self.afc_selector = grc_blks2.selector(
            item_size=gr.sizeof_gr_complex,
            num_inputs=self.channels,
            num_outputs=1,
            input_index=0,
            output_index=0,
        )

        self.afc_demod = analog.quadrature_demod_cf(self.srate_channel /
                                                    (2 * math.pi))
        samp_afc = self.srate_channel * self.afc_period / 2
        self.afc_avg = blocks.moving_average_ff(samp_afc,
                                                1. / samp_afc * self.afc_gain)
        self.afc_probe = blocks.probe_signal_f()

        def _afc_probe():
            rt = 0.0
            while True:
                time.sleep(self.afc_period)
                if self.afc_channel == -1:
                    continue
                err = self.afc_probe.level()
                freq = err * self.afc_gain
                print "err: %f\tfreq: %f\trt %f" % (err, freq, rt)
                changed = False
                if err < -1:
                    rt += 0.1
                    changed = True
                elif err > 1:
                    rt -= 0.1
                    changed = True

                if changed:
                    os.system("echo \"setrot %f\" | nc localhost 3333" % rt)

        self.afc_channel = 0
        self._afc_err_thread = threading.Thread(target=_afc_probe)
        self._afc_err_thread.daemon = True
        self._afc_err_thread.start()

        for ch in range(self.channels):
            print "connect %i" % ch
            self.connect((self.blocks_deinterleave_0, ch),
                         (self.afc_selector, ch))
        self.connect((self.afc_selector, 0), (self.afc_demod, 0),
                     (self.afc_avg, 0), (self.afc_probe, 0))

        if self.afc_channel != -1:
            self.afc_selector.set_input_index(self.afc_channel)
    def __init__(self, lo_offset_freq=1e6, threshold_dB=-70, RF=2.49e9, DC_filter_num_elements=4, speed_samp_rate=1, samp_rate=1e6, highpass_cutoff_freq=0, lowpass_cutoff_freq=1700, fft_len=pow(2,20), samp_rate_sink=8000, angle=0, tx_amp=1, rx_gain=30.5):
        grc_wxgui.top_block_gui.__init__(self, title="CW Radar Single Target")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Parameters
        ##################################################
        self.lo_offset_freq = lo_offset_freq
        self.threshold_dB = threshold_dB
        self.RF = RF
        self.DC_filter_num_elements = DC_filter_num_elements
        self.speed_samp_rate = speed_samp_rate
        self.samp_rate = samp_rate
        self.highpass_cutoff_freq = highpass_cutoff_freq
        self.lowpass_cutoff_freq = lowpass_cutoff_freq
        self.fft_len = fft_len
        self.samp_rate_sink = samp_rate_sink
        self.angle = angle
        self.tx_amp = tx_amp
        self.rx_gain = rx_gain

        ##################################################
        # Variables
        ##################################################
        self.target_speed = target_speed = 0
        self.target_direction = target_direction = 0
        self.tx_amp_tuner = tx_amp_tuner = tx_amp
        self.threshold_dB_tuner = threshold_dB_tuner = threshold_dB
        self.speed_textbox = speed_textbox = target_speed
        self.rx_gain_tuner = rx_gain_tuner = rx_gain
        self.lowpass_cutoff_freq_tuner = lowpass_cutoff_freq_tuner = lowpass_cutoff_freq
        self.highpass_cutoff_freq_tuner = highpass_cutoff_freq_tuner = highpass_cutoff_freq
        self.direction_textbox = direction_textbox = target_direction
        self.angle_tuner = angle_tuner = angle
        self.RF_tuner = RF_tuner = RF

        ##################################################
        # Blocks
        ##################################################
        _tx_amp_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._tx_amp_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_tx_amp_tuner_sizer,
        	value=self.tx_amp_tuner,
        	callback=self.set_tx_amp_tuner,
        	label="TX Signal Amp",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._tx_amp_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_tx_amp_tuner_sizer,
        	value=self.tx_amp_tuner,
        	callback=self.set_tx_amp_tuner,
        	minimum=0,
        	maximum=1,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_tx_amp_tuner_sizer, 0, 17, 1, 26)
        _threshold_dB_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._threshold_dB_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_threshold_dB_tuner_sizer,
        	value=self.threshold_dB_tuner,
        	callback=self.set_threshold_dB_tuner,
        	label="Detected Target Threshold (dB)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._threshold_dB_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_threshold_dB_tuner_sizer,
        	value=self.threshold_dB_tuner,
        	callback=self.set_threshold_dB_tuner,
        	minimum=-90,
        	maximum=-30,
        	num_steps=60,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_threshold_dB_tuner_sizer, 2, 0, 1, 17)
        self.speed_probe = blocks.probe_signal_f()
        _rx_gain_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._rx_gain_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_rx_gain_tuner_sizer,
        	value=self.rx_gain_tuner,
        	callback=self.set_rx_gain_tuner,
        	label="USRP RX Gain (dB)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._rx_gain_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_rx_gain_tuner_sizer,
        	value=self.rx_gain_tuner,
        	callback=self.set_rx_gain_tuner,
        	minimum=0,
        	maximum=30.5 + 62,
        	num_steps=185,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_rx_gain_tuner_sizer, 0, 0, 1, 17)
        self.notebook = self.notebook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "FFT CW Doppler Radar Receiver")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Frequency/Time CW Doppler Radar Receiver")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "FFT CW Doppler Radar Receiver Full Spectrum")
        self.GridAdd(self.notebook, 5, 0, 13, 75)
        _lowpass_cutoff_freq_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._lowpass_cutoff_freq_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_lowpass_cutoff_freq_tuner_sizer,
        	value=self.lowpass_cutoff_freq_tuner,
        	callback=self.set_lowpass_cutoff_freq_tuner,
        	label="Lowpass Cutoff Frequency (Hz)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._lowpass_cutoff_freq_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_lowpass_cutoff_freq_tuner_sizer,
        	value=self.lowpass_cutoff_freq_tuner,
        	callback=self.set_lowpass_cutoff_freq_tuner,
        	minimum=0,
        	maximum=3000,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_lowpass_cutoff_freq_tuner_sizer, 1, 43, 1, 32)
        _highpass_cutoff_freq_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._highpass_cutoff_freq_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_highpass_cutoff_freq_tuner_sizer,
        	value=self.highpass_cutoff_freq_tuner,
        	callback=self.set_highpass_cutoff_freq_tuner,
        	label="High-Pass Cutoff Frequency (Hz)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._highpass_cutoff_freq_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_highpass_cutoff_freq_tuner_sizer,
        	value=self.highpass_cutoff_freq_tuner,
        	callback=self.set_highpass_cutoff_freq_tuner,
        	minimum=0,
        	maximum=1600,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_highpass_cutoff_freq_tuner_sizer, 0, 43, 1, 32)
        self.direction_probe = blocks.probe_signal_i()
        _angle_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._angle_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_angle_tuner_sizer,
        	value=self.angle_tuner,
        	callback=self.set_angle_tuner,
        	label="Angle of Approach of the Target (Deg)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._angle_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_angle_tuner_sizer,
        	value=self.angle_tuner,
        	callback=self.set_angle_tuner,
        	minimum=0,
        	maximum=89,
        	num_steps=890,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_angle_tuner_sizer, 1, 17, 1, 26)
        _RF_tuner_sizer = wx.BoxSizer(wx.VERTICAL)
        self._RF_tuner_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_RF_tuner_sizer,
        	value=self.RF_tuner,
        	callback=self.set_RF_tuner,
        	label="Radar Frequency (Hz)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._RF_tuner_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_RF_tuner_sizer,
        	value=self.RF_tuner,
        	callback=self.set_RF_tuner,
        	minimum=2.4e9,
        	maximum=2.5e9,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_RF_tuner_sizer, 1, 0, 1, 17)
        self.wxgui_waterfallsink = waterfallsink2.waterfall_sink_c(
        	self.notebook.GetPage(1).GetWin(),
        	baseband_freq=0,
        	dynamic_range=100,
        	ref_level=0,
        	ref_scale=2.0,
        	sample_rate=samp_rate_sink,
        	fft_size=1024,
        	fft_rate=100,
        	average=False,
        	avg_alpha=None,
        	title="Time/Frequency CW Doppler Radar",
        	win=window.blackmanharris,
        )
        self.notebook.GetPage(1).Add(self.wxgui_waterfallsink.win)
        self.wxgui_fftsink2_full_spectrum = fftsink2.fft_sink_c(
        	self.notebook.GetPage(2).GetWin(),
        	baseband_freq=0,
        	y_per_div=10,
        	y_divs=10,
        	ref_level=0,
        	ref_scale=2.0,
        	sample_rate=samp_rate,
        	fft_size=4096,
        	fft_rate=15,
        	average=False,
        	avg_alpha=None,
        	title="FFT CW Doppler Radar Receiver Full Spectrum",
        	peak_hold=False,
        	win=window.blackmanharris,
        )
        self.notebook.GetPage(2).Add(self.wxgui_fftsink2_full_spectrum.win)
        self.wxgui_fftsink = fftsink2.fft_sink_c(
        	self.notebook.GetPage(0).GetWin(),
        	baseband_freq=0,
        	y_per_div=10,
        	y_divs=10,
        	ref_level=0,
        	ref_scale=2.0,
        	sample_rate=samp_rate_sink,
        	fft_size=1024,
        	fft_rate=100,
        	average=False,
        	avg_alpha=None,
        	title="FFT CW Doppler Radar Receiver ",
        	peak_hold=False,
        	win=window.blackmanharris,
        )
        self.notebook.GetPage(0).Add(self.wxgui_fftsink.win)
        self.usrp_transmitter = uhd.usrp_sink(
        	",".join(('addr=192.168.10.2', "")),
        	uhd.stream_args(
        		cpu_format="fc32",
        		channels=range(1),
        	),
        )
        self.usrp_transmitter.set_clock_source("internal", 0)
        self.usrp_transmitter.set_samp_rate(samp_rate)
        self.usrp_transmitter.set_center_freq(RF_tuner, 0)
        self.usrp_transmitter.set_gain(0, 0)
        self.usrp_transmitter.set_antenna('TX/RX', 0)
        self.usrp_receiver = uhd.usrp_source(
        	",".join(('addr=192.168.10.3', "")),
        	uhd.stream_args(
        		cpu_format="fc32",
        		channels=range(1),
        	),
        )
        self.usrp_receiver.set_clock_source("mimo", 0)
        self.usrp_receiver.set_time_source("mimo", 0)
        self.usrp_receiver.set_samp_rate(samp_rate)
        self.usrp_receiver.set_center_freq(uhd.tune_request(RF_tuner, lo_offset_freq), 0)
        self.usrp_receiver.set_gain(rx_gain_tuner, 0)
        self.usrp_receiver.set_antenna("J1", 0)
        self.usrp_receiver.set_bandwidth(15e6, 0)
        def _target_speed_probe():
            while True:
                val = self.speed_probe.level()
                try:
                    self.set_target_speed(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (2))
        _target_speed_thread = threading.Thread(target=_target_speed_probe)
        _target_speed_thread.daemon = True
        _target_speed_thread.start()
        def _target_direction_probe():
            while True:
                val = self.direction_probe.level()
                try:
                    self.set_target_direction(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (2))
        _target_direction_thread = threading.Thread(target=_target_direction_probe)
        _target_direction_thread.daemon = True
        _target_direction_thread.start()
        self._speed_textbox_text_box = forms.text_box(
        	parent=self.GetWin(),
        	value=self.speed_textbox,
        	callback=self.set_speed_textbox,
        	label="Target Speed (Kph)",
        	converter=forms.float_converter(),
        )
        self.GridAdd(self._speed_textbox_text_box, 3, 0, 1, 17)
        self.rational_resampler = filter.rational_resampler_ccc(
                interpolation=1,
                decimation=int(samp_rate/samp_rate_sink),
                taps=None,
                fractional_bw=None,
        )
        self.fft_vxx_0 = fft.fft_vcc(fft_len, True, (window.blackmanharris(fft_len)), True, 1)
        self._direction_textbox_text_box = forms.text_box(
        	parent=self.GetWin(),
        	value=self.direction_textbox,
        	callback=self.set_direction_textbox,
        	label="Target Direction",
        	converter=forms.str_converter(),
        )
        self.GridAdd(self._direction_textbox_text_box, 4, 0, 1, 17)
        self.cwradar_vector_flip_ff = cwradar.vector_flip_ff(fft_len/2)
        self.cwradar_doppler_velocity_single_target_ff_0 = cwradar.doppler_velocity_single_target_ff(fft_len/2, samp_rate, RF_tuner, threshold_dB_tuner, angle_tuner, lowpass_cutoff_freq_tuner, highpass_cutoff_freq_tuner)
        self.complex_to_mag = blocks.complex_to_mag(fft_len)
        self.blocks_vector_to_stream_0_0 = blocks.vector_to_stream(gr.sizeof_float*1, fft_len)
        self.blocks_vector_to_stream_0 = blocks.vector_to_stream(gr.sizeof_float*1, fft_len)
        self.blocks_stream_to_vector_1_0 = blocks.stream_to_vector(gr.sizeof_float*1, fft_len/2)
        self.blocks_stream_to_vector_1 = blocks.stream_to_vector(gr.sizeof_float*1, fft_len/2)
        self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, fft_len)
        self.blocks_keep_m_in_n_0_0 = blocks.keep_m_in_n(gr.sizeof_float, fft_len/2, fft_len, fft_len/2)
        self.blocks_keep_m_in_n_0 = blocks.keep_m_in_n(gr.sizeof_float, fft_len/2, fft_len, 0)
        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, 0, tx_amp_tuner, 0)
        self.DC_filter_0 = blocks.multiply_const_vff(([0]*DC_filter_num_elements+[1]*((fft_len/2)-DC_filter_num_elements)))
        self.DC_filter = blocks.multiply_const_vff(([0]*DC_filter_num_elements+[1]*((fft_len/2)-DC_filter_num_elements)))

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_vector_to_stream_0_0, 0), (self.blocks_keep_m_in_n_0_0, 0))
        self.connect((self.blocks_keep_m_in_n_0, 0), (self.blocks_stream_to_vector_1, 0))
        self.connect((self.blocks_keep_m_in_n_0_0, 0), (self.blocks_stream_to_vector_1_0, 0))
        self.connect((self.blocks_vector_to_stream_0, 0), (self.blocks_keep_m_in_n_0, 0))
        self.connect((self.blocks_stream_to_vector_1_0, 0), (self.DC_filter_0, 0))
        self.connect((self.blocks_stream_to_vector_1, 0), (self.cwradar_vector_flip_ff, 0))
        self.connect((self.cwradar_vector_flip_ff, 0), (self.DC_filter, 0))
        self.connect((self.rational_resampler, 0), (self.wxgui_waterfallsink, 0))
        self.connect((self.rational_resampler, 0), (self.wxgui_fftsink, 0))
        self.connect((self.fft_vxx_0, 0), (self.complex_to_mag, 0))
        self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0))
        self.connect((self.complex_to_mag, 0), (self.blocks_vector_to_stream_0, 0))
        self.connect((self.complex_to_mag, 0), (self.blocks_vector_to_stream_0_0, 0))
        self.connect((self.DC_filter_0, 0), (self.cwradar_doppler_velocity_single_target_ff_0, 1))
        self.connect((self.DC_filter, 0), (self.cwradar_doppler_velocity_single_target_ff_0, 0))
        self.connect((self.cwradar_doppler_velocity_single_target_ff_0, 0), (self.speed_probe, 0))
        self.connect((self.cwradar_doppler_velocity_single_target_ff_0, 1), (self.direction_probe, 0))
        self.connect((self.usrp_receiver, 0), (self.wxgui_fftsink2_full_spectrum, 0))
        self.connect((self.usrp_receiver, 0), (self.rational_resampler, 0))
        self.connect((self.usrp_receiver, 0), (self.blocks_stream_to_vector_0, 0))
        self.connect((self.analog_sig_source_x_0, 0), (self.usrp_transmitter, 0))
Beispiel #49
0
    def __init__(self):
        gr.top_block.__init__(self, "Top Block")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Top Block")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "top_block")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 32000
        self.center_freq = center_freq = 0

        ##################################################
        # Blocks
        ##################################################
        self.freq_sweep_probe = blocks.probe_signal_f()

        def _center_freq_probe():
            while True:
                val = self.freq_sweep_probe.level()
                try:
                    self.set_center_freq(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _center_freq_thread = threading.Thread(target=_center_freq_probe)
        _center_freq_thread.daemon = True
        _center_freq_thread.start()
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_int * 1, samp_rate,
                                                 True)
        self.blocks_int_to_float_1 = blocks.int_to_float(1, 1)
        self.audio_sink_0 = audio.sink(samp_rate, "", True)
        self.analog_sig_source_x_1 = analog.sig_source_f(
            samp_rate, analog.GR_COS_WAVE, center_freq * 300 + 300, 1, 0)
        self.analog_sig_source_x_0 = analog.sig_source_i(
            samp_rate, analog.GR_SAW_WAVE, 0.1, 3, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_0, 0),
                     (self.blocks_throttle_0, 0))
        self.connect((self.analog_sig_source_x_1, 0), (self.audio_sink_0, 0))
        self.connect((self.blocks_int_to_float_1, 0),
                     (self.freq_sweep_probe, 0))
        self.connect((self.blocks_throttle_0, 0),
                     (self.blocks_int_to_float_1, 0))
Beispiel #50
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Vid")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.variable_slider_1 = variable_slider_1 = 500
        self.variable_slider_0 = variable_slider_0 = 0
        self.snr = snr = 0
        self.samp_rate = samp_rate = 32000

        ##################################################
        # Blocks
        ##################################################
        _variable_slider_1_sizer = wx.BoxSizer(wx.VERTICAL)
        self._variable_slider_1_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_variable_slider_1_sizer,
            value=self.variable_slider_1,
            callback=self.set_variable_slider_1,
            label="signal",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._variable_slider_1_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_variable_slider_1_sizer,
            value=self.variable_slider_1,
            callback=self.set_variable_slider_1,
            minimum=0,
            maximum=1000,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.Add(_variable_slider_1_sizer)
        _variable_slider_0_sizer = wx.BoxSizer(wx.VERTICAL)
        self._variable_slider_0_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_variable_slider_0_sizer,
            value=self.variable_slider_0,
            callback=self.set_variable_slider_0,
            label="noise",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._variable_slider_0_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_variable_slider_0_sizer,
            value=self.variable_slider_0,
            callback=self.set_variable_slider_0,
            minimum=0,
            maximum=100,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.Add(_variable_slider_0_sizer)

        def _snr_probe():
            while True:
                val = self.my_block_0.get_number()
                try:
                    self.set_snr(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _snr_thread = threading.Thread(target=_snr_probe)
        _snr_thread.daemon = True
        _snr_thread.start()

        self.digital_gmsk_mod_0 = digital.gmsk_mod(
            samples_per_symbol=2,
            bt=0.35,
            verbose=False,
            log=False,
        )
        self.digital_gmsk_demod_0 = digital.gmsk_demod(
            samples_per_symbol=2,
            gain_mu=0.175,
            mu=0.5,
            omega_relative_limit=0.005,
            freq_error=0.0,
            verbose=False,
            log=False,
        )
        self.blocks_probe_signal_x_0 = blocks.probe_signal_f()
        self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, 1, 0)
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vcc((500, ))
        self.blocks_file_source_0 = blocks.file_source(gr.sizeof_char * 1,
                                                       "video1.ts", False)
        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_gr_complex * 1,
                                                   "video2.ts", False)
        self.blocks_file_sink_0.set_unbuffered(False)
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        self.blks2_packet_encoder_0 = grc_blks2.packet_mod_b(
            grc_blks2.packet_encoder(
                samples_per_symbol=2,
                bits_per_symbol=1,
                preamble="",
                access_code="",
                pad_for_usrp=True,
            ),
            payload_length=0,
        )
        self.blks2_packet_decoder_0 = grc_blks2.packet_demod_c(
            grc_blks2.packet_decoder(
                access_code="",
                threshold=-1,
                callback=lambda ok, payload: self.blks2_packet_decoder_0.
                recv_pkt(ok, payload),
            ), )
        self.analog_noise_source_x_0 = analog.noise_source_c(
            analog.GR_GAUSSIAN, 0, 0)
        self.analog_const_source_x_0 = analog.sig_source_f(
            0, analog.GR_CONST_WAVE, 0, 0, 2500)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_const_source_x_0, 0),
                     (self.blocks_nlog10_ff_0, 0))
        self.connect((self.analog_noise_source_x_0, 0),
                     (self.blocks_add_xx_0, 1))
        self.connect((self.blks2_packet_decoder_0, 0),
                     (self.blocks_file_sink_0, 0))
        self.connect((self.blks2_packet_encoder_0, 0),
                     (self.digital_gmsk_mod_0, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.digital_gmsk_demod_0, 0))
        self.connect((self.blocks_file_source_0, 0),
                     (self.blks2_packet_encoder_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_nlog10_ff_0, 0),
                     (self.blocks_probe_signal_x_0, 0))
        self.connect((self.digital_gmsk_demod_0, 0),
                     (self.blks2_packet_decoder_0, 0))
        self.connect((self.digital_gmsk_mod_0, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="DVB-T Signal Detector using RTL-SDR")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.threshold = threshold = -70
        self.samp_rate = samp_rate = 2048000
        self.probe_level = probe_level = 0
        self.probe_detection = probe_detection = 0
        self.freq = freq = 525200000
        self.fft_size = fft_size = 1024

        ##################################################
        # Blocks
        ##################################################
        _threshold_sizer = wx.BoxSizer(wx.VERTICAL)
        self._threshold_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_threshold_sizer,
            value=self.threshold,
            callback=self.set_threshold,
            label="Threshold",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._threshold_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_threshold_sizer,
            value=self.threshold,
            callback=self.set_threshold,
            minimum=-100,
            maximum=0,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.Add(_threshold_sizer)
        self.probe_signal_level = blocks.probe_signal_f()
        self.probe_signal_detection = blocks.probe_signal_f()
        self.notebook = self.notebook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Waterfall")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Spectrum")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Output")
        self.Add(self.notebook)
        _freq_sizer = wx.BoxSizer(wx.VERTICAL)
        self._freq_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=_freq_sizer,
            value=self.freq,
            callback=self.set_freq,
            label="freq",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._freq_slider = forms.slider(
            parent=self.GetWin(),
            sizer=_freq_sizer,
            value=self.freq,
            callback=self.set_freq,
            minimum=478000000,
            maximum=862000000,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.Add(_freq_sizer)
        self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c(
            self.notebook.GetPage(0).GetWin(),
            baseband_freq=freq,
            dynamic_range=100,
            ref_level=0,
            ref_scale=2.0,
            sample_rate=samp_rate,
            fft_size=fft_size,
            fft_rate=15,
            average=False,
            avg_alpha=None,
            title="Waterfall Plot",
            win=window.rectangular,
        )
        self.notebook.GetPage(0).Add(self.wxgui_waterfallsink2_0.win)
        self.wxgui_numbersink2_1 = numbersink2.number_sink_f(
            self.notebook.GetPage(2).GetWin(),
            unit="dB",
            minval=-120,
            maxval=0,
            factor=1,
            decimal_places=0,
            ref_level=0,
            sample_rate=samp_rate,
            number_rate=15,
            average=False,
            avg_alpha=0.03,
            label="Level",
            peak_hold=False,
            show_gauge=True,
        )
        self.notebook.GetPage(2).Add(self.wxgui_numbersink2_1.win)
        self.wxgui_numbersink2_0 = numbersink2.number_sink_f(
            self.notebook.GetPage(2).GetWin(),
            unit="signal present",
            minval=0,
            maxval=1,
            factor=1.0,
            decimal_places=0,
            ref_level=0,
            sample_rate=samp_rate,
            number_rate=15,
            average=False,
            avg_alpha=None,
            label="Signal Detector",
            peak_hold=False,
            show_gauge=True,
        )
        self.notebook.GetPage(2).Add(self.wxgui_numbersink2_0.win)
        self.wxgui_fftsink2_1 = fftsink2.fft_sink_c(
            self.notebook.GetPage(1).GetWin(),
            baseband_freq=freq,
            y_per_div=10,
            y_divs=10,
            ref_level=0,
            ref_scale=2.0,
            sample_rate=samp_rate,
            fft_size=fft_size,
            fft_rate=15,
            average=False,
            avg_alpha=None,
            title="Spectrum",
            peak_hold=False,
            win=window.rectangular,
        )
        self.notebook.GetPage(1).Add(self.wxgui_fftsink2_1.win)
        self.rtlsdr_source_0 = osmosdr.source(args="numchan=" + str(1) + " " + "")
        self.rtlsdr_source_0.set_sample_rate(samp_rate)
        self.rtlsdr_source_0.set_center_freq(freq, 0)
        self.rtlsdr_source_0.set_freq_corr(0, 0)
        self.rtlsdr_source_0.set_dc_offset_mode(0, 0)
        self.rtlsdr_source_0.set_iq_balance_mode(0, 0)
        self.rtlsdr_source_0.set_gain_mode(False, 0)
        self.rtlsdr_source_0.set_gain(20, 0)
        self.rtlsdr_source_0.set_if_gain(10, 0)
        self.rtlsdr_source_0.set_bb_gain(5, 0)
        self.rtlsdr_source_0.set_antenna("", 0)
        self.rtlsdr_source_0.set_bandwidth(0, 0)

        def _probe_level_probe():
            while True:
                val = self.probe_signal_level.level()
                try:
                    self.set_probe_level(val)
                except AttributeError, e:
                    pass
                time.sleep(1.0 / (10))
Beispiel #52
0
    def __init__(self):
        gr.top_block.__init__(self, "If Else")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("If Else")
        try:
             self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
             pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "if_else")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())


        ##################################################
        # Variables
        ##################################################
        self.variable_function_probe_0 = variable_function_probe_0 = 0
        self.samp_rate = samp_rate = 32000
        self.freq = freq = 1000
        self.ampl = ampl = 1

        ##################################################
        # Blocks
        ##################################################
        self.probe = blocks.probe_signal_f()
        self._freq_tool_bar = Qt.QToolBar(self)
        self._freq_tool_bar.addWidget(Qt.QLabel("freq"+": "))
        self._freq_line_edit = Qt.QLineEdit(str(self.freq))
        self._freq_tool_bar.addWidget(self._freq_line_edit)
        self._freq_line_edit.returnPressed.connect(
        	lambda: self.set_freq(int(self._freq_line_edit.text().toAscii())))
        self.top_layout.addWidget(self._freq_tool_bar)
        self._ampl_tool_bar = Qt.QToolBar(self)
        self._ampl_tool_bar.addWidget(Qt.QLabel("ampl"+": "))
        self._ampl_line_edit = Qt.QLineEdit(str(self.ampl))
        self._ampl_tool_bar.addWidget(self._ampl_line_edit)
        self._ampl_line_edit.returnPressed.connect(
        	lambda: self.set_ampl(int(self._ampl_line_edit.text().toAscii())))
        self.top_layout.addWidget(self._ampl_tool_bar)
        def _variable_function_probe_0_probe():
            while True:
                val = self.probe.level()
                try:
                    self.set_variable_function_probe_0(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _variable_function_probe_0_thread = threading.Thread(target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()
        self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
        	1024, #size
        	samp_rate, #samp_rate
        	"QT GUI Plot", #name
        	1 #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0.set_y_axis(-1, 1)
        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(False)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "blue"]
        styles = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1,
                   -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])
        
        self._qtgui_time_sink_x_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1, samp_rate,True)
        self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate, analog.GR_SIN_WAVE, freq, ampl, 0)
        self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate, analog.GR_SQR_WAVE, 0.1, 1, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_throttle_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.probe, 0))
        self.connect((self.analog_sig_source_x_1, 0), (self.qtgui_time_sink_x_0, 0))
Beispiel #53
0
    def __init__(self):
        gr.top_block.__init__(self, "Adsb Uhd")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Adsb Uhd")
        qtgui.util.check_set_qss()
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "adsb_uhd")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.thresh_mult = thresh_mult = 2
        self.samp_rate = samp_rate = 2e6
        self.low_thresh = low_thresh = 0
        self.rx_gain = rx_gain = 40
        self.low_thresh_lbl = low_thresh_lbl = low_thresh
        self.high = high = .4
        self.hi_thresh_lbl = hi_thresh_lbl = low_thresh * thresh_mult
        self.freq = freq = 1090e6
        self.filter_taps = filter_taps = firdes.low_pass(
            1, samp_rate, samp_rate / 2, 50000, firdes.WIN_FLATTOP, 6.76)
        self.decim = decim = 1
        self.center = center = 0
        self.bb_gain = bb_gain = .1e6

        ##################################################
        # Message Queues
        ##################################################
        adsb_decoder_0_msgq_out = baz_message_server_0_msgq_in = gr.msg_queue(
            2)
        adsb_decoder_0_msgq_out = blocks_message_source_0_msgq_in = gr.msg_queue(
            2)
        adsb_framer_0_msgq_out = adsb_decoder_0_msgq_in = gr.msg_queue(2)

        ##################################################
        # Blocks
        ##################################################
        self.probe_power = blocks.probe_signal_f()
        self._thresh_mult_tool_bar = Qt.QToolBar(self)
        self._thresh_mult_tool_bar.addWidget(Qt.QLabel("thresh_mult" + ": "))
        self._thresh_mult_line_edit = Qt.QLineEdit(str(self.thresh_mult))
        self._thresh_mult_tool_bar.addWidget(self._thresh_mult_line_edit)
        self._thresh_mult_line_edit.returnPressed.connect(
            lambda: self.set_thresh_mult(
                eng_notation.str_to_num(
                    str(self._thresh_mult_line_edit.text().toAscii()))))
        self.top_layout.addWidget(self._thresh_mult_tool_bar)
        self._rx_gain_tool_bar = Qt.QToolBar(self)
        self._rx_gain_tool_bar.addWidget(Qt.QLabel("rx_gain" + ": "))
        self._rx_gain_line_edit = Qt.QLineEdit(str(self.rx_gain))
        self._rx_gain_tool_bar.addWidget(self._rx_gain_line_edit)
        self._rx_gain_line_edit.returnPressed.connect(lambda: self.set_rx_gain(
            eng_notation.str_to_num(
                str(self._rx_gain_line_edit.text().toAscii()))))
        self.top_layout.addWidget(self._rx_gain_tool_bar)

        def _low_thresh_probe():
            while True:
                val = self.probe_power.level()
                try:
                    self.set_low_thresh(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))

        _low_thresh_thread = threading.Thread(target=_low_thresh_probe)
        _low_thresh_thread.daemon = True
        _low_thresh_thread.start()

        self._center_tool_bar = Qt.QToolBar(self)
        self._center_tool_bar.addWidget(Qt.QLabel("center" + ": "))
        self._center_line_edit = Qt.QLineEdit(str(self.center))
        self._center_tool_bar.addWidget(self._center_line_edit)
        self._center_line_edit.returnPressed.connect(lambda: self.set_center(
            eng_notation.str_to_num(
                str(self._center_line_edit.text().toAscii()))))
        self.top_layout.addWidget(self._center_tool_bar)
        self._bb_gain_tool_bar = Qt.QToolBar(self)
        self._bb_gain_tool_bar.addWidget(Qt.QLabel("bb_gain" + ": "))
        self._bb_gain_line_edit = Qt.QLineEdit(str(self.bb_gain))
        self._bb_gain_tool_bar.addWidget(self._bb_gain_line_edit)
        self._bb_gain_line_edit.returnPressed.connect(lambda: self.set_bb_gain(
            eng_notation.str_to_num(
                str(self._bb_gain_line_edit.text().toAscii()))))
        self.top_layout.addWidget(self._bb_gain_tool_bar)
        self.uhd_usrp_source_0 = uhd.usrp_source(
            ",".join(("", "")),
            uhd.stream_args(
                cpu_format="fc32",
                channels=range(1),
            ),
        )
        self.uhd_usrp_source_0.set_samp_rate(samp_rate)
        self.uhd_usrp_source_0.set_center_freq(
            uhd.tune_request(freq, samp_rate / 2), 0)
        self.uhd_usrp_source_0.set_gain(rx_gain, 0)
        self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
            4096,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate / decim,  #bw
            "",  #name
            1  #number of inputs
        )
        self.qtgui_waterfall_sink_x_0.set_update_time(0.01)
        self.qtgui_waterfall_sink_x_0.enable_grid(False)
        self.qtgui_waterfall_sink_x_0.enable_axis_labels(True)

        if not True:
            self.qtgui_waterfall_sink_x_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
            self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)

        labels = ['', '', '', '', '', '', '', '', '', '']
        colors = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_waterfall_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
            self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])

        self.qtgui_waterfall_sink_x_0.set_intensity_range(-130, -70)

        self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(
            self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_waterfall_sink_x_0_win)
        self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
            4096,  #size
            samp_rate,  #samp_rate
            "",  #name
            2  #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.010)
        self.qtgui_time_sink_x_0.set_y_axis(0, 1)

        self.qtgui_time_sink_x_0.set_y_label('Amplitude', "")

        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_NORM,
                                                  qtgui.TRIG_SLOPE_POS, .3,
                                                  .0001, 0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(False)
        self.qtgui_time_sink_x_0.enable_grid(False)
        self.qtgui_time_sink_x_0.enable_axis_labels(True)
        self.qtgui_time_sink_x_0.enable_control_panel(False)

        if not True:
            self.qtgui_time_sink_x_0.disable_legend()

        labels = ['pre', 'post', '', '', '', '', '', '', '', '']
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "blue"
        ]
        styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(2):
            if len(labels[i]) == 0:
                self.qtgui_time_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_win = sip.wrapinstance(
            self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
            4096,  #size
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            samp_rate / decim,  #bw
            "",  #name
            1  #number of inputs
        )
        self.qtgui_freq_sink_x_0.set_update_time(0.01)
        self.qtgui_freq_sink_x_0.set_y_axis(-140, -80)
        self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB')
        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0,
                                                  "")
        self.qtgui_freq_sink_x_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0.enable_grid(False)
        self.qtgui_freq_sink_x_0.set_fft_average(1.0)
        self.qtgui_freq_sink_x_0.enable_axis_labels(True)
        self.qtgui_freq_sink_x_0.enable_control_panel(False)

        if not True:
            self.qtgui_freq_sink_x_0.disable_legend()

        if "complex" == "float" or "complex" == "msg_float":
            self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)

        labels = ['', '', '', '', '', '', '', '', '', '']
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "dark blue"
        ]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_freq_sink_x_0_win = sip.wrapinstance(
            self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_freq_sink_x_0_win)
        self._low_thresh_lbl_tool_bar = Qt.QToolBar(self)

        if None:
            self._low_thresh_lbl_formatter = None
        else:
            self._low_thresh_lbl_formatter = lambda x: x

        self._low_thresh_lbl_tool_bar.addWidget(
            Qt.QLabel("low_thresh_lbl" + ": "))
        self._low_thresh_lbl_label = Qt.QLabel(
            str(self._low_thresh_lbl_formatter(self.low_thresh_lbl)))
        self._low_thresh_lbl_tool_bar.addWidget(self._low_thresh_lbl_label)
        self.top_layout.addWidget(self._low_thresh_lbl_tool_bar)

        self._high_tool_bar = Qt.QToolBar(self)
        self._high_tool_bar.addWidget(Qt.QLabel("high" + ": "))
        self._high_line_edit = Qt.QLineEdit(str(self.high))
        self._high_tool_bar.addWidget(self._high_line_edit)
        self._high_line_edit.returnPressed.connect(lambda: self.set_high(
            eng_notation.str_to_num(str(self._high_line_edit.text().toAscii()))
        ))
        self.top_layout.addWidget(self._high_tool_bar)
        self._hi_thresh_lbl_tool_bar = Qt.QToolBar(self)

        if None:
            self._hi_thresh_lbl_formatter = None
        else:
            self._hi_thresh_lbl_formatter = lambda x: x

        self._hi_thresh_lbl_tool_bar.addWidget(
            Qt.QLabel("hi_thresh_lbl" + ": "))
        self._hi_thresh_lbl_label = Qt.QLabel(
            str(self._hi_thresh_lbl_formatter(self.hi_thresh_lbl)))
        self._hi_thresh_lbl_tool_bar.addWidget(self._hi_thresh_lbl_label)
        self.top_layout.addWidget(self._hi_thresh_lbl_tool_bar)

        self.freq_xlating_fir_filter_xxx_0 = filter.freq_xlating_fir_filter_ccc(
            1, (filter_taps), center, samp_rate)
        self.digital_correlate_access_code_tag_bb_0 = digital.correlate_access_code_tag_bb(
            '1010000101000000', 0, 'adsb_preamble')
        self.blocks_threshold_ff_0 = blocks.threshold_ff(
            low_thresh, low_thresh * thresh_mult, 0)
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff(
            (bb_gain, ))
        self.blocks_moving_average_xx_0 = blocks.moving_average_ff(
            1000, .0001, 4000)
        self.blocks_message_source_0 = blocks.message_source(
            gr.sizeof_char * 1, blocks_message_source_0_msgq_in)
        self.blocks_float_to_uchar_0 = blocks.float_to_uchar()
        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char * 1,
                                                   '/dev/stdout', True)
        self.blocks_file_sink_0.set_unbuffered(True)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.baz_message_server_0 = message_server.message_server(
            msgq=baz_message_server_0_msgq_in, port=12345)
        self.adsb_framer_0 = adsb.framer(tx_msgq=adsb_framer_0_msgq_out)
        self.adsb_decoder_0 = adsb.decoder(rx_msgq=adsb_decoder_0_msgq_in,
                                           tx_msgq=adsb_decoder_0_msgq_out,
                                           output_type="csv",
                                           check_parity=True)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_complex_to_mag_squared_0, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.blocks_float_to_uchar_0, 0),
                     (self.digital_correlate_access_code_tag_bb_0, 0))
        self.connect((self.blocks_message_source_0, 0),
                     (self.blocks_file_sink_0, 0))
        self.connect((self.blocks_moving_average_xx_0, 0),
                     (self.probe_power, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_moving_average_xx_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_threshold_ff_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.qtgui_time_sink_x_0, 0))
        self.connect((self.blocks_threshold_ff_0, 0),
                     (self.blocks_float_to_uchar_0, 0))
        self.connect((self.blocks_threshold_ff_0, 0),
                     (self.qtgui_time_sink_x_0, 1))
        self.connect((self.digital_correlate_access_code_tag_bb_0, 0),
                     (self.adsb_framer_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0),
                     (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0),
                     (self.qtgui_freq_sink_x_0, 0))
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0),
                     (self.qtgui_waterfall_sink_x_0, 0))
        self.connect((self.uhd_usrp_source_0, 0),
                     (self.freq_xlating_fir_filter_xxx_0, 0))
Beispiel #54
0
    def __init__(self, options):
        gr.top_block.__init__(self,
                              "Superposition coding with MPSK modulation")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Superposition coding with MPSK modulation")
        qtgui.util.check_set_qss()
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "SIC_MPSK")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.snr_db = snr_db = options.snr
        self.const_type = const_type = 1
        self.variable_qtgui_label_0 = variable_qtgui_label_0 = {
            0: 'BPSK',
            1: 'QPSK',
            2: '8-PSK'
        }[const_type] + " - Change const_type for different constellation types!"
        self.noisevar = noisevar = 10**(-snr_db / 10)
        self.const = const = (digital.constellation_bpsk(),
                              digital.constellation_qpsk(),
                              digital.constellation_8psk())
        self.block = block = 1000
        self.alpha = alpha = options.alpha
        self.R = R = 100e3

        ##################################################
        # Blocks
        ##################################################
        self._alpha_range = Range(0, 1, .01, options.alpha, 200)
        self._alpha_win = RangeWidget(self._alpha_range, self.set_alpha,
                                      'Alpha (P1/P)', "counter_slider", float)
        self.top_layout.addWidget(self._alpha_win)
        self._variable_qtgui_label_0_tool_bar = Qt.QToolBar(self)

        if None:
            self._variable_qtgui_label_0_formatter = None
        else:
            self._variable_qtgui_label_0_formatter = lambda x: x

        self._variable_qtgui_label_0_tool_bar.addWidget(
            Qt.QLabel('Constellation Type' + ": "))
        self._variable_qtgui_label_0_label = Qt.QLabel(
            str(
                self._variable_qtgui_label_0_formatter(
                    self.variable_qtgui_label_0)))
        self._variable_qtgui_label_0_tool_bar.addWidget(
            self._variable_qtgui_label_0_label)
        self.top_layout.addWidget(self._variable_qtgui_label_0_tool_bar)

        self._snr_db_range = Range(0, 20, 1, options.snr, 200)
        self._snr_db_win = RangeWidget(self._snr_db_range, self.set_snr_db,
                                       'P/sigma^2 (dB)', "counter_slider",
                                       float)
        self.top_layout.addWidget(self._snr_db_win)

        #Add variable to save BER 1 after sic
        #self.ber_sink_1_after_sic = blocks.vector_sink_f()
        self.ber_sink_1_after_sic = blocks.probe_signal_f()

        labels = ['BER', '', '', '', '', '', '', '', '', '']
        units = ['', '', '', '', '', '', '', '', '', '']
        colors = [("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

        self.ber_sink_2_after_sic = blocks.probe_signal_f()

        labels = ['BER', '', '', '', '', '', '', '', '', '']
        units = ['', '', '', '', '', '', '', '', '', '']
        colors = [("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

        self.ber_sink_2_before = blocks.probe_signal_f()

        labels = ['BER', '', '', '', '', '', '', '', '', '']
        units = ['', '', '', '', '', '', '', '', '', '']
        colors = [("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

        self.ber_sink_1_before = blocks.probe_signal_f()

        labels = ['BER', '', '', '', '', '', '', '', '', '']
        units = ['', '', '', '', '', '', '', '', '', '']
        colors = [("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black"), ("black", "black"), ("black", "black"),
                  ("black", "black")]
        factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

        self.qtgui_const_sink_x_0_0 = qtgui.const_sink_c(
            1024,  #size
            "Constellation",  #name
            1  #number of inputs
        )
        self.qtgui_const_sink_x_0_0.set_update_time(0.10)
        self.qtgui_const_sink_x_0_0.set_y_axis(-2, 2)
        self.qtgui_const_sink_x_0_0.set_x_axis(-2, 2)
        self.qtgui_const_sink_x_0_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                                     qtgui.TRIG_SLOPE_POS, 0.0,
                                                     0, "")
        self.qtgui_const_sink_x_0_0.enable_autoscale(False)
        self.qtgui_const_sink_x_0_0.enable_grid(False)
        self.qtgui_const_sink_x_0_0.enable_axis_labels(True)

        if not True:
            self.qtgui_const_sink_x_0_0.disable_legend()

        labels = [
            "Constellation: " + str(const[const_type].arity()) + "-PSK", '',
            '', '', '', '', '', '', '', ''
        ]
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "red", "red", "red", "red", "red", "red", "red",
            "red"
        ]
        styles = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        markers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        alphas = [0.6, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_const_sink_x_0_0.set_line_label(
                    i, "Data {0}".format(i))
            else:
                self.qtgui_const_sink_x_0_0.set_line_label(i, labels[i])
            self.qtgui_const_sink_x_0_0.set_line_width(i, widths[i])
            self.qtgui_const_sink_x_0_0.set_line_color(i, colors[i])
            self.qtgui_const_sink_x_0_0.set_line_style(i, styles[i])
            self.qtgui_const_sink_x_0_0.set_line_marker(i, markers[i])
            self.qtgui_const_sink_x_0_0.set_line_alpha(i, alphas[i])

        self._qtgui_const_sink_x_0_0_win = sip.wrapinstance(
            self.qtgui_const_sink_x_0_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_const_sink_x_0_0_win)
        self.digital_constellation_decoder_cb_0_0_0_0 = digital.constellation_decoder_cb(
            const[const_type].base())
        self.digital_constellation_decoder_cb_0_0_0 = digital.constellation_decoder_cb(
            const[const_type].base())
        self.digital_constellation_decoder_cb_0_0 = digital.constellation_decoder_cb(
            const[const_type].base())
        self.digital_constellation_decoder_cb_0 = digital.constellation_decoder_cb(
            const[const_type].base())
        self.digital_chunks_to_symbols_xx_2 = digital.chunks_to_symbols_bc(
            (const[const_type].points()), 1)
        self.digital_chunks_to_symbols_xx_1_0 = digital.chunks_to_symbols_bc(
            (const[const_type].points()), 1)
        self.digital_chunks_to_symbols_xx_1 = digital.chunks_to_symbols_bc(
            (const[const_type].points()), 1)
        self.digital_chunks_to_symbols_xx = digital.chunks_to_symbols_bc(
            (const[const_type].points()), 1)
        self.blocks_throttle_0_1 = blocks.throttle(gr.sizeof_char * 1, R, True)
        self.blocks_sub_xx_2_0 = blocks.sub_cc(1)
        self.blocks_sub_xx_2 = blocks.sub_cc(1)
        self.blocks_multiply_const_vxx_2_0 = blocks.multiply_const_vcc(
            ((1 - alpha)**0.5, ))
        self.blocks_multiply_const_vxx_2 = blocks.multiply_const_vcc(
            (alpha**0.5, ))
        self.blocks_multiply_const_vxx_1 = blocks.multiply_const_vcc(
            ((1 - alpha)**0.5, ))
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vcc(
            (alpha**0.5, ))
        self.blocks_add_xx_0 = blocks.add_vcc(1)

        self.blks2_error_rate_0_0_0_0 = grc_blks2.error_rate(
            type='BER',
            win_size=block * 100,
            bits_per_symbol=2,
        )
        self.blks2_error_rate_0_0_0 = grc_blks2.error_rate(
            type='BER',
            win_size=block * 100,
            bits_per_symbol=2,
        )
        self.blks2_error_rate_0_0 = grc_blks2.error_rate(
            type='BER',
            win_size=block * 100,
            bits_per_symbol=2,
        )
        self.blks2_error_rate_0 = grc_blks2.error_rate(
            type='BER',
            win_size=block * 100,
            bits_per_symbol=2,
        )
        self.analog_random_source_x_1 = blocks.vector_source_b(
            map(int, numpy.random.randint(0, const[const_type].arity(),
                                          block)), True)
        self.analog_random_source_x_0 = blocks.vector_source_b(
            map(int, numpy.random.randint(0, const[const_type].arity(),
                                          block)), True)
        self.analog_noise_source_x_0 = analog.noise_source_c(
            analog.GR_GAUSSIAN, noisevar, -42)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_noise_source_x_0, 0),
                     (self.blocks_add_xx_0, 2))
        self.connect((self.analog_random_source_x_0, 0),
                     (self.blks2_error_rate_0, 0))
        self.connect((self.analog_random_source_x_0, 0),
                     (self.blks2_error_rate_0_0_0_0, 0))
        self.connect((self.analog_random_source_x_0, 0),
                     (self.blocks_throttle_0_1, 0))
        self.connect((self.analog_random_source_x_1, 0),
                     (self.blks2_error_rate_0_0, 0))
        self.connect((self.analog_random_source_x_1, 0),
                     (self.blks2_error_rate_0_0_0, 0))
        self.connect((self.analog_random_source_x_1, 0),
                     (self.digital_chunks_to_symbols_xx_2, 0))
        self.connect((self.blks2_error_rate_0, 0), (self.ber_sink_1_before, 0))
        self.connect((self.blks2_error_rate_0_0, 0),
                     (self.ber_sink_2_before, 0))
        self.connect((self.blks2_error_rate_0_0_0, 0),
                     (self.ber_sink_2_after_sic, 0))
        self.connect((self.blks2_error_rate_0_0_0_0, 0),
                     (self.ber_sink_1_after_sic, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.blocks_sub_xx_2, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.blocks_sub_xx_2_0, 0))
        self.connect((self.blocks_add_xx_0, 0),
                     (self.digital_constellation_decoder_cb_0, 0))
        self.connect((self.blocks_add_xx_0, 0),
                     (self.digital_constellation_decoder_cb_0_0, 0))
        self.connect((self.blocks_add_xx_0, 0),
                     (self.qtgui_const_sink_x_0_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_multiply_const_vxx_1, 0),
                     (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_multiply_const_vxx_2, 0),
                     (self.blocks_sub_xx_2, 1))
        self.connect((self.blocks_multiply_const_vxx_2_0, 0),
                     (self.blocks_sub_xx_2_0, 1))
        self.connect((self.blocks_sub_xx_2, 0),
                     (self.digital_constellation_decoder_cb_0_0_0, 0))
        self.connect((self.blocks_sub_xx_2_0, 0),
                     (self.digital_constellation_decoder_cb_0_0_0_0, 0))
        self.connect((self.blocks_throttle_0_1, 0),
                     (self.digital_chunks_to_symbols_xx, 0))
        self.connect((self.digital_chunks_to_symbols_xx, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.digital_chunks_to_symbols_xx_1, 0),
                     (self.blocks_multiply_const_vxx_2, 0))
        self.connect((self.digital_chunks_to_symbols_xx_1_0, 0),
                     (self.blocks_multiply_const_vxx_2_0, 0))
        self.connect((self.digital_chunks_to_symbols_xx_2, 0),
                     (self.blocks_multiply_const_vxx_1, 0))
        self.connect((self.digital_constellation_decoder_cb_0, 0),
                     (self.blks2_error_rate_0, 1))
        self.connect((self.digital_constellation_decoder_cb_0, 0),
                     (self.digital_chunks_to_symbols_xx_1, 0))
        self.connect((self.digital_constellation_decoder_cb_0_0, 0),
                     (self.blks2_error_rate_0_0, 1))
        self.connect((self.digital_constellation_decoder_cb_0_0, 0),
                     (self.digital_chunks_to_symbols_xx_1_0, 0))
        self.connect((self.digital_constellation_decoder_cb_0_0_0, 0),
                     (self.blks2_error_rate_0_0_0, 1))
        self.connect((self.digital_constellation_decoder_cb_0_0_0_0, 0),
                     (self.blks2_error_rate_0_0_0_0, 1))
Beispiel #55
0
    def __init__(self):
        gr.top_block.__init__(self, "bladeRF_transceiver")

        ##################################################
        # Variables
        ##################################################
        self.symbole_rate = symbole_rate = 10e3
        self.samp_rate = samp_rate = 1e6
        self.rat_interop = rat_interop = 8
        self.rat_decim = rat_decim = 5
        self.firdes_transition_width = firdes_transition_width = 15000
        self.firdes_decim = firdes_decim = 4
        self.firdes_cuttoff = firdes_cuttoff = 21e3
        self.tx_valve_value = tx_valve_value = False
        self.tx_rf_gain = tx_rf_gain = 10
        self.tx_bb_gain = tx_bb_gain = -20
        self.samp_per_sym_source = samp_per_sym_source = (
            (samp_rate / 2 / firdes_decim) * rat_interop /
            rat_decim) / symbole_rate
        self.samp_per_sym = samp_per_sym = int(samp_rate / symbole_rate)
        self.rx_valve_value = rx_valve_value = False
        self.rx_rf_gain = rx_rf_gain = 3
        self.rx_bb_gain = rx_bb_gain = 20
        self.preamble = preamble = '0101010101010101'
        self.msg_source_msgq_in = msg_source_msgq_in = gr.msg_queue(2)
        self.msg_sink_msgq_out = msg_sink_msgq_out = gr.msg_queue(2)
        self.frequency_tx = frequency_tx = 450e6
        self.frequency_shift = frequency_shift = 520000
        self.frequency_rx = frequency_rx = 450.0e6
        self.firdes_filter = firdes_filter = firdes.low_pass(
            1, samp_rate / 2, firdes_cuttoff, firdes_transition_width)
        self.bit_per_sym = bit_per_sym = 1
        self.bandwith = bandwith = 6e6
        self.access_code = access_code = '11010011100100011101001110010001'

        ##################################################
        # Blocks
        ##################################################
        self.xlating_fir_filter_1 = filter.freq_xlating_fir_filter_ccc(
            2, (1, ), frequency_shift, samp_rate)
        self.xlating_fir_filter_0 = filter.freq_xlating_fir_filter_ccc(
            firdes_decim, (firdes_filter), 0, samp_rate / 2)
        self.tx_valve = grc_blks2.valve(item_size=gr.sizeof_gr_complex * 1,
                                        open=bool(tx_valve_value))
        self.throttle = blocks.throttle(gr.sizeof_gr_complex * 1,
                                        samp_rate / 2, True)
        self.single_pole_iir_filter_xx_0 = filter.single_pole_iir_filter_ff(
            0.05, 1)
        self.rx_valve = grc_blks2.valve(item_size=gr.sizeof_gr_complex * 1,
                                        open=bool(rx_valve_value))
        self.rational_resampler = filter.rational_resampler_ccc(
            interpolation=rat_interop,
            decimation=rat_decim,
            taps=None,
            fractional_bw=None,
        )
        self.quadrature_demod = analog.quadrature_demod_cf(2)
        self.probe_signal_2 = blocks.probe_signal_f()
        self.probe_signal_1 = blocks.probe_signal_f()
        self.osmosdr_source = osmosdr.source(args="numchan=" + str(1) + " " +
                                             "bladerf=0")
        self.osmosdr_source.set_sample_rate(samp_rate)
        self.osmosdr_source.set_center_freq(frequency_rx - frequency_shift, 0)
        self.osmosdr_source.set_freq_corr(0, 0)
        self.osmosdr_source.set_dc_offset_mode(0, 0)
        self.osmosdr_source.set_iq_balance_mode(2, 0)
        self.osmosdr_source.set_gain_mode(False, 0)
        self.osmosdr_source.set_gain(rx_rf_gain, 0)
        self.osmosdr_source.set_if_gain(0, 0)
        self.osmosdr_source.set_bb_gain(rx_bb_gain, 0)
        self.osmosdr_source.set_antenna("", 0)
        self.osmosdr_source.set_bandwidth(bandwith, 0)

        self.osmosdr_sink = osmosdr.sink(args="numchan=" + str(1) + " " +
                                         "bladerf=0")
        self.osmosdr_sink.set_sample_rate(samp_rate)
        self.osmosdr_sink.set_center_freq(frequency_tx, 0)
        self.osmosdr_sink.set_freq_corr(0, 0)
        self.osmosdr_sink.set_gain(tx_rf_gain, 0)
        self.osmosdr_sink.set_if_gain(0, 0)
        self.osmosdr_sink.set_bb_gain(tx_bb_gain, 0)
        self.osmosdr_sink.set_antenna("", 0)
        self.osmosdr_sink.set_bandwidth(bandwith, 0)

        self.nlog10_ff = blocks.nlog10_ff(10, 1, 0)
        self.gmsk_mod = digital.gmsk_mod(
            samples_per_symbol=int(samp_per_sym),
            bt=0.5,
            verbose=False,
            log=False,
        )
        self.correlate_access_code = digital.correlate_access_code_bb(
            access_code, 4)
        self.clock_recovery = digital.clock_recovery_mm_ff(
            samp_per_sym_source * (1 + 0.0), 0.25 * 0.175 * 0.175, 0.5, 0.175,
            0.005)
        self.cc1111_packet_encoder = cc1111.cc1111_packet_mod_base(
            cc1111.cc1111_packet_encoder(samples_per_symbol=samp_per_sym,
                                         bits_per_symbol=bit_per_sym,
                                         preamble=preamble,
                                         access_code=access_code,
                                         pad_for_usrp=True,
                                         do_whitening=True,
                                         add_crc=True),
            source_queue=msg_source_msgq_in)
        self.cc1111_packet_decoder = cc1111.cc1111_packet_decoder(
            msg_sink_msgq_out, True, True, False, True)
        self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_char * 1)
        self.blocks_keep_one_in_n = blocks.keep_one_in_n(
            gr.sizeof_float * 1, int(samp_rate / 30))
        self.blocks_delay_0 = blocks.delay(gr.sizeof_gr_complex * 1, 1000)
        self.blocks_complex_to_mag_squared_0_0 = blocks.complex_to_mag_squared(
            1)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.binary_slicer = digital.binary_slicer_fb()
        self.avg_mag_sqrd = analog.probe_avg_mag_sqrd_c(0, 1)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.binary_slicer, 0), (self.correlate_access_code, 0))
        self.connect((self.blocks_complex_to_mag_squared_0, 0),
                     (self.probe_signal_2, 0))
        self.connect((self.blocks_complex_to_mag_squared_0_0, 0),
                     (self.single_pole_iir_filter_xx_0, 0))
        self.connect((self.blocks_delay_0, 0), (self.osmosdr_sink, 0))
        self.connect((self.blocks_keep_one_in_n, 0), (self.nlog10_ff, 0))
        self.connect((self.cc1111_packet_decoder, 0),
                     (self.blocks_null_sink_0, 0))
        self.connect((self.cc1111_packet_encoder, 0), (self.gmsk_mod, 0))
        self.connect((self.clock_recovery, 0), (self.binary_slicer, 0))
        self.connect((self.correlate_access_code, 0),
                     (self.cc1111_packet_decoder, 0))
        self.connect((self.gmsk_mod, 0), (self.tx_valve, 0))
        self.connect((self.nlog10_ff, 0), (self.probe_signal_1, 0))
        self.connect((self.osmosdr_source, 0), (self.rx_valve, 0))
        self.connect((self.quadrature_demod, 0), (self.clock_recovery, 0))
        self.connect((self.rational_resampler, 0), (self.quadrature_demod, 0))
        self.connect((self.rx_valve, 0), (self.avg_mag_sqrd, 0))
        self.connect((self.rx_valve, 0),
                     (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.rx_valve, 0),
                     (self.blocks_complex_to_mag_squared_0_0, 0))
        self.connect((self.rx_valve, 0), (self.xlating_fir_filter_1, 0))
        self.connect((self.single_pole_iir_filter_xx_0, 0),
                     (self.blocks_keep_one_in_n, 0))
        self.connect((self.throttle, 0), (self.xlating_fir_filter_0, 0))
        self.connect((self.tx_valve, 0), (self.blocks_delay_0, 0))
        self.connect((self.xlating_fir_filter_0, 0),
                     (self.rational_resampler, 0))
        self.connect((self.xlating_fir_filter_1, 0), (self.throttle, 0))
 def __init__(self):
     gr.top_block.__init__(self, "Bpsk Receiverpoly")
     
     ##################################################
     # Variables
     ##################################################
     self.sps = sps = 8
     self.probe_var = probe_var = 0
     self.nfilts = nfilts = 32
     self.eb = eb = 0.35
     self.SNR = SNR = 500
     self.transistion = transistion = 100
     self.timing_loop_bw = timing_loop_bw = 6.28/100.0
     self.sideband_rx = sideband_rx = 500
     self.sideband = sideband = 500
     self.samp_rate = samp_rate = 48000
     self.rrc_taps = rrc_taps = firdes.root_raised_cosine(nfilts/16, nfilts/16, 1.0/float(sps), 0.35, 11*sps*nfilts/16)
     self.qpsk = qpsk = digital.constellation_rect(([0.707+0.707j, -0.707+0.707j, -0.707-0.707j, 0.707-0.707j]), ([0, 1, 2, 3]), 4, 2, 2, 1, 1).base()
     self.probe_var_n = probe_var_n = 0
     self.preamble = preamble = [1,-1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1]
     self.phase_bw = phase_bw = 6.28/100.0
     self.noise_amp = noise_amp = probe_var/(10**(SNR/20))
     self.matched_filter = matched_filter = firdes.root_raised_cosine(nfilts, nfilts, 1, eb, int(11*sps*nfilts))
     self.interpolation = interpolation = 2000
     self.eq_gain = eq_gain = 0.01
     self.delay = delay = 0
     self.decimation = decimation = 1
     self.constel = constel = digital.constellation_calcdist(([1,- 1]), ([0,1]), 2, 1).base()
     self.carrier = carrier = 10000
     self.arity = arity = 2
     
     ##################################################
     # Blocks
     ##################################################
     self.probe_rms = blocks.probe_signal_f()
     self.probe_avg_n = blocks.probe_signal_f()
     self.rational_resampler_xxx_0_0 = filter.rational_resampler_ccc(
                                                                     interpolation=decimation,
                                                                     decimation=interpolation,
                                                                     taps=(rrc_taps),
                                                                     fractional_bw=None,
                                                                     )
     def _probe_var_n_probe():
           while True:
                 val = self.probe_avg_n.level()
                 try:
                     self.set_probe_var_n(val)
                 except AttributeError:
                     pass
                 time.sleep(1.0 / (10))
     _probe_var_n_thread = threading.Thread(target=_probe_var_n_probe)
     _probe_var_n_thread.daemon = True
     _probe_var_n_thread.start()
     def _probe_var_probe():
         while True:
             val = self.probe_rms.level()
             try:
                 self.set_probe_var(val)
             except AttributeError:
                 pass
             time.sleep(1.0 / (10))
     _probe_var_thread = threading.Thread(target=_probe_var_probe)
     _probe_var_thread.daemon = True
     _probe_var_thread.start()
     self.freq_xlating_fir_filter_xxx_0_0 = filter.freq_xlating_fir_filter_ccc(1, (filter.firdes.low_pass(1, samp_rate*10, sideband_rx,1000)), carrier, samp_rate)
     self.digital_pfb_clock_sync_xxx_0 = digital.pfb_clock_sync_ccf(sps, timing_loop_bw, (rrc_taps), nfilts, nfilts/2, 1.5, 1)
     self.digital_diff_decoder_bb_0 = digital.diff_decoder_bb(2)
     self.digital_constellation_decoder_cb_0 = digital.constellation_decoder_cb(constel)
     
     script, SNRinput, inputwav, outputBinary, delay= argv
     
     self.blocks_wavfile_source_0 = blocks.wavfile_source(inputwav, False)
     self.blocks_throttle_1_0_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True)
     self.blocks_rms_xx_1 = blocks.rms_cf(0.01)
     self.blocks_rms_xx_0 = blocks.rms_cf(0.01)
     self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
     self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1, outputBinary, False)
     self.blocks_file_sink_0.set_unbuffered(False)
     self.blocks_delay_1 = blocks.delay(gr.sizeof_char*1, int(delay))
     self.blocks_add_xx_0 = blocks.add_vcc(1)
     self.analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, noise_amp, 0)
     
     ##################################################
     # Connections
     ##################################################
     self.connect((self.analog_noise_source_x_0, 0), (self.blocks_add_xx_0, 1))
     self.connect((self.analog_noise_source_x_0, 0), (self.blocks_rms_xx_1, 0))
     self.connect((self.blocks_add_xx_0, 0), (self.digital_pfb_clock_sync_xxx_0, 0))
     self.connect((self.blocks_delay_1, 0), (self.blocks_file_sink_0, 0))
     self.connect((self.blocks_float_to_complex_0, 0), (self.freq_xlating_fir_filter_xxx_0_0, 0))
     self.connect((self.blocks_rms_xx_0, 0), (self.probe_rms, 0))
     self.connect((self.blocks_rms_xx_1, 0), (self.probe_avg_n, 0))
     self.connect((self.blocks_throttle_1_0_0, 0), (self.blocks_add_xx_0, 0))
     self.connect((self.blocks_throttle_1_0_0, 0), (self.blocks_rms_xx_0, 0))
     self.connect((self.blocks_wavfile_source_0, 0), (self.blocks_float_to_complex_0, 0))
     self.connect((self.digital_constellation_decoder_cb_0, 0), (self.digital_diff_decoder_bb_0, 0))
     self.connect((self.digital_diff_decoder_bb_0, 0), (self.blocks_delay_1, 0))
     self.connect((self.digital_pfb_clock_sync_xxx_0, 0), (self.digital_constellation_decoder_cb_0, 0))
     self.connect((self.freq_xlating_fir_filter_xxx_0_0, 0), (self.rational_resampler_xxx_0_0, 0))
     self.connect((self.rational_resampler_xxx_0_0, 0), (self.blocks_throttle_1_0_0, 0))
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="DVBT Scanner")

        ##################################################
        # Variables
        ##################################################
        self.threshold = threshold = -60
        self.signal_level = signal_level = 0
        self.samp_rate = samp_rate = 2048000
        self.freq = freq = 525200000
        self.fft_size = fft_size = 1024
        self.detected = detected = 0

        ##################################################
        # Blocks
        ##################################################
        _threshold_sizer = wx.BoxSizer(wx.VERTICAL)
        self._threshold_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_threshold_sizer,
        	value=self.threshold,
        	callback=self.set_threshold,
        	label="Threshold",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._threshold_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_threshold_sizer,
        	value=self.threshold,
        	callback=self.set_threshold,
        	minimum=-100,
        	maximum=0,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_threshold_sizer, 2, 0, 1, 1)
        self.probe_signal_lvl = blocks.probe_signal_f()
        self.notebook = self.notebook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Spektrum")
        self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Output")
        self.GridAdd(self.notebook, 0, 0, 1, 1)
        _freq_sizer = wx.BoxSizer(wx.VERTICAL)
        self._freq_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_freq_sizer,
        	value=self.freq,
        	callback=self.set_freq,
        	label="Frequency",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._freq_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_freq_sizer,
        	value=self.freq,
        	callback=self.set_freq,
        	minimum=478000000,
        	maximum=862000000,
        	num_steps=100,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_freq_sizer, 1, 0, 1, 1)
        self.wxgui_numbersink2_1 = numbersink2.number_sink_f(
        	self.notebook.GetPage(1).GetWin(),
        	unit="Signal present",
        	minval=0,
        	maxval=1,
        	factor=1.0,
        	decimal_places=0,
        	ref_level=0,
        	sample_rate=samp_rate,
        	number_rate=15,
        	average=False,
        	avg_alpha=None,
        	label="Signal Detection",
        	peak_hold=False,
        	show_gauge=True,
        )
        self.notebook.GetPage(1).Add(self.wxgui_numbersink2_1.win)
        self.wxgui_numbersink2_0 = numbersink2.number_sink_f(
        	self.notebook.GetPage(1).GetWin(),
        	unit="dB",
        	minval=-120,
        	maxval=0,
        	factor=1.0,
        	decimal_places=1,
        	ref_level=0,
        	sample_rate=samp_rate,
        	number_rate=15,
        	average=False,
        	avg_alpha=0.03,
        	label="Level",
        	peak_hold=False,
        	show_gauge=True,
        )
        self.notebook.GetPage(1).Add(self.wxgui_numbersink2_0.win)
        self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
        	self.notebook.GetPage(0).GetWin(),
        	baseband_freq=freq,
        	y_per_div=10,
        	y_divs=10,
        	ref_level=0,
        	ref_scale=2.0,
        	sample_rate=samp_rate,
        	fft_size=fft_size,
        	fft_rate=15,
        	average=True,
        	avg_alpha=0.03,
        	title="FFT Plot",
        	peak_hold=False,
        	win=window.flattop,
        )
        self.notebook.GetPage(0).Add(self.wxgui_fftsink2_0.win)
        def _signal_level_probe():
            while True:
                val = self.probe_signal_lvl.level()
                try:
                    self.set_signal_level(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (5))
        _signal_level_thread = threading.Thread(target=_signal_level_probe)
        _signal_level_thread.daemon = True
        _signal_level_thread.start()
        self.rtlsdr_source_0 = osmosdr.source( args="numchan=" + str(1) + " " + "hackrf=0" )
        self.rtlsdr_source_0.set_sample_rate(samp_rate)
        self.rtlsdr_source_0.set_center_freq(freq, 0)
        self.rtlsdr_source_0.set_freq_corr(0, 0)
        self.rtlsdr_source_0.set_dc_offset_mode(0, 0)
        self.rtlsdr_source_0.set_iq_balance_mode(0, 0)
        self.rtlsdr_source_0.set_gain_mode(False, 0)
        self.rtlsdr_source_0.set_gain(14, 0)
        self.rtlsdr_source_0.set_if_gain(24, 0)
        self.rtlsdr_source_0.set_bb_gain(12, 0)
        self.rtlsdr_source_0.set_antenna("", 0)
        self.rtlsdr_source_0.set_bandwidth(0, 0)
          
        self.probe_detected = blocks.probe_signal_f()
        self.fft_vxx_0 = fft.fft_vcc(fft_size, True, (window.rectangular(fft_size)), True, 1)
        def _detected_probe():
            while True:
                val = self.probe_detected.level()
                try:
                    self.set_detected(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (5))
        _detected_thread = threading.Thread(target=_detected_probe)
        _detected_thread.daemon = True
        _detected_thread.start()
        self.blocks_vector_to_stream_0 = blocks.vector_to_stream(gr.sizeof_float*1, fft_size)
        self.blocks_threshold_ff_0 = blocks.threshold_ff(threshold, threshold, threshold)
        self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, fft_size)
        self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, 1, 0)
        self.blocks_moving_average_xx_0 = blocks.moving_average_ff(1000, 0.001, 4000)
        self.blocks_divide_xx_0 = blocks.divide_ff(1)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(fft_size)
        self.analog_const_source_x_0 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 1048580)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_const_source_x_0, 0), (self.blocks_divide_xx_0, 1))    
        self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.blocks_vector_to_stream_0, 0))    
        self.connect((self.blocks_divide_xx_0, 0), (self.blocks_nlog10_ff_0, 0))    
        self.connect((self.blocks_moving_average_xx_0, 0), (self.blocks_threshold_ff_0, 0))    
        self.connect((self.blocks_moving_average_xx_0, 0), (self.probe_signal_lvl, 0))    
        self.connect((self.blocks_moving_average_xx_0, 0), (self.wxgui_numbersink2_0, 0))    
        self.connect((self.blocks_nlog10_ff_0, 0), (self.blocks_moving_average_xx_0, 0))    
        self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0))    
        self.connect((self.blocks_threshold_ff_0, 0), (self.probe_detected, 0))    
        self.connect((self.blocks_threshold_ff_0, 0), (self.wxgui_numbersink2_1, 0))    
        self.connect((self.blocks_vector_to_stream_0, 0), (self.blocks_divide_xx_0, 0))    
        self.connect((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_0, 0))    
        self.connect((self.rtlsdr_source_0, 0), (self.blocks_stream_to_vector_0, 0))    
        self.connect((self.rtlsdr_source_0, 0), (self.wxgui_fftsink2_0, 0))    
Beispiel #58
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="cdma_txrx")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.N0est = N0est = 1.0
        self.Esest = Esest = 1e-1
        self.EsN0dB_est = EsN0dB_est = 10*numpy.log10( cp.epsilon+ abs(Esest)/ (abs(N0est)+cp.epsilon) ) 
        self.symbol_rate = symbol_rate = 100e3
        self.DataEsN0dBthreshold = DataEsN0dBthreshold = 10
        self.DataEsN0dB_est = DataEsN0dB_est = EsN0dB_est + 10*numpy.log10( 1.0-cp.training_percent/100.0 ) 
        self.samp_rate = samp_rate = symbol_rate*cp.chips_per_symbol
        self.onoff_manual = onoff_manual = 1
        self.onoff_auto = onoff_auto = 0 if DataEsN0dB_est>DataEsN0dBthreshold else 1
        self.manual = manual = 1
        self.onoff = onoff = onoff_auto if manual==0 else onoff_manual
        self.freq_acq_est = freq_acq_est = 0
        self.df = df = cp.df*samp_rate
        self.TrainingEsN0dB_est = TrainingEsN0dB_est = EsN0dB_est + 10*numpy.log10( cp.training_percent/100.0 ) 
        self.EsN0dB = EsN0dB = 20
        self.Es = Es = 1
        self.variable_static_text = variable_static_text = 'Acquisition' if onoff==1 else 'Tracking'
        self.n_filt = n_filt = cp.n_filt
        self.freq_est_acq = freq_est_acq = freq_acq_est
        self.fmaxt = fmaxt = cp.freqs[-1]*samp_rate
        self.drift = drift = 0
        self.dft = dft = df
        self.df_Hz = df_Hz = 0
        self.delay = delay = 0
        self.acq_threshold_dB = acq_threshold_dB = -8.5
        self.TrainingEsN0dB = TrainingEsN0dB = TrainingEsN0dB_est
        self.N0 = N0 = 10**(-EsN0dB/10) * Es
        self.DataEsN0dB_estimated = DataEsN0dB_estimated = DataEsN0dB_est

        ##################################################
        # Blocks
        ##################################################
        _drift_sizer = wx.BoxSizer(wx.VERTICAL)
        self._drift_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_drift_sizer,
        	value=self.drift,
        	callback=self.set_drift,
        	label="drift  (ppm)",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._drift_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_drift_sizer,
        	value=self.drift,
        	callback=self.set_drift,
        	minimum=0,
        	maximum=2,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_drift_sizer, 3, 0, 1, 1)
        _df_Hz_sizer = wx.BoxSizer(wx.VERTICAL)
        self._df_Hz_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_df_Hz_sizer,
        	value=self.df_Hz,
        	callback=self.set_df_Hz,
        	label="df_Hz",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._df_Hz_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_df_Hz_sizer,
        	value=self.df_Hz,
        	callback=self.set_df_Hz,
        	minimum=(cp.freqs[0]*samp_rate)-1e-6,
        	maximum=cp.freqs[-1]*samp_rate,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_df_Hz_sizer, 1, 0, 1, 1)
        _delay_sizer = wx.BoxSizer(wx.VERTICAL)
        self._delay_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_delay_sizer,
        	value=self.delay,
        	callback=self.set_delay,
        	label="delay",
        	converter=forms.int_converter(),
        	proportion=0,
        )
        self._delay_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_delay_sizer,
        	value=self.delay,
        	callback=self.set_delay,
        	minimum=0,
        	maximum=100-1,
        	num_steps=100,
        	style=wx.SL_HORIZONTAL,
        	cast=int,
        	proportion=1,
        )
        self.GridAdd(_delay_sizer, 2, 0, 1, 1)
        self.blocks_probe_signal_n0 = blocks.probe_signal_f()
        self.blocks_probe_signal_amp = blocks.probe_signal_f()
        self.blocks_probe_freq = blocks.probe_signal_f()
        _acq_threshold_dB_sizer = wx.BoxSizer(wx.VERTICAL)
        self._acq_threshold_dB_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_acq_threshold_dB_sizer,
        	value=self.acq_threshold_dB,
        	callback=self.set_acq_threshold_dB,
        	label="acq_threshold_dB",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._acq_threshold_dB_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_acq_threshold_dB_sizer,
        	value=self.acq_threshold_dB,
        	callback=self.set_acq_threshold_dB,
        	minimum=-30,
        	maximum=20,
        	num_steps=1000,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_acq_threshold_dB_sizer, 7, 0, 1, 1)
        self._variable_static_text_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.variable_static_text,
        	callback=self.set_variable_static_text,
        	label="Ack/Tra Status",
        	converter=forms.str_converter(),
        )
        self.GridAdd(self._variable_static_text_static_text, 4, 0, 1, 1)
        self._onoff_manual_chooser = forms.button(
        	parent=self.GetWin(),
        	value=self.onoff_manual,
        	callback=self.set_onoff_manual,
        	label="Manual Acq/Tra",
        	choices=[0,1],
        	labels=['Tracking','Acquisition'],
        )
        self.GridAdd(self._onoff_manual_chooser, 5, 0, 1, 1)
        self._n_filt_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.n_filt,
        	callback=self.set_n_filt,
        	label="n_filt",
        	converter=forms.int_converter(),
        )
        self.Add(self._n_filt_static_text)
        self._manual_chooser = forms.radio_buttons(
        	parent=self.GetWin(),
        	value=self.manual,
        	callback=self.set_manual,
        	label="Manual/Auto",
        	choices=[0,1],
        	labels=['Auto','Manual'],
        	style=wx.RA_HORIZONTAL,
        )
        self.GridAdd(self._manual_chooser, 6, 0, 1, 1)
        self._freq_est_acq_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.freq_est_acq,
        	callback=self.set_freq_est_acq,
        	label='freq_est_acq',
        	converter=forms.float_converter(),
        )
        self.Add(self._freq_est_acq_static_text)
        def _freq_acq_est_probe():
            while True:
                val = self.blocks_probe_freq.level()
                try:
                    self.set_freq_acq_est(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _freq_acq_est_thread = threading.Thread(target=_freq_acq_est_probe)
        _freq_acq_est_thread.daemon = True
        _freq_acq_est_thread.start()
        self._fmaxt_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.fmaxt,
        	callback=self.set_fmaxt,
        	label="f_max (Hz)",
        	converter=forms.float_converter(),
        )
        self.Add(self._fmaxt_static_text)
        self._dft_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.dft,
        	callback=self.set_dft,
        	label="Deltaf (Hz)",
        	converter=forms.float_converter(),
        )
        self.Add(self._dft_static_text)
        self.channels_channel_model_0 = channels.channel_model(
        	noise_voltage=(cp.chips_per_symbol*cp.samples_per_chip*N0/2)**0.5,
        	frequency_offset=df_Hz/samp_rate,
        	epsilon=1.0+drift*1e-6,
        	taps=((delay)*(0,)+(1,)+(100-1-delay)*(0,)),
        	noise_seed=0,
        	block_tags=False
        )
        self.cdma_tx_hier_0 = cdma_tx_hier()
        self.cdma_rx_hier_0 = cdma_rx_hier(
            acq=onoff,
            acq_threshold_dB=acq_threshold_dB,
        )
        self.cdma_pac_err_cal_0 = cdma.pac_err_cal(1000, 2**cp.cdma_packet_num_bit, "cdma_packet_num")
        self.blocks_vector_source_x_0_1 = blocks.vector_source_b(map(int,numpy.random.randint(0,256,cp.payload_bytes_per_frame)), True, 1, tagged_streams.make_lengthtags((cp.payload_bytes_per_frame,), (0,), cp.length_tag_name))
        self.blocks_throttle_0_0 = blocks.throttle(gr.sizeof_char*1, (symbol_rate*cp.bits_per_uncoded_symbol)/8,True)
        self.blocks_tag_gate_0 = blocks.tag_gate(gr.sizeof_gr_complex * 1, False)
        self.blocks_null_sink_0_0 = blocks.null_sink(gr.sizeof_gr_complex*1)
        self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_char*1)
        self.blocks_multiply_const_vxx_1_0 = blocks.multiply_const_vff((samp_rate, ))
        self.blocks_multiply_const_vxx_1 = blocks.multiply_const_vcc((Es**0.5, ))
        self._TrainingEsN0dB_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.TrainingEsN0dB,
        	callback=self.set_TrainingEsN0dB,
        	label="TrainingEsN0dB_est",
        	converter=forms.float_converter(),
        )
        self.Add(self._TrainingEsN0dB_static_text)
        def _N0est_probe():
            while True:
                val = self.blocks_probe_signal_n0.level()
                try:
                    self.set_N0est(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _N0est_thread = threading.Thread(target=_N0est_probe)
        _N0est_thread.daemon = True
        _N0est_thread.start()
        def _Esest_probe():
            while True:
                val = self.blocks_probe_signal_amp.level()
                try:
                    self.set_Esest(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (10))
        _Esest_thread = threading.Thread(target=_Esest_probe)
        _Esest_thread.daemon = True
        _Esest_thread.start()
        _EsN0dB_sizer = wx.BoxSizer(wx.VERTICAL)
        self._EsN0dB_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_EsN0dB_sizer,
        	value=self.EsN0dB,
        	callback=self.set_EsN0dB,
        	label="EsN0dB",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._EsN0dB_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_EsN0dB_sizer,
        	value=self.EsN0dB,
        	callback=self.set_EsN0dB,
        	minimum=-20,
        	maximum=80,
        	num_steps=100,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_EsN0dB_sizer, 0, 0, 1, 1)
        _DataEsN0dBthreshold_sizer = wx.BoxSizer(wx.VERTICAL)
        self._DataEsN0dBthreshold_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_DataEsN0dBthreshold_sizer,
        	value=self.DataEsN0dBthreshold,
        	callback=self.set_DataEsN0dBthreshold,
        	label="DataEsN0dBthreshold",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._DataEsN0dBthreshold_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_DataEsN0dBthreshold_sizer,
        	value=self.DataEsN0dBthreshold,
        	callback=self.set_DataEsN0dBthreshold,
        	minimum=0,
        	maximum=20,
        	num_steps=100,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_DataEsN0dBthreshold_sizer, 8, 0, 1, 1)
        self._DataEsN0dB_estimated_static_text = forms.static_text(
        	parent=self.GetWin(),
        	value=self.DataEsN0dB_estimated,
        	callback=self.set_DataEsN0dB_estimated,
        	label="DataEsN0dB_est",
        	converter=forms.float_converter(),
        )
        self.Add(self._DataEsN0dB_estimated_static_text)

        ##################################################
        # Connections
        ##################################################
        self.msg_connect((self.cdma_rx_hier_0, 'decoded_header'), (self.cdma_pac_err_cal_0, 'errCal'))    
        self.connect((self.blocks_multiply_const_vxx_1, 0), (self.channels_channel_model_0, 0))    
        self.connect((self.blocks_multiply_const_vxx_1_0, 0), (self.blocks_probe_freq, 0))    
        self.connect((self.blocks_tag_gate_0, 0), (self.blocks_null_sink_0_0, 0))    
        self.connect((self.blocks_tag_gate_0, 0), (self.cdma_rx_hier_0, 0))    
        self.connect((self.blocks_throttle_0_0, 0), (self.cdma_tx_hier_0, 0))    
        self.connect((self.blocks_vector_source_x_0_1, 0), (self.blocks_throttle_0_0, 0))    
        self.connect((self.cdma_rx_hier_0, 3), (self.blocks_multiply_const_vxx_1_0, 0))    
        self.connect((self.cdma_rx_hier_0, 1), (self.blocks_null_sink_0, 0))    
        self.connect((self.cdma_rx_hier_0, 2), (self.blocks_probe_signal_amp, 0))    
        self.connect((self.cdma_rx_hier_0, 0), (self.blocks_probe_signal_n0, 0))    
        self.connect((self.cdma_tx_hier_0, 0), (self.blocks_multiply_const_vxx_1, 0))    
        self.connect((self.channels_channel_model_0, 0), (self.blocks_tag_gate_0, 0))    
    def __init__(self):
        gr.top_block.__init__(self, "Top Block")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Top Block")
        try:
            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
            pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "top_block")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 32000

        #self.ac1=ac1
        ##################################################
        # Blocks
        ##################################################
        self.qtgui_time_sink_x_0 = qtgui.time_sink_c(
            1024,  #size
            samp_rate,  #samp_rate
            "",  #name
            1  #number of inputs
        )
        self.qtgui_time_sink_x_0.set_update_time(0.10)
        self.qtgui_time_sink_x_0.set_y_axis(-1, 1)

        self.qtgui_time_sink_x_0.set_y_label("Amplitude", "")

        self.qtgui_time_sink_x_0.enable_tags(-1, True)
        self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
                                                  qtgui.TRIG_SLOPE_POS, 0.0, 0,
                                                  0, "")
        self.qtgui_time_sink_x_0.enable_autoscale(False)
        self.qtgui_time_sink_x_0.enable_grid(False)
        self.qtgui_time_sink_x_0.enable_control_panel(False)

        if not True:
            self.qtgui_time_sink_x_0.disable_legend()

        labels = ["", "", "", "", "", "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        colors = [
            "blue", "red", "green", "black", "cyan", "magenta", "yellow",
            "dark red", "dark green", "blue"
        ]
        styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        for i in xrange(2 * 1):
            if len(labels[i]) == 0:
                if (i % 2 == 0):
                    self.qtgui_time_sink_x_0.set_line_label(
                        i, "Re{{Data {0}}}".format(i / 2))
                else:
                    self.qtgui_time_sink_x_0.set_line_label(
                        i, "Im{{Data {0}}}".format(i / 2))
            else:
                self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
            self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
            self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

        self._qtgui_time_sink_x_0_win = sip.wrapinstance(
            self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
        self.osmosdr_sink_0 = osmosdr.sink(args="numchan=" + str(1) + " " + "")
        self.osmosdr_sink_0.set_sample_rate(1e6)
        self.osmosdr_sink_0.set_center_freq(100e6, 0)
        self.osmosdr_sink_0.set_freq_corr(0, 0)
        self.osmosdr_sink_0.set_gain(20, 0)
        self.osmosdr_sink_0.set_if_gain(30, 0)
        self.osmosdr_sink_0.set_bb_gain(30, 0)
        self.osmosdr_sink_0.set_antenna("", 0)
        self.osmosdr_sink_0.set_bandwidth(400000, 0)

        self.file_source = blocks.file_source(
            gr.sizeof_float * 1, '/home/firas/Downloads/10.1.1.623.6305.pdf',
            True)

        self.digital_gmsk_mod_0 = digital.gmsk_mod(
            samples_per_symbol=2,
            bt=0.35,
            verbose=False,
            log=False,
        )
        self.digital_gfsk_mod_0 = digital.gfsk_mod(
            samples_per_symbol=2,
            sensitivity=1.0,
            bt=0.35,
            verbose=False,
            log=False,
        )
        if choice == 1:
            self.num = 0
            self.g = 3
            self.p = 5
            self.y = 6
        if choice == 2:
            self.num = 0
            self.g = 5
            self.p = 7
            self.y = 9
        num = pow(self.g, self.y) % self.p
        print(num)
        self.blocks_vector_source_x_0 = blocks.vector_source_f((num, num, num),
                                                               True, 1, [])
        self.blocks_vector_source_x_1 = blocks.vector_source_f((1, 2, 3), True,
                                                               1, [])
        self.blks2_packet_encoder_0 = grc_blks2.packet_mod_f(
            grc_blks2.packet_encoder(
                samples_per_symbol=2,
                bits_per_symbol=1,
                preamble="",
                access_code="100010001000100010001111",
                pad_for_usrp=True,
            ),
            payload_length=1024,
        )

        self.blks2_packet_encoder_1 = grc_blks2.packet_mod_f(
            grc_blks2.packet_encoder(
                samples_per_symbol=2,
                bits_per_symbol=1,
                preamble="",
                access_code="100010001000100010001000",
                pad_for_usrp=True,
            ),
            payload_length=512,
        )

        self.blks2_packet_encoder_2 = grc_blks2.packet_mod_f(
            grc_blks2.packet_encoder(
                samples_per_symbol=2,
                bits_per_symbol=1,
                preamble="",
                access_code="100010001000100010101010",
                pad_for_usrp=True,
            ),
            payload_length=256,
        )

        self.probe_sig_0 = blocks.probe_signal_f()

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blks2_packet_encoder_0, 0),
                     (self.digital_gmsk_mod_0, 0))
        self.connect((self.blocks_vector_source_x_0, 0),
                     (self.blks2_packet_encoder_0, 0))
        self.connect((self.digital_gmsk_mod_0, 0), (self.osmosdr_sink_0, 0))
        self.connect((self.blocks_vector_source_x_0, 0), (self.probe_sig_0, 0))