Beispiel #1
0
def run_go_enrichment(strain,
                      genes_of_interest,
                      significant=True,
                      cutoff=0.05,
                      use_parent_terms=True):
    # Load GO term association dictionary
    with open(os.path.join('data', 'go_association.pickle'), 'rb') as handle:
        go_association = pickle.load(handle)

    background_genes = get_genes(
        os.path.join('data', strain + '_all_genes.csv'))
    obo_go_fname = download_go_basic_obo()
    obo_dag = GODag('go-basic.obo')

    if strain == 'PA14':
        genes_of_interest = map_pa14_genes(genes_of_interest)
        background_genes = map_pa14_genes(background_genes)

    goea_obj = GOEnrichmentStudyNS(background_genes,
                                   go_association,
                                   obo_dag,
                                   propagate_counts=use_parent_terms,
                                   alpha=cutoff,
                                   methods=['fdr_bh'])
    goea_results = goea_obj.run_study(genes_of_interest)

    if significant is True:
        goea_results = [
            result for result in goea_results if result.p_fdr_bh < cutoff
        ]

    enrichment_results = get_enrichment_results(goea_results)
    return [enrichment_results, goea_results]
Beispiel #2
0
def gene_set_query(genes,
                   fdr_threshold=0.10,
                   return_header=False,
                   species='mouse'):
    """
    Runs a GO enrichment analysis query using goatools.
    The GO dataset here is for mouse, but it might apply to human as well.
    """
    ns2assoc, ids_to_symbols, symbols_to_ids, genes_list = get_species_genes(
        species)
    goeaobj = GOEnrichmentStudyNS(
        genes_list,  # List of mouse protein-coding genes
        ns2assoc,  # geneid/GO associations
        obodag,  # Ontologies
        propagate_counts=False,
        alpha=fdr_threshold,  # default significance cut-off
        methods=['fdr_bh'])  # defult multipletest correction method
    if species == 'mouse' or species == 'mus_musculus':
        genes = [x.capitalize() for x in genes]
    else:
        genes = [x.upper() for x in genes]
    gene_ids = [symbols_to_ids[x] for x in genes if x in symbols_to_ids]
    print('gene_ids:', gene_ids)

    results = goeaobj.run_study(gene_ids)
    results_sig = [r for r in results if r.p_fdr_bh < fdr_threshold]
    results_table = []
    for r in results_sig:
        results_table.append([
            r.goterm.id, r.goterm.name, r.p_fdr_bh,
            [ids_to_symbols[gene_id] for gene_id in r.study_items]
        ])
    print(results_table)
    results_table.sort(key=lambda x: x[2])
    if return_header:
        results_table = [['GO ID', 'Name', 'FDR', 'Overlapping Genes']
                         ] + results_table
    print('GO results_table:', results_table)
    return results_table
Beispiel #3
0
def GOEA(genes, objanno):
    """ returns go term enrichment

    Keyword arguments:
    genes -- list of genes
    objanno -- background dict
    performs GO term enrichment
    """
    goeaobj = GOEnrichmentStudyNS(
        objanno.get_id2gos().keys(),  # List of mouse protein-coding genes
        objanno.get_ns2assc(),  # geneid/GO associations
        godag,  # Ontologies
        propagate_counts=True,
        alpha=0.05,  # default significance cut-off
        methods=['fdr_bh'])  # defult multipletest correction method
    goea_quiet_all = goeaobj.run_study(genes, prt=None)
    goea_results = dict((el, []) for el in ontologies)
    for r in goea_quiet_all:
        goea_results[r.NS].append([r.GO, r.p_fdr_bh])
    for ont in goea_results:
        goea_results[ont] = np.array(goea_results[ont])
        goea_results[ont] = goea_results[ont][goea_results[ont][:, 0].argsort()]
    return goea_results
Beispiel #4
0
symbols = np.zeros(len(GeneID2nt_homo.keys()), dtype='U100')
geneids = np.zeros(len(GeneID2nt_homo.keys()), dtype=int)

#Creating a lookup table to convert the gene symbols to the gene ids needed for the gene enrichment analysis
for idx, key in enumerate(GeneID2nt_homo.keys()):
    symbols[idx] = GeneID2nt_homo[key].Symbol
    geneids[idx] = GeneID2nt_homo[key].GeneID

boolean_symbol = np.isin(symbols, CDK1_gene_list)

matches_idx = np.where(boolean_symbol)[0]

geneids_matches = list(geneids[matches_idx])

goea_quiet_all = goeaobj.run_study(geneids_matches, prt=None)
goea_quiet_sig = [r for r in goea_quiet_all if r.p_fdr_bh < 0.05]

print('{N} of {M:,} results were significant'.format(N=len(goea_quiet_sig),
                                                     M=len(goea_quiet_all)))

print('Significant results: {E} enriched, {P} purified'.format(
    E=sum(1 for r in goea_quiet_sig if r.enrichment == 'e'),
    P=sum(1 for r in goea_quiet_sig if r.enrichment == 'p')))

ctr = cx.Counter([r.NS for r in goea_quiet_sig])
print('Significant results[{TOTAL}] = {BP} BP + {MF} MF + {CC} CC'.format(
    TOTAL=len(goea_quiet_sig),
    BP=ctr['BP'],  # biological_process
    MF=ctr['MF'],  # molecular_function
    CC=ctr['CC']))  # cellular_component
geneid2symbol = {}
# Get xlsx filename where data is stored
din_xlsx = r"C:\Users\krishna\Downloads\padj_converted.xlsx" ###excel file containing 3 columns:
                                                        ### gene_symbols (our test data), their respective ESENMBL gene ids, and their p adj values (test_data)

# Read data

if os.path.isfile(din_xlsx):
    import xlrd
    book = xlrd.open_workbook(din_xlsx)
    pg = book.sheet_by_index(0)
    for r in range(pg.nrows):
        symbol, geneid, pval = [pg.cell_value(r, c) for c in range(pg.ncols)]
        if geneid:
            geneid2symbol[int(geneid)] = symbol
    print('READ: {XLSX}'.format(XLSX=din_xlsx))
else:
    raise RuntimeError('CANNOT READ: {XLSX}'.format(XLSX=fin_xlsx))

###         5. Run Gene Ontology Enrichment Analysis (GOEA)

# 'p_' means "pvalue". 'fdr_bh' is the multipletest method we are currently using.
geneids_study = geneid2symbol.keys()
goea_results_all = goeaobj.run_study(geneids_study)
goea_results_sig = [r for r in goea_results_all if r.p_fdr_bh < 0.05]

### to export our analysis results one file with only gene symbols and second file with gene ids

goeaobj.wr_xlsx("GO_symbols.xlsx", goea_results_sig, itemid2name=geneid2symbol)
goeaobj.wr_xlsx("GO_geneids.xlsx", goea_results_sig)
Beispiel #6
0
class Pose(object):
    def __init__(self, data_dir: str, device='cpu'):
        # load pretrained model
        self.model, self.name = self.__pretrained_model_construction__()
        self.model.load_state_dict(
            torch.load(data_dir + self.name + '-model.pt'))

        self.device = device
        self.__GO_enrich__()

    def __GO_enrich__(self):
        go_file = "go-basic.obo"
        if not os.path.exists(go_file):
            download_go_basic_obo()

        # Load gene ontologies
        obodag = GODag("go-basic.obo")

        # Read NCBI's gene2go. Store annotations in a list of namedtuples
        fin_gene2go = download_ncbi_associations()
        objanno = Gene2GoReader(fin_gene2go, taxids=[9606])
        # Get namespace2association where:
        #    namespace is:
        #        BP: biological_process
        #        MF: molecular_function
        #        CC: cellular_component
        #    association is a dict:
        #        key: NCBI GeneID
        #        value: A set of GO IDs associated with that gene
        ns2assoc = objanno.get_ns2assc()

        self.goeaobj = GOEnrichmentStudyNS(
            GeneID2nt_hum.keys(),  # List of human protein-acoding genes
            ns2assoc,  # geneID/GO associations
            obodag,  # Ontologies
            propagate_counts=False,
            alpha=0.05,  # default significance cut-off
            methods=['fdr_bh'])  # default multipletest correction method

    def __pretrained_model_construction__(self):
        nhids_gcn = [64, 32, 32]
        prot_out_dim = sum(nhids_gcn)
        drug_dim = 128
        pp = PP(gdata.n_prot, nhids_gcn)
        pd = PD(prot_out_dim, drug_dim, gdata.n_drug)
        mip = MultiInnerProductDecoder(drug_dim + pd.d_dim_feat, gdata.n_et)
        name = 'poly-' + str(nhids_gcn) + '-' + str(drug_dim)

        return Model(pp, pd, mip).to('cpu'), name

    def get_prediction_train(self, threshold=0.5):
        train_idx, train_et = remove_bidirection(gdata.train_idx,
                                                 gdata.train_et)

        return self.predict(train_idx[0].tolist(),
                            train_idx[1].tolist(),
                            train_et.tolist(),
                            threshold=threshold)

    def get_prediction_test(self, threshold=0.5):
        test_idx, test_et = remove_bidirection(gdata.test_idx, gdata.test_et)

        return self.predict(test_idx[0].tolist(),
                            test_idx[1].tolist(),
                            test_et.tolist(),
                            threshold=threshold)

    def predict(self, drug1, drug2, side_effect, threshold=0.5):
        device = self.device
        data = gdata.to(device)
        model = self.model.to(device)
        model.eval()

        pp_static_edge_weights = torch.ones(
            (data.pp_index.shape[1])).to(device)
        pd_static_edge_weights = torch.ones(
            (data.pd_index.shape[1])).to(device)
        z = model.pp(data.p_feat, data.pp_index, pp_static_edge_weights)
        z0 = z.clone()
        z1 = z.clone()

        # prediction based on all infor
        z = model.pd(z, data.pd_index, pd_static_edge_weights)
        P = torch.sigmoid((z[drug1] * z[drug2] *
                           model.mip.weight[side_effect]).sum(dim=1)).to('cpu')

        index_filter = P > threshold
        drug1 = torch.Tensor(drug1)[index_filter].numpy().astype(int).tolist()
        if not drug1:
            raise ValueError(
                "No Satisfied Edges." +
                "\n - Suggestion: reduce the threshold probability." +
                "Current probability threshold is {}. ".format(threshold) +
                "\n - Please use -h for help")

        drug2 = torch.Tensor(drug2)[index_filter].numpy().astype(int).tolist()
        side_effect = torch.Tensor(side_effect)[index_filter].numpy().astype(
            int).tolist()

        # prediction based on protein info and their interactions
        z0.data[:, 64:] *= 0
        z0 = model.pd(z0, data.pd_index, pd_static_edge_weights)
        P0 = torch.sigmoid(
            (z0[drug1] * z0[drug2] *
             model.mip.weight[side_effect]).sum(dim=1)).to("cpu")
        ppiu_score = (P[index_filter] - P0) / P[index_filter]

        # prediction based on drug info only
        z1.data *= 0
        z1 = model.pd(z1, data.pd_index, pd_static_edge_weights)
        P1 = torch.sigmoid(
            (z1[drug1] * z1[drug2] *
             model.mip.weight[side_effect]).sum(dim=1)).to("cpu")
        piu_score = (P[index_filter] - P1) / P[index_filter]

        # reture a query object
        query = PoseQuery(drug1, drug2, side_effect)
        query.set_pred_result(P[index_filter].tolist(), piu_score.tolist(),
                              ppiu_score.tolist())

        return query

    def explain_list(self,
                     drug_list_1,
                     drug_list_2,
                     side_effect_list,
                     regulization=2,
                     if_auto_tuning=True,
                     if_pred=True):
        if if_pred:
            query = self.predict(drug_list_1, drug_list_2, side_effect_list)
        else:
            query = PoseQuery(drug_list_1, drug_list_2, side_effect_list,
                              regulization)
        return self.explain_query(query,
                                  if_auto_tuning=if_auto_tuning,
                                  regulization=query.regulization)

    def explain_query(self, query, if_auto_tuning=True, regulization=2):
        query.regulization = regulization

        pp_left_index, pp_left_weight, pd_left_index, pd_left_weight = self.__explain(
            query)

        if if_auto_tuning:
            while pp_left_index.shape[1] == 0:
                if query.regulization < 0.0001:
                    print("Warning: auto tuning forced to stop.")
                    break
                query.regulization /= 2
                pp_left_index, pp_left_weight, pd_left_index, pd_left_weight = self.__explain(
                    query)

        query.set_exp_result(pp_left_index, pp_left_weight, pd_left_index,
                             pd_left_weight)

        goea_results_sig = self.enrich_go(pp_left_index)
        query.set_enrich_result(goea_results_sig)

        return query

    def enrich_go(self, pp_left_index):
        # -------------- Go Enrichment --------------
        geneids_study = pp_left_index.flatten()  # geneid2symbol.keys()
        geneids_study = [
            int(gdata.prot_idx_to_id[idx].replace('GeneID', ''))
            for idx in geneids_study
        ]

        goea_results_all = self.goeaobj.run_study(geneids_study)
        goea_results_sig = [r for r in goea_results_all if r.p_fdr_bh < 0.05]

        return goea_results_sig

    def __explain(self, query):

        data = gdata
        model = self.model
        device = self.device

        drug_list_1, drug_list_2, side_effect_list, regulization = query.get_query(
        )

        pre_mask = Pre_mask(data.pp_index.shape[1] // 2,
                            data.pd_index.shape[1]).to(device)
        data = data.to(device)
        model = model.to(device)

        for gcn in self.model.pp.conv_list:
            gcn.cached = False
        self.model.pd.conv.cached = False
        self.model.eval()

        # pp_static_edge_weights = torch.ones((data.pp_index.shape[1])).to(device)
        # pd_static_edge_weights = torch.ones((data.pd_index.shape[1])).to(device)

        optimizer = torch.optim.Adam(pre_mask.parameters(), lr=0.01)
        fake_optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

        # z = model.pp(data.p_feat, data.pp_index, pp_static_edge_weights)
        # z = model.pd(z, data.pd_index, pd_static_edge_weights)

        # # P = torch.sigmoid((z[drug1, :] * z[drug2, :] * model.mip.weight[side_effect, :]).sum())
        # P = torch.sigmoid((z[drug_list_1] * z[drug_list_2] * model.mip.weight[side_effect_list]).sum(dim=1))

        # if len(drug_list_1) < 5:
        #     print(P.tolist())

        tmp = 0.0
        pre_mask.reset_parameters()
        for i in range(9999):
            model.train()
            pre_mask.desaturate()
            optimizer.zero_grad()
            fake_optimizer.zero_grad()

            # half_mask = torch.sigmoid(pre_mask.pp_weight)
            half_mask = torch.nn.Hardtanh(0, 1)(pre_mask.pp_weight)
            pp_mask = torch.cat([half_mask, half_mask])

            pd_mask = torch.nn.Hardtanh(0, 1)(pre_mask.pd_weight)

            z = model.pp(data.p_feat, data.pp_index, pp_mask)

            # TODO:
            # z = model.pd(z, data.pd_index, pd_static_edge_weights)
            z = model.pd(z, data.pd_index, pd_mask)
            # TODO:

            # P = torch.sigmoid((z[drug1, :] * z[drug2, :] * model.mip.weight[side_effect, :]).sum())
            P = torch.sigmoid((z[drug_list_1] * z[drug_list_2] *
                               model.mip.weight[side_effect_list]).sum(dim=1))
            EPS = 1e-7

            # TODO:
            loss = torch.log(1 - P + EPS).sum() / regulization \
                   + 0.5 * (pp_mask * (2 - pp_mask)).sum() \
                   + (pd_mask * (2 - pd_mask)).sum()
            # loss = -  torch.log(P) + 0.5 * (pp_mask * (2 - pp_mask)).sum() + (pd_mask * (2 - pd_mask)).sum()
            # TODO:

            loss.backward()
            optimizer.step()
            # print("Epoch:{}, loss:{}, prob:{}, pp_link_sum:{}, pd_link_sum:{}".format(i, loss.tolist(), P.tolist(), pp_mask.sum().tolist(), pd_mask.sum().tolist()))
            if i % 100 == 0:
                print(
                    "Epoch:{:3d}, loss:{:0.2f}, prob:{:0.2f}, pp_link_sum:{:0.2f}, pd_link_sum:{:0.2f}"
                    .format(i, loss.tolist(),
                            P.mean().tolist(),
                            pp_mask.sum().tolist(),
                            pd_mask.sum().tolist()))

            # until no weight need to be updated --> no sum of weights changes
            if tmp == (pp_mask.sum().tolist(), pd_mask.sum().tolist()):
                break
            else:
                tmp = (pp_mask.sum().tolist(), pd_mask.sum().tolist())

        pre_mask.saturate()

        pp_left_mask = (pp_mask > 0.2).detach().cpu().numpy()
        tmp = (data.pp_index[0, :] >
               data.pp_index[1, :]).detach().cpu().numpy()
        pp_left_mask = np.logical_and(pp_left_mask, tmp)

        pd_left_mask = (pd_mask > 0.2).detach().cpu().numpy()

        pp_left_index = data.pp_index[:, pp_left_mask].cpu().numpy()
        pd_left_index = data.pd_index[:, pd_left_mask].cpu().numpy()

        pp_left_weight = pp_mask[pp_left_mask].detach().cpu().numpy()
        pd_left_weight = pd_mask[pd_left_mask].detach().cpu().numpy()

        return pp_left_index, pp_left_weight, pd_left_index, pd_left_weight
Beispiel #7
0
def go_enrichment(gene_list,
                  taxid=9606,
                  background_chrom=None,
                  background_genes=None,
                  terms=None,
                  list_study_genes=False,
                  alpha=0.05):

    if type(gene_list) is pd.core.series.Series:
        gene_list = gene_list.tolist()
    if type(terms) is pd.core.series.Series:
        terms = terms.tolist()

    _assert_entrez_email()

    gene_list = list(gene_list)

    taxid = _tidy_taxid(taxid)

    ncbi_tsv = f'geneinfo_cache/{taxid}_protein_genes.txt'
    if not os.path.exists(ncbi_tsv):
        fetch_background_genes(taxid)

    with open(os.devnull, 'w') as null, redirect_stdout(null):

        obo_fname = download_and_move_go_basic_obo(prt=null)

        file_gene2go = download_ncbi_associations(prt=null)

        obodag = GODag("geneinfo_cache/go-basic.obo",
                       optional_attrs=['relationship', 'def'],
                       prt=null)

        # read NCBI's gene2go. Store annotations in a list of namedtuples
        objanno = Gene2GoReader(file_gene2go, taxids=[taxid])

        # get associations for each branch of the GO DAG (BP, MF, CC)
        ns2assoc = objanno.get_ns2assc()

        # limit go dag to a sub graph including only specified terms and their children
        if terms is not None:
            sub_obo_name = 'geneinfo_cache/' + str(
                hash(''.join(sorted(terms)).encode())) + '.obo'
            wrsobo = WrSubObo(obo_fname,
                              optional_attrs=['relationship', 'def'])
            wrsobo.wrobo(sub_obo_name, terms)
            obodag = GODag(sub_obo_name,
                           optional_attrs=['relationship', 'def'],
                           prt=null)

        # load background gene set of all genes
        background_genes_file = f'geneinfo_cache/{taxid}_protein_genes.txt'
        if not os.path.exists(background_genes_file):
            fetch_background_genes(taxid)

        # # load any custum subset
        if background_genes:
            if not all(type(x) is int for x in background_genes):
                if all(x.isnumeric() for x in background_genes):
                    background_genes = list(map(str, background_genes))
                else:
                    background_genes = _cached_symbol2ncbi(background_genes,
                                                           taxid=taxid)
            df = pd.read_csv(background_genes_file, sep='\t')
            no_suffix = os.path.splitext(background_genes_file)[0]
            background_genes_file = f'{no_suffix}_{hash("".join(map(str, sorted(background_genes))))}.txt'
            df.loc[df.GeneID.isin(background_genes)].to_csv(
                background_genes_file, sep='\t', index=False)

        # limit background gene set
        if background_chrom is not None:
            df = pd.read_csv(background_genes_file, sep='\t')
            background_genes_file = f'{os.path.splitext(background_genes_file)[0]}_{background_chrom}.txt'
            df.loc[df.chromosome == background_chrom].to_csv(
                background_genes_file, sep='\t', index=False)

        output_py = f'geneinfo_cache/{taxid}_background.py'
        ncbi_tsv_to_py(background_genes_file, output_py, prt=null)

        background_genes_name = output_py.replace('.py', '').replace('/', '.')
        background_genes = importlib.import_module(background_genes_name)
        importlib.reload(background_genes)
        GeneID2nt = background_genes.GENEID2NT

        if not all(type(x) is int for x in gene_list):
            gene_list = _cached_symbol2ncbi(gene_list, taxid=taxid)

        goeaobj = GOEnrichmentStudyNS(
            GeneID2nt,  # List of mouse protein-coding genes
            ns2assoc,  # geneid/GO associations
            obodag,  # Ontologies
            propagate_counts=False,
            alpha=0.05,  # default significance cut-off
            methods=['fdr_bh'],
            pvalcalc='fisher_scipy_stats')

        goea_results_all = goeaobj.run_study(gene_list)

        rows = []
        columns = [
            'namespace', 'term_id', 'e/p', 'pval_uncorr', 'p_fdr_bh', 'ratio',
            'bg_ratio', 'obj'
        ]
        if list_study_genes:
            columns.append('study_genes')
        for ntd in goea_results_all:

            ntd.__class__ = My_GOEnrichemntRecord  # Hack. Changes __class__ of all instances...

            row = [
                ntd.NS, ntd.GO, ntd.enrichment, ntd.p_uncorrected,
                ntd.p_fdr_bh, ntd.ratio_in_study[0] / ntd.ratio_in_study[1],
                ntd.ratio_in_pop[0] / ntd.ratio_in_pop[1], ntd
            ]

            if list_study_genes:
                row.append(_cached_ncbi2symbol(sorted(ntd.study_items)))
            rows.append(row)
        df = (pd.DataFrame().from_records(rows, columns=columns).sort_values(
            by=['p_fdr_bh', 'ratio']).reset_index(drop=True))
        return df.loc[df.p_fdr_bh < alpha]
Beispiel #8
0
goeaobj = GOEnrichmentStudyNS(
    # list of 'population' of genes looked at in total
    pop = all_genes['ens_gene'].tolist(),
    # geneid -> GO ID mapping
    ns2assoc = ns2assoc,
    # ontology DAG
    godag = obodag,
    propagate_counts = False,
    # multiple testing correction method (fdr_bh is false discovery rate control with Benjamini-Hochberg)
    methods = ['fdr_bh'],
    # significance cutoff for method named above
    alpha = fdr_level_go_term
    )

goea_results_all = goeaobj.run_study(sig_genes['ens_gene'].tolist())


# write results to text file
goeaobj.wr_tsv(snakemake.output.enrichment, goea_results_all)


# plot results
ensembl_id_to_symbol = dict(zip(all_genes['ens_gene'], all_genes['ext_gene']))


# from first plot output file name, create generic file name to trigger
# separate plots for each of the gene ontology name spaces
outplot_generic = snakemake.output.plot[0].replace('_BP.','_{NS}.', 1).replace('_CC.','_{NS}.', 1).replace('_MF.', '_{NS}.', 1)

goea_results_sig = [r for r in goea_results_all if r.p_fdr_bh < fdr_level_go_term]
Beispiel #9
0
def pullGOenrichment(inputFile, project):
    GeneID2nt_hum = genes_NCBI_9606_ProteinCoding.GENEID2NT

    obo_fname = download_go_basic_obo()

    fin_gene2go = download_ncbi_associations()

    obodag = GODag("go-basic.obo")

    # Read NCBI's gene2go. Store annotations in a list of namedtuples
    objanno = Gene2GoReader(fin_gene2go, taxids=[9606])

    # Get namespace2association where:
    #    namespace is:
    #        BP: biological_process
    #        MF: molecular_function
    #        CC: cellular_component
    #    assocation is a dict:
    #        key: NCBI GeneID
    #        value: A set of GO IDs associated with that gene
    ns2assoc = objanno.get_ns2assc()

    for nspc, id2gos in ns2assoc.items():
        print("{NS} {N:,} annotated human genes".format(NS=nspc,
                                                        N=len(id2gos)))

    print(len(GeneID2nt_hum))

    goeaobj = GOEnrichmentStudyNS(
        GeneID2nt_hum.keys(),  # List of human protein-coding genes
        ns2assoc,  # geneid/GO associations
        obodag,  # Ontologies
        propagate_counts=False,
        alpha=0.05,  # default significance cut-off
        methods=['fdr_bh'])  # defult multipletest correction method

    geneid2symbol = {}
    with open(inputFile, 'r') as infile:
        input_genes = csv.reader(infile)
        for line in input_genes:
            geneid = line[0]
            symbol = line[1]
            if geneid:
                geneid2symbol[int(geneid)] = symbol

    infile.close()

    geneids_study = geneid2symbol.keys()
    goea_results_all = goeaobj.run_study(geneids_study)
    goea_results_sig = [r for r in goea_results_all if r.p_fdr_bh < 0.05]

    import collections as cx
    ctr = cx.Counter([r.NS for r in goea_results_sig])
    print('Significant results[{TOTAL}] = {BP} BP + {MF} MF + {CC} CC'.format(
        TOTAL=len(goea_results_sig),
        BP=ctr['BP'],  # biological_process
        MF=ctr['MF'],  # molecular_function
        CC=ctr['CC']))  # cellular_component

    goeaobj.wr_xlsx("Data/go_enrichment" + project + ".csv", goea_results_sig)
    goeaobj.wr_txt("Data/go_enrichment" + project + ".txt", goea_results_sig)
Beispiel #10
0
        # Select genes in module
        df_pca_tmp = df_pca.loc[((df_pca[ld1] > x0) & (df_pca[ld1] < x1) & (df_pca[ld2] > y0) & (df_pca[ld2] < y1) & (df_dian[l12d] > cut_radius)), :]
        if layer == 'DM':
            genes_flybase = set(df_pca_tmp.index.tolist())
            genes_uniprot = set(df_pca_tmp.index.map(dfQ['UniProtKB/Swiss-Prot ID'].dropna().to_dict()).dropna().tolist())
            genes = genes_flybase.union(genes_uniprot)
        elif layer == 'MM':
            genes_mgi = set(df_pca_tmp.index.map(dfQ['MGI ID'].dropna().to_dict()).to_list())
            genes_uniprot = set(df_pca_tmp.index.map(dfQ['UniProtKB/Swiss-Prot ID'].dropna().to_dict()).dropna().to_list())
            genes = genes_mgi.union(genes_uniprot)
        elif layer == 'HS':
            genes = set(df_pca_tmp.index.map(dfQ['UniProtKB/Swiss-Prot ID'].dropna().to_dict()).dropna().tolist())

        # Run Comparison (only keep GO significant and from 'Biological Process')
        print("> Runnin GOEA test")
        goea_res = goea.run_study(genes, prt=None)

        cols2rem = ['method_flds', 'kws', 'study_items', 'pop_items', 'goterm']
        # transform goea objs for DataFrame format
        res = [{k: v for k, v in i.__dict__.items() if k not in cols2rem} for i in goea_res]
        dfA = pd.DataFrame(res)

        if len(dfA):
            # Index: Biological Process, Significant at 0.01, GO tree depth < 10
            dfS = dfA.loc[(
                (dfA['p_fdr_bh'] <= 0.05) &
                #(dfA['depth'] < 10) &
                (dfA['NS'] == 'BP')),
            :]
            # Redo Index
            n = len(dfS)
Beispiel #11
0
def plot_go_enrichment(coef_df, auc_vals, pheno_dict, args, mode='abs'):
    obo_fl = os.path.join(args.go_dir, "go-basic.obo")
    download_go_basic_obo(obo_fl)
    obodag = GODag(obo_fl)

    assoc_fl = os.path.join(args.go_dir, "gene2go")
    download_ncbi_associations(assoc_fl)
    objanno = Gene2GoReader(assoc_fl, taxids=[9606])
    ns2assoc = objanno.get_ns2assc()

    ncbi_map = {info.Symbol: ncbi_id for ncbi_id, info in GENEID2NT.items()}
    use_genes = set(coef_df.columns) & set(ncbi_map)
    bgrd_ids = [ncbi_map[gn] for gn in use_genes]

    goeaobj = GOEnrichmentStudyNS(bgrd_ids,
                                  ns2assoc,
                                  obodag,
                                  propagate_counts=False,
                                  alpha=0.05,
                                  methods=['fdr_bh'])

    plot_dict = dict()
    use_gos = set()
    coef_mat = coef_df.loc[:, [gene in use_genes for gene in coef_df.columns]]

    if mode == 'bayes':
        coef_means = coef_mat.groupby(level=0, axis=1).mean()
        coef_stds = coef_mat.groupby(level=0, axis=1).std()
    else:
        coef_mat = coef_mat.groupby(level=0, axis=1).mean()

    for mtype, coefs in coef_mat.iterrows():
        if not isinstance(mtype, RandomType):
            if mode == 'abs':
                fgrd_ctf = coefs.abs().quantile(0.95)
                fgrd_genes = coefs.index[coefs.abs() > fgrd_ctf]
                use_clr = 3.17

            elif mode == 'high':
                fgrd_ctf = coefs.quantile(0.95)
                fgrd_genes = coefs.index[coefs > fgrd_ctf]
                use_clr = 2.03
            elif mode == 'low':
                fgrd_ctf = coefs.quantile(0.05)
                fgrd_genes = coefs.index[coefs < fgrd_ctf]
                use_clr = 1.03

            elif mode == 'bayes':
                gene_scrs = coef_means.loc[mtype].abs() - coef_stds.loc[mtype]
                fgrd_genes = gene_scrs.index[gene_scrs > 0]
                use_clr = 3.17

            else:
                raise ValueError(
                    "Unrecognized `mode` argument <{}>!".format(mode))

            fgrd_ids = [ncbi_map[gn] for gn in fgrd_genes]
            goea_out = goeaobj.run_study(fgrd_ids, prt=None)

            plot_dict[mtype] = {
                rs.name: np.log10(rs.p_fdr_bh)
                for rs in goea_out
                if rs.enrichment == 'e' and rs.p_fdr_bh < 0.05
            }

    plot_df = pd.DataFrame(plot_dict, columns=plot_dict.keys())
    if plot_df.shape[0] == 0:
        print("Could not find any enriched GO terms across {} "
              "subgroupings!".format(plot_df.shape[1]))
        return None

    fig, ax = plt.subplots(figsize=(4.7 + plot_df.shape[0] / 2.3,
                                    2 + plot_df.shape[1] / 5.3))

    if plot_df.shape[0] > 2:
        plot_df = plot_df.iloc[dendrogram(linkage(distance.pdist(
            plot_df.fillna(0.0), metric='cityblock'),
                                                  method='centroid'),
                                          no_plot=True)['leaves']].transpose()
    else:
        plot_df = plot_df.transpose()

    xlabs = [rs_nm for rs_nm in plot_df.columns]
    ylabs = [
        get_fancy_label(tuple(mtype.subtype_iter())[0][1])
        for mtype in plot_df.index
    ]

    pval_cmap = sns.cubehelix_palette(start=use_clr,
                                      rot=0,
                                      dark=0,
                                      light=1,
                                      reverse=True,
                                      as_cmap=True)

    sns.heatmap(plot_df,
                cmap=pval_cmap,
                vmin=-5,
                vmax=0,
                linewidths=0.23,
                linecolor='0.73',
                xticklabels=xlabs,
                yticklabels=ylabs)

    ax.set_xticklabels(xlabs, size=15, ha='right', rotation=31)
    ax.set_yticklabels(ylabs, size=9, ha='right', rotation=0)
    ax.set_xlim((plot_df.shape[1] / -83, plot_df.shape[1] * 1.009))
    ax.set_ylim((plot_df.shape[0] * 1.009, plot_df.shape[0] / -83))

    plt.savefig(os.path.join(
        plot_dir, '__'.join([args.expr_source, args.cohort]),
        "{}_go-{}-enrichment_{}.svg".format(args.gene, mode, args.classif)),
                bbox_inches='tight',
                format='svg')

    plt.close()
Beispiel #12
0
class GOEngine:
    def __init__(
        self,
        work_dir: str = '.',
        clean_work_dir: bool = False,
        organism: str = 'human',
        study_parameters: Dict[str, Union[int, float, str, List, Dict]] = {
            'propagate_counts': False,
            'alpha': 0.05,
            'methods': ['fdr_bh']
        }
    ) -> GOEngine:
        """A GOEngine that can be used for performing analysis using GOATOOLS

        Args:
            work_dir (str, optional): The path to a temp directory were intermediate-results and raw data will be downloaded/written to. Defaults to the current working directory.
            clean_work_dir (bool, optional): Whether or not to remove data written to the work directory at class termination, default to True.
            organism (str, optional): The organism . Defaults to 'human'.
            study_parameters (Dict[str,Union[int,float,str,List,Dict]], optional): A dict of parameters to control the base function, defaults to {'propagate_counts':False,'alpha':0.05, 'methods':['fdr_bh']}
        Returns:
            GOEngine: return a GO engine that can be used for performing GO enrichment analysis GOEnrichmentStudyNS
        """
        print("Creating a GO Engine ...")
        if not os.path.exists(work_dir):
            raise ValueError(
                f"The provided work path: {work_dir} does not exist!!!")
        self.work_dir = work_dir
        if organism != 'human' and organism != 'mouse':
            raise ValueError(
                f"The provided organism: {organism} is not support, current engine mainly work with human and moues only"
            )
        print(f"\t --> Downloading data ...")
        obo_fname = download_go_basic_obo(
            os.path.join(work_dir, 'go-basic.obo'))
        gene2go_fname = download_ncbi_associations(
            os.path.join(work_dir, 'gene2go'))
        ## parse the GO term
        print(
            f"\t --> parsing the data and intializing the base GOEA object...")
        obo_dag = GODag(obo_fname)
        if organism == 'human':
            self._goea_obj = GOEnrichmentStudyNS(
                gene2iden_human.keys(),
                Gene2GoReader(gene2go_fname, taxids=[9606]).get_ns2assc(),
                obo_dag, **study_parameters)
        else:
            self._goea_obj = GOEnrichmentStudyNS(
                gene2iden_human.keys(),
                Gene2GoReader(gene2go_fname, taxids=[10090]).get_ns2assc(),
                obo_dag, **study_parameters)
        self._clean_work_dir = clean_work_dir
        self._gene_ids = None
        return

    def load_data(self, exp: Experiment, num_proteins: int = -1) -> None:
        """Load the data to the Engine, so GOEA can be conducted 

        Args:
            exp (Experiment): An Experimental object to extract uniprot ids 
            num_proteins (int, optional): The number of proteins to be included in the analysis. Defaults -1 to which mean use all proteins,\
                 otherwise it uses the number of proteins provided by the user. note that the function is sorted by number of peptides per protein,\
                      that is the first 10 protein means, getting the top 10 protein with most peptides. 
        Raises:
            ValueError: if the function called while data being already associated with the engine from a previous call
        """
        if self._gene_ids is not None:
            raise ValueError(
                f"There some data still in the engine, the first 10 genes are: {','.join(self._gene_ids[:10])}\
                clean your engine from previous data using the function, clean_engine and try again."
            )
        print(
            f"Getting the number of peptide per protein ..., started at: {time.ctime()}"
        )
        num_protein_per_peptides = exp.get_peptides_per_protein()
        if num_proteins == -1:
            list_proteins = num_protein_per_peptides.iloc[:, 0].to_list()
        else:
            list_proteins = num_protein_per_peptides.iloc[:, 0].to_list(
            )[:num_proteins]
        print(
            f"Map uniprot to Entrez gene ids ..., starting at: {time.ctime()}")
        self._gene_ids = [
            int(gene_id) for gene_id in map_from_uniprot_to_Entrez_Gene(
                list_proteins).iloc[:, 1].to_list()
        ]
        print(f"{len(self._gene_ids)} Genes have been correctly loaded")
        return

    def run_analysis(
        self,
        quite: bool = False,
        only_signifcant: bool = True,
        significance_level: float = 0.05,
        get_list_term: bool = False
    ) -> Union[pd.DataFrame, List[GOEnrichmentRecord]]:
        if quite:
            goea_results = self._goea_obj.run_study(self._gene_ids, prt=None)
        else:
            goea_results = self._goea_obj.run_study(self._gene_ids)
        if only_signifcant:
            goea_results = [
                res for res in goea_results
                if res.p_fdr_bh < significance_level
            ]
        if get_list_term:
            return goea_results
        else:
            self._goea_obj.wr_tsv(os.path.join(self.work_dir, 'temp_file.tsv'),
                                  goea_results)
            results_df = pd.read_csv(os.path.join(self.work_dir,
                                                  'temp_file.tsv'),
                                     sep='\t')
            os.system(f"rm -f {os.path.join(self.work_dir,'temp_file.tsv')}")
        return results_df

    def clean_engine(self) -> None:
        """Remove Current list of gene ids associated with the engine 
        """
        self._gene_ids = None
        return

    def __del__(self) -> None:
        """class destructor, clean work directory if  clean_work_dir is set to True 
        """
        if self.clean_work_dir: os.system(f"rm -f {self.work_dir}/*")
        return