Beispiel #1
0
def main(N=73, seed=42, mprocs=2, nprocs=2, dtype=float):
    gen = np.random.RandomState(seed)
    grid = BlacsGrid(world, mprocs, nprocs)
    
    if (dtype==complex):
        epsilon = 1.0j
    else:
        epsilon = 0.0

    # Create descriptors for matrices on master:
    glob = grid.new_descriptor(N, N, N, N)

    # print globA.asarray()
    # Populate matrices local to master:
    H0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape)
    S0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape)
    C0 = glob.empty(dtype=dtype)
    if rank == 0:
        # Complex case must have real numbers on the diagonal.
        # We make a simple complex Hermitian matrix below.
        H0 = H0 + epsilon * (0.1*np.tri(N, N, k= -N // nprocs) + 0.3*np.tri(N, N, k=-1))
        S0 = S0 + epsilon * (0.2*np.tri(N, N, k= -N // nprocs) + 0.4*np.tri(N, N, k=-1))
        # Make matrices symmetric
        rk(1.0, H0.copy(), 0.0, H0)
        rk(1.0, S0.copy(), 0.0, S0)
        # Overlap matrix must be semi-positive definite
        S0 = S0 + 50.0*np.eye(N, N, 0)
        # Hamiltonian is usually diagonally dominant
        H0 = H0 + 75.0*np.eye(N, N, 0)
        C0 = S0.copy()

    # Local result matrices
    W0 = np.empty((N),dtype=float)
    W0_g = np.empty((N),dtype=float)

    # Calculate eigenvalues
    if rank == 0:
        diagonalize(H0.copy(), W0)
        general_diagonalize(H0.copy(), W0_g, S0.copy())
        inverse_cholesky(C0) # result returned in lower triangle
        # tri2full(C0) # symmetrize
        
    assert glob.check(H0) and glob.check(S0) and glob.check(C0)

    # Create distributed destriptors with various block sizes:
    dist = grid.new_descriptor(N, N, 8, 8)

    # Distributed matrices:
    # We can use empty here, but end up with garbage on
    # on the other half of the triangle when we redistribute.
    # This is fine because ScaLAPACK does not care.

    H = dist.empty(dtype=dtype)
    S = dist.empty(dtype=dtype)
    Z = dist.empty(dtype=dtype)
    C = dist.empty(dtype=dtype)

    # Eigenvalues are non-BLACS matrices
    W = np.empty((N), dtype=float)
    W_dc = np.empty((N), dtype=float)
    W_mr3 = np.empty((N), dtype=float)
    W_g = np.empty((N), dtype=float)
    W_g_dc = np.empty((N), dtype=float)
    W_g_mr3 = np.empty((N), dtype=float)

    Glob2dist = Redistributor(world, glob, dist)
    Glob2dist.redistribute(H0, H, uplo='L')
    Glob2dist.redistribute(S0, S, uplo='L')
    Glob2dist.redistribute(S0, C, uplo='L') # C0 was previously overwritten

    # we don't test the expert drivers anymore since there
    # might be a buffer overflow error
    ## scalapack_diagonalize_ex(dist, H.copy(), Z, W, 'L')
    scalapack_diagonalize_dc(dist, H.copy(), Z, W_dc, 'L')
    ## scalapack_diagonalize_mr3(dist, H.copy(), Z, W_mr3, 'L')
    ## scalapack_general_diagonalize_ex(dist, H.copy(), S.copy(), Z, W_g, 'L')
    scalapack_general_diagonalize_dc(dist, H.copy(), S.copy(), Z, W_g_dc, 'L')
    ## scalapack_general_diagonalize_mr3(dist, H.copy(), S.copy(), Z, W_g_mr3, 'L')
    scalapack_inverse_cholesky(dist, C, 'L')

    # Undo redistribute
    C_test = glob.empty(dtype=dtype)
    Dist2glob = Redistributor(world, dist, glob)
    Dist2glob.redistribute(C, C_test)

    if rank == 0:
        ## diag_ex_err = abs(W - W0).max()
        diag_dc_err = abs(W_dc - W0).max()
        ## diag_mr3_err = abs(W_mr3 - W0).max()
        ## general_diag_ex_err = abs(W_g - W0_g).max()
        general_diag_dc_err = abs(W_g_dc - W0_g).max()
        ## general_diag_mr3_err = abs(W_g_mr3 - W0_g).max()
        inverse_chol_err = abs(C_test-C0).max()
        ## print 'diagonalize ex err', diag_ex_err
        print 'diagonalize dc err', diag_dc_err
        ## print 'diagonalize mr3 err', diag_mr3_err
        ## print 'general diagonalize ex err', general_diag_ex_err
        print 'general diagonalize dc err', general_diag_dc_err
        ## print 'general diagonalize mr3 err', general_diag_mr3_err
        print 'inverse chol err', inverse_chol_err 
    else:
        ## diag_ex_err = 0.0
        diag_dc_err = 0.0
        ## diag_mr3_err = 0.0
        ## general_diag_ex_err = 0.0
        general_diag_dc_err = 0.0
        ## general_diag_mr3_err = 0.0
        inverse_chol_err = 0.0

    # We don't like exceptions on only one cpu
    ## diag_ex_err = world.sum(diag_ex_err)
    diag_dc_err = world.sum(diag_dc_err)
    ## diag_mr3_err = world.sum(diag_mr3_err)
    ## general_diag_ex_err = world.sum(general_diag_ex_err)
    general_diag_dc_err = world.sum(general_diag_dc_err)
    ## general_diag_mr3_err = world.sum(general_diag_mr3_err) 
    inverse_chol_err = world.sum(inverse_chol_err)
    ## assert diag_ex_err < tol
    assert diag_dc_err < tol
    ## assert diag_mr3_err < tol
    ## assert general_diag_ex_err < tol
    assert general_diag_dc_err < tol
    ## assert general_diag_mr3_err < tol
    assert inverse_chol_err < tol
Beispiel #2
0
def main(N=72, seed=42, mprocs=2, nprocs=2, dtype=float):
    gen = np.random.RandomState(seed)
    grid = BlacsGrid(world, mprocs, nprocs)

    if (dtype == complex):
        epsilon = 1.0j
    else:
        epsilon = 0.0

    # Create descriptors for matrices on master:
    glob = grid.new_descriptor(N, N, N, N)

    # print globA.asarray()
    # Populate matrices local to master:
    H0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape)
    S0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape)
    C0 = glob.empty(dtype=dtype)
    if rank == 0:
        # Complex case must have real numbers on the diagonal.
        # We make a simple complex Hermitian matrix below.
        H0 = H0 + epsilon * (0.1 * np.tri(N, N, k=-N // nprocs) +
                             0.3 * np.tri(N, N, k=-1))
        S0 = S0 + epsilon * (0.2 * np.tri(N, N, k=-N // nprocs) +
                             0.4 * np.tri(N, N, k=-1))
        # Make matrices symmetric
        rk(1.0, H0.copy(), 0.0, H0)
        rk(1.0, S0.copy(), 0.0, S0)
        # Overlap matrix must be semi-positive definite
        S0 = S0 + 50.0 * np.eye(N, N, 0)
        # Hamiltonian is usually diagonally dominant
        H0 = H0 + 75.0 * np.eye(N, N, 0)
        C0 = S0.copy()
        S0_inv = S0.copy()

    # Local result matrices
    W0 = np.empty((N), dtype=float)
    W0_g = np.empty((N), dtype=float)

    # Calculate eigenvalues / other serial results
    if rank == 0:
        diagonalize(H0.copy(), W0)
        general_diagonalize(H0.copy(), W0_g, S0.copy())
        inverse_cholesky(C0)  # result returned in lower triangle
        tri2full(S0_inv, 'L')
        S0_inv = inv(S0_inv)
        # tri2full(C0) # symmetrize

    assert glob.check(H0) and glob.check(S0) and glob.check(C0)

    # Create distributed destriptors with various block sizes:
    dist = grid.new_descriptor(N, N, 8, 8)

    # Distributed matrices:
    # We can use empty here, but end up with garbage on
    # on the other half of the triangle when we redistribute.
    # This is fine because ScaLAPACK does not care.

    H = dist.empty(dtype=dtype)
    S = dist.empty(dtype=dtype)
    Sinv = dist.empty(dtype=dtype)
    Z = dist.empty(dtype=dtype)
    C = dist.empty(dtype=dtype)
    Sinv = dist.empty(dtype=dtype)

    # Eigenvalues are non-BLACS matrices
    W = np.empty((N), dtype=float)
    W_dc = np.empty((N), dtype=float)
    W_mr3 = np.empty((N), dtype=float)
    W_g = np.empty((N), dtype=float)
    W_g_dc = np.empty((N), dtype=float)
    W_g_mr3 = np.empty((N), dtype=float)

    Glob2dist = Redistributor(world, glob, dist)
    Glob2dist.redistribute(H0, H, uplo='L')
    Glob2dist.redistribute(S0, S, uplo='L')
    Glob2dist.redistribute(S0, C, uplo='L')  # C0 was previously overwritten
    Glob2dist.redistribute(S0, Sinv, uplo='L')

    # we don't test the expert drivers anymore since there
    # might be a buffer overflow error
    ## scalapack_diagonalize_ex(dist, H.copy(), Z, W, 'L')
    scalapack_diagonalize_dc(dist, H.copy(), Z, W_dc, 'L')
    ## scalapack_diagonalize_mr3(dist, H.copy(), Z, W_mr3, 'L')
    ## scalapack_general_diagonalize_ex(dist, H.copy(), S.copy(), Z, W_g, 'L')
    scalapack_general_diagonalize_dc(dist, H.copy(), S.copy(), Z, W_g_dc, 'L')
    ## scalapack_general_diagonalize_mr3(dist, H.copy(), S.copy(), Z, W_g_mr3, 'L')

    scalapack_inverse_cholesky(dist, C, 'L')

    if dtype == complex:  # Only supported for complex for now
        scalapack_inverse(dist, Sinv, 'L')
    # Undo redistribute
    C_test = glob.empty(dtype=dtype)
    Sinv_test = glob.empty(dtype=dtype)
    Dist2glob = Redistributor(world, dist, glob)
    Dist2glob.redistribute(C, C_test)
    Dist2glob.redistribute(Sinv, Sinv_test)

    if rank == 0:
        ## diag_ex_err = abs(W - W0).max()
        diag_dc_err = abs(W_dc - W0).max()
        ## diag_mr3_err = abs(W_mr3 - W0).max()
        ## general_diag_ex_err = abs(W_g - W0_g).max()
        general_diag_dc_err = abs(W_g_dc - W0_g).max()
        ## general_diag_mr3_err = abs(W_g_mr3 - W0_g).max()
        inverse_chol_err = abs(C_test - C0).max()

        tri2full(Sinv_test, 'L')
        inverse_err = abs(Sinv_test - S0_inv).max()
        ## print 'diagonalize ex err', diag_ex_err
        print('diagonalize dc err', diag_dc_err)
        ## print 'diagonalize mr3 err', diag_mr3_err
        ## print 'general diagonalize ex err', general_diag_ex_err
        print('general diagonalize dc err', general_diag_dc_err)
        ## print 'general diagonalize mr3 err', general_diag_mr3_err
        print('inverse chol err', inverse_chol_err)
        if dtype == complex:
            print('inverse err', inverse_err)
    else:
        ## diag_ex_err = 0.0
        diag_dc_err = 0.0
        ## diag_mr3_err = 0.0
        ## general_diag_ex_err = 0.0
        general_diag_dc_err = 0.0
        ## general_diag_mr3_err = 0.0
        inverse_chol_err = 0.0
        inverse_err = 0.0

    # We don't like exceptions on only one cpu
    ## diag_ex_err = world.sum(diag_ex_err)
    diag_dc_err = world.sum(diag_dc_err)
    ## diag_mr3_err = world.sum(diag_mr3_err)
    ## general_diag_ex_err = world.sum(general_diag_ex_err)
    general_diag_dc_err = world.sum(general_diag_dc_err)
    ## general_diag_mr3_err = world.sum(general_diag_mr3_err)
    inverse_chol_err = world.sum(inverse_chol_err)
    inverse_err = world.sum(inverse_err)
    ## assert diag_ex_err < tol
    assert diag_dc_err < tol
    ## assert diag_mr3_err < tol
    ## assert general_diag_ex_err < tol
    assert general_diag_dc_err < tol
    ## assert general_diag_mr3_err < tol
    assert inverse_chol_err < tol
    if dtype == complex:
        assert inverse_err < tol
Beispiel #3
0
 def inverse_cholesky(self, S_nn, UL='L'):
     """See documentation in gpaw/utilities/blacs.py."""
     scalapack_inverse_cholesky(self, S_nn, UL)
Beispiel #4
0
 def inverse_cholesky(self, S_nn, UL='L'):
     """See documentation in gpaw/utilities/blacs.py."""
     scalapack_inverse_cholesky(self, S_nn, UL)