def create_model(project_id, dataset_id, display_name): """Create a model.""" # [START automl_language_entity_extraction_create_model] from google.cloud import automl # TODO(developer): Uncomment and set the following variables # project_id = "YOUR_PROJECT_ID" # dataset_id = "YOUR_DATASET_ID" # display_name = "YOUR_MODEL_NAME" client = automl.AutoMlClient() # A resource that represents Google Cloud Platform location. project_location = f"projects/{project_id}/locations/us-central1" # Leave model unset to use the default base model provided by Google metadata = automl.TextExtractionModelMetadata() model = automl.Model( display_name=display_name, dataset_id=dataset_id, text_extraction_model_metadata=metadata, ) # Create a model with the model metadata in the region. response = client.create_model(parent=project_location, model=model) print("Training operation name: {}".format(response.operation.name)) print("Training started...")
def create_model(project_id, dataset_id, display_name): """Create a model.""" # [START automl_vision_classification_create_model] from google.cloud import automl # TODO(developer): Uncomment and set the following variables # project_id = "YOUR_PROJECT_ID" # dataset_id = "YOUR_DATASET_ID" # display_name = "your_models_display_name" client = automl.AutoMlClient() # A resource that represents Google Cloud Platform location. project_location = f"projects/{project_id}/locations/us-central1" # Leave model unset to use the default base model provided by Google # train_budget_milli_node_hours: The actual train_cost will be equal or # less than this value. # https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodelmetadata metadata = automl.ImageClassificationModelMetadata( train_budget_milli_node_hours=24000) model = automl.Model( display_name=display_name, dataset_id=dataset_id, image_classification_model_metadata=metadata, ) # Create a model with the model metadata in the region. response = client.create_model(parent=project_location, model=model) print("Training operation name: {}".format(response.operation.name)) print("Training started...") # [END automl_vision_classification_create_model] return response
def train_text_extraction_model( self, display_name: (str, 'the display name for the dataset and model'), input_paths: (str, 'the paths to csv files describing the input data for a new dataset' ) = '', dataset_id: (str, 'the id of an existing dataset to reuse') = '', train_budget_milli_node_hours: int = 24000) -> Operation: dataset = None if len(dataset_id) == 0: dataset = automl.Dataset( display_name=display_name, text_extraction_dataset_metadata={}, ) metadata = automl.TextExtractionModelMetadata() model = automl.Model(display_name=display_name, dataset_id=dataset_id, text_extraction_model_metadata=metadata) long_running_operation = self.train_automl_model( model=model, dataset=dataset, dataset_id=dataset_id, input_paths=input_paths) return long_running_operation
def train_image_classification_model( self, display_name: (str, 'the display name for the dataset and model'), input_paths: (str, 'the paths to csv files describing the input data for a new dataset' ) = '', dataset_id: (str, 'the id of an existing dataset to reuse') = '', classification_type: (automl.ClassificationType, 'MULTICLASS or MULTILABEL' ) = automl.ClassificationType.MULTICLASS, train_budget_milli_node_hours: int = 24000) -> Operation: dataset = None if len(dataset_id) == 0: # Specify the classification type # Types: # MultiLabel: Multiple labels are allowed for one example. # MultiClass: At most one label is allowed per example. # https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#classificationtype metadata = automl.ImageClassificationDatasetMetadata( classification_type=classification_type) dataset = automl.Dataset( display_name=display_name, image_classification_dataset_metadata=metadata, ) # Leave model unset to use the default base model provided by Google # train_budget_milli_node_hours: The actual train_cost will be equal or # less than this value. # https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodelmetadata metadata = automl.ImageClassificationModelMetadata( train_budget_milli_node_hours=train_budget_milli_node_hours) model = automl.Model( display_name=display_name, dataset_id=dataset_id, image_classification_model_metadata=metadata, ) long_running_operation = self.train_automl_model( model=model, dataset=dataset, dataset_id=dataset_id, input_paths=input_paths) return long_running_operation
def create_model(project_id, dataset_id, display_name): """Create a model.""" # [START automl_language_entity_extraction_create_model] client = automl.AutoMlClient() # A resource that represents Google Cloud Platform location. project_location = "projects/{}/locations/us-central1".format(project_id) print(project_location) # Leave model unset to use the default base model provided by Google metadata = automl.TextExtractionModelMetadata() model = automl.Model( display_name=display_name, dataset_id=dataset_id, text_extraction_model_metadata=metadata, ) # Create a model with the model metadata in the region. response = client.create_model(parent=project_location, model=model) print("Training operation name: {}".format(response.operation.name)) print("Training started...")
def train_text_classification_model( self, display_name: (str, 'the display name for the dataset and model'), input_paths: ( str, 'the paths to csv files describing the input data for a new dataset' ) = '', dataset_id: (str, 'the id of an existing dataset to reuse') = '', classification_type: ( automl.ClassificationType, 'MULTICLASS or MULTILABEL') = automl.ClassificationType.MULTICLASS ) -> Operation: dataset = None if len(dataset_id) == 0: # Specify the classification type # Types: # MultiLabel: Multiple labels are allowed for one example. # MultiClass: At most one label is allowed per example. # https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#classificationtype metadata = automl.TextClassificationDatasetMetadata( classification_type=classification_type) dataset = automl.Dataset( display_name=display_name, text_classification_dataset_metadata=metadata, ) model = automl.Model(display_name=display_name, dataset_id=dataset_id, text_classification_model_metadata={}) long_running_operation = self.train_automl_model( model=model, dataset=dataset, dataset_id=dataset_id, input_paths=input_paths) return long_running_operation
print("Processing import...") print("Data imported. {}".format(response.result())) start_training_time = time.time() project_location = f"projects/{project_id}/locations/us-central1" # Leave model unset to use the default base model provided by Google # train_budget_milli_node_hours: The actual train_cost will be equal or # less than this value. # https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodelmetadata metadata = automl.ImageClassificationModelMetadata( train_budget_milli_node_hours=8000 ) model = automl.Model( display_name=display_name, dataset_id=dataset_id, image_classification_model_metadata=metadata, ) # Create a model with the model metadata in the region. response = client.create_model(parent=project_location, model=model) print("Training operation name: {}".format(response.operation.name)) print("Training started...") model_id = response.result().name.split('/')[-1] start_deploying_time = time.time() model_full_id = client.model_path(project_id, "us-central1", model_id)
import os from google.cloud import automl from dotenv import load_dotenv load_dotenv() project_id = os.getenv("PROJECT_ID") dataset_id = os.getenv("DATASET_ID") display_name = "qna_multiclass_model" client = automl.AutoMlClient() # A resource that represents Google Cloud Platform location. project_location = f"projects/{project_id}/locations/us-central1" # Leave model unset to use the default base model provided by Google metadata = automl.TextClassificationModelMetadata() model = automl.Model( display_name=display_name, dataset_id=dataset_id, text_classification_model_metadata=metadata, ) # Create a model with the model metadata in the region. response = client.create_model(parent=project_location, model=model) print("Training operation name: {}".format(response.operation.name)) print("Training started...")