Beispiel #1
0
    def onClientInitialize(self, client_dict):
        self.safe_print('Running on %s.' % (client_dict['device_name']))
        self.type = client_dict['type']
        self.image_size = client_dict['image_size']
        self.face_type = client_dict['face_type']
        self.device_idx = client_dict['device_idx']
        self.cpu_only = client_dict['device_type'] == 'CPU'
        self.output_path = Path(
            client_dict['output_dir']) if 'output_dir' in client_dict.keys(
            ) else None
        self.debug = client_dict['debug']
        self.detector = client_dict['detector']

        self.keras = None
        self.tf = None
        self.tf_session = None

        self.e = None
        if self.type == 'rects':
            if self.detector is not None:
                if self.detector == 'mt':

                    self.gpu_config = gpufmkmgr.GPUConfig(
                        cpu_only=self.cpu_only,
                        force_best_gpu_idx=self.device_idx,
                        allow_growth=True)
                    self.tf = gpufmkmgr.import_tf(self.gpu_config)
                    self.tf_session = gpufmkmgr.get_tf_session()
                    self.keras = gpufmkmgr.import_keras()
                    self.e = facelib.MTCExtractor(self.keras, self.tf,
                                                  self.tf_session)
                elif self.detector == 'dlib':
                    self.dlib = gpufmkmgr.import_dlib(self.device_idx,
                                                      cpu_only=self.cpu_only)
                    self.e = facelib.DLIBExtractor(self.dlib)
                self.e.__enter__()

        elif self.type == 'landmarks':
            self.gpu_config = gpufmkmgr.GPUConfig(
                cpu_only=self.cpu_only,
                force_best_gpu_idx=self.device_idx,
                allow_growth=True)
            self.tf = gpufmkmgr.import_tf(self.gpu_config)
            self.tf_session = gpufmkmgr.get_tf_session()
            self.keras = gpufmkmgr.import_keras()
            self.e = facelib.LandmarksExtractor(self.keras)
            self.e.__enter__()

        elif self.type == 'final':
            pass

        return None
Beispiel #2
0
 def __init__(self,):
     import gpufmkmgr
     
     self.tf_module = gpufmkmgr.import_tf()
     self.tf_session = gpufmkmgr.get_tf_session()
     
     self.bgr_input_tensor = self.tf_module.placeholder("float", [None, None, 3])
     self.lab_input_tensor = self.tf_module.placeholder("float", [None, None, 3])
     
     self.lab_output_tensor = self.rgb_to_lab(self.tf_module, self.bgr_input_tensor)        
     self.bgr_output_tensor = self.lab_to_rgb(self.tf_module, self.lab_input_tensor)
Beispiel #3
0
    def __init__(self,
                 model_path,
                 training_data_src_path=None,
                 training_data_dst_path=None,
                 multi_gpu=False,
                 force_best_gpu_idx=-1,
                 force_gpu_idxs=None,
                 write_preview_history=False,
                 debug=False,
                 **in_options):
        print("Loading model...")
        self.model_path = model_path
        self.model_data_path = Path(
            self.get_strpath_storage_for_file('data.dat'))

        self.training_data_src_path = training_data_src_path
        self.training_data_dst_path = training_data_dst_path
        self.training_datas = [None] * TrainingDataType.QTY

        self.src_images_paths = None
        self.dst_images_paths = None
        self.src_yaw_images_paths = None
        self.dst_yaw_images_paths = None
        self.src_data_generator = None
        self.dst_data_generator = None
        self.is_training_mode = (training_data_src_path is not None
                                 and training_data_dst_path is not None)
        self.batch_size = 1
        self.write_preview_history = write_preview_history
        self.debug = debug
        self.supress_std_once = False  #True

        if self.model_data_path.exists():
            model_data = pickle.loads(self.model_data_path.read_bytes())
            self.epoch = model_data['epoch']
            self.options = model_data['options']
            self.loss_history = model_data[
                'loss_history'] if 'loss_history' in model_data.keys() else []
            self.generator_dict_states = model_data[
                'generator_dict_states'] if 'generator_dict_states' in model_data.keys(
                ) else None
            self.sample_for_preview = model_data[
                'sample_for_preview'] if 'sample_for_preview' in model_data.keys(
                ) else None
        else:
            self.epoch = 0
            self.options = {}
            self.loss_history = []
            self.generator_dict_states = None
            self.sample_for_preview = None

        if self.write_preview_history:
            self.preview_history_path = self.model_path / (
                '%s_history' % (self.get_model_name()))

            if not self.preview_history_path.exists():
                self.preview_history_path.mkdir(exist_ok=True)
            else:
                if self.epoch == 0:
                    for filename in Path_utils.get_image_paths(
                            self.preview_history_path):
                        Path(filename).unlink()

        self.multi_gpu = multi_gpu

        gpu_idx = force_best_gpu_idx if (
            force_best_gpu_idx >= 0
            and gpufmkmgr.isValidDeviceIdx(force_best_gpu_idx)
        ) else gpufmkmgr.getBestDeviceIdx()
        gpu_total_vram_gb = gpufmkmgr.getDeviceVRAMTotalGb(gpu_idx)
        is_gpu_low_mem = (gpu_total_vram_gb < 4)

        self.gpu_total_vram_gb = gpu_total_vram_gb

        if self.epoch == 0:
            #first run
            self.options['created_vram_gb'] = gpu_total_vram_gb
            self.created_vram_gb = gpu_total_vram_gb
        else:
            #not first run
            if 'created_vram_gb' in self.options.keys():
                self.created_vram_gb = self.options['created_vram_gb']
            else:
                self.options['created_vram_gb'] = gpu_total_vram_gb
                self.created_vram_gb = gpu_total_vram_gb

        if force_gpu_idxs is not None:
            self.gpu_idxs = [int(x) for x in force_gpu_idxs.split(',')]
        else:
            if self.multi_gpu:
                self.gpu_idxs = gpufmkmgr.getDeviceIdxsEqualModel(gpu_idx)
                if len(self.gpu_idxs) <= 1:
                    self.multi_gpu = False
            else:
                self.gpu_idxs = [gpu_idx]

        self.tf = gpufmkmgr.import_tf(self.gpu_idxs, allow_growth=False)
        self.keras = gpufmkmgr.import_keras()
        self.keras_contrib = gpufmkmgr.import_keras_contrib()

        self.onInitialize(**in_options)

        if self.debug:
            self.batch_size = 1

        if self.is_training_mode:
            if self.generator_list is None:
                raise Exception('You didnt set_training_data_generators()')
            else:
                for i, generator in enumerate(self.generator_list):
                    if not isinstance(generator, TrainingDataGeneratorBase):
                        raise Exception(
                            'training data generator is not subclass of TrainingDataGeneratorBase'
                        )

                    if self.generator_dict_states is not None and i < len(
                            self.generator_dict_states):
                        generator.set_dict_state(self.generator_dict_states[i])

            if self.sample_for_preview is None:
                self.sample_for_preview = self.generate_next_sample()

        print("===== Model summary =====")
        print("== Model name: " + self.get_model_name())
        print("==")
        print("== Current epoch: " + str(self.epoch))
        print("==")
        print("== Options:")
        print("== |== batch_size : %s " % (self.batch_size))
        print("== |== multi_gpu : %s " % (self.multi_gpu))
        for key in self.options.keys():
            print("== |== %s : %s" % (key, self.options[key]))

        print("== Running on:")
        for idx in self.gpu_idxs:
            print("== |== [%d : %s]" % (idx, gpufmkmgr.getDeviceName(idx)))

        if self.gpu_total_vram_gb == 2:
            print("==")
            print(
                "== WARNING: You are using 2GB GPU. If training does not start,"
            )
            print("== close all programs and try again.")
            print(
                "== Also you can disable Windows Aero Desktop to get extra free VRAM."
            )
            print("==")
        print("=========================")
Beispiel #4
0
    def __init__(self,
                 model_path,
                 training_data_src_path=None,
                 training_data_dst_path=None,
                 batch_size=0,
                 write_preview_history=False,
                 debug=False,
                 **in_options):
        print("Loading model...")
        self.model_path = model_path
        self.model_data_path = Path(
            self.get_strpath_storage_for_file('data.dat'))

        self.training_data_src_path = training_data_src_path
        self.training_data_dst_path = training_data_dst_path

        self.src_images_paths = None
        self.dst_images_paths = None
        self.src_yaw_images_paths = None
        self.dst_yaw_images_paths = None
        self.src_data_generator = None
        self.dst_data_generator = None
        self.is_training_mode = (training_data_src_path is not None
                                 and training_data_dst_path is not None)
        self.batch_size = batch_size
        self.write_preview_history = write_preview_history
        self.debug = debug
        self.supress_std_once = ('TF_SUPPRESS_STD' in os.environ.keys()
                                 and os.environ['TF_SUPPRESS_STD'] == '1')

        if self.model_data_path.exists():
            model_data = pickle.loads(self.model_data_path.read_bytes())
            self.epoch = model_data['epoch']
            self.options = model_data['options']
            self.loss_history = model_data[
                'loss_history'] if 'loss_history' in model_data.keys() else []
            self.sample_for_preview = model_data[
                'sample_for_preview'] if 'sample_for_preview' in model_data.keys(
                ) else None
        else:
            self.epoch = 0
            self.options = {}
            self.loss_history = []
            self.sample_for_preview = None

        if self.write_preview_history:
            self.preview_history_path = self.model_path / (
                '%s_history' % (self.get_model_name()))

            if not self.preview_history_path.exists():
                self.preview_history_path.mkdir(exist_ok=True)
            else:
                if self.epoch == 0:
                    for filename in Path_utils.get_image_paths(
                            self.preview_history_path):
                        Path(filename).unlink()

        self.gpu_config = gpufmkmgr.GPUConfig(allow_growth=False, **in_options)
        self.gpu_total_vram_gb = self.gpu_config.gpu_total_vram_gb

        if self.epoch == 0:
            #first run
            self.options['created_vram_gb'] = self.gpu_total_vram_gb
            self.created_vram_gb = self.gpu_total_vram_gb
        else:
            #not first run
            if 'created_vram_gb' in self.options.keys():
                self.created_vram_gb = self.options['created_vram_gb']
            else:
                self.options['created_vram_gb'] = self.gpu_total_vram_gb
                self.created_vram_gb = self.gpu_total_vram_gb

        self.tf = gpufmkmgr.import_tf(self.gpu_config)
        self.tf_sess = gpufmkmgr.get_tf_session()
        self.keras = gpufmkmgr.import_keras()
        self.keras_contrib = gpufmkmgr.import_keras_contrib()

        self.onInitialize(**in_options)

        if self.debug or self.batch_size == 0:
            self.batch_size = 1

        if self.is_training_mode:
            if self.generator_list is None:
                raise Exception('You didnt set_training_data_generators()')
            else:
                for i, generator in enumerate(self.generator_list):
                    if not isinstance(generator, SampleGeneratorBase):
                        raise Exception(
                            'training data generator is not subclass of SampleGeneratorBase'
                        )

            if self.sample_for_preview is None:
                self.sample_for_preview = self.generate_next_sample()

        print("===== Model summary =====")
        print("== Model name: " + self.get_model_name())
        print("==")
        print("== Current epoch: " + str(self.epoch))
        print("==")
        print("== Options:")
        print("== |== batch_size : %s " % (self.batch_size))
        print("== |== multi_gpu : %s " % (self.gpu_config.multi_gpu))
        for key in self.options.keys():
            print("== |== %s : %s" % (key, self.options[key]))

        print("== Running on:")
        if self.gpu_config.cpu_only:
            print("== |== [CPU]")
        else:
            for idx in self.gpu_config.gpu_idxs:
                print("== |== [%d : %s]" % (idx, gpufmkmgr.getDeviceName(idx)))

        if not self.gpu_config.cpu_only and self.gpu_total_vram_gb == 2:
            print("==")
            print(
                "== WARNING: You are using 2GB GPU. Result quality may be significantly decreased."
            )
            print(
                "== If training does not start, close all programs and try again."
            )
            print(
                "== Also you can disable Windows Aero Desktop to get extra free VRAM."
            )
            print("==")

        print("=========================")
Beispiel #5
0
def extract_pass_process(sq, cq):
    e = None
    type = None
    device_idx = None
    debug = False
    output_path = None
    detector = None
    image_size = None
    face_type = None
    while True:
        obj = sq.get()
        obj_op = obj['op']

        if obj_op == 'extract':
            data = obj['data']

            filename_path = Path(data[0])

            if not filename_path.exists():
                cq.put({
                    'op':
                    'error',
                    'close':
                    False,
                    'is_file_not_found':
                    True,
                    'data':
                    obj['data'],
                    'message':
                    'Failed to extract %s, reason: file not found.' %
                    (str(filename_path))
                })
            else:
                try:
                    image = cv2.imread(str(filename_path))

                    if type == 'rects':
                        rects = e.extract_from_bgr(image)
                        cq.put({
                            'op': 'extract_success',
                            'data': obj['data'],
                            'result': [str(filename_path), rects]
                        })

                    elif type == 'landmarks':
                        rects = data[1]
                        landmarks = e.extract_from_bgr(image, rects)
                        cq.put({
                            'op': 'extract_success',
                            'data': obj['data'],
                            'result': [str(filename_path), landmarks]
                        })

                    elif type == 'final':
                        result = []
                        faces = data[1]

                        if debug:
                            debug_output_file = '{}_{}'.format(
                                str(
                                    Path(str(output_path) + '_debug') /
                                    filename_path.stem), 'debug.png')
                            debug_image = image.copy()

                        for (face_idx, face) in enumerate(faces):
                            rect = face[0]
                            image_landmarks = np.array(face[1])
                            image_to_face_mat = facelib.LandmarksProcessor.get_transform_mat(
                                image_landmarks, image_size, face_type)
                            output_file = '{}_{}{}'.format(
                                str(output_path / filename_path.stem),
                                str(face_idx), '.png')

                            if debug:
                                facelib.LandmarksProcessor.draw_rect_landmarks(
                                    debug_image, rect, image_landmarks,
                                    image_size, face_type)

                            face_image = cv2.warpAffine(
                                image, image_to_face_mat,
                                (image_size, image_size))
                            face_image_landmarks = facelib.LandmarksProcessor.transform_points(
                                image_landmarks, image_to_face_mat)

                            cv2.imwrite(output_file, face_image)

                            a_png = AlignedPNG.load(output_file)

                            d = {
                                'type':
                                'face',
                                'landmarks':
                                face_image_landmarks.tolist(),
                                'yaw_value':
                                facelib.LandmarksProcessor.calc_face_yaw(
                                    face_image_landmarks),
                                'pitch_value':
                                facelib.LandmarksProcessor.calc_face_pitch(
                                    face_image_landmarks),
                                'source_filename':
                                filename_path.name,
                                'source_rect':
                                rect,
                                'source_landmarks':
                                image_landmarks.tolist()
                            }
                            a_png.setFaceswapDictData(d)
                            a_png.save(output_file)

                            result.append(output_file)

                        if debug:
                            cv2.imwrite(debug_output_file, debug_image)

                        cq.put({
                            'op': 'extract_success',
                            'data': obj['data'],
                            'result': result
                        })

                except Exception as e:
                    cq.put({
                        'op':
                        'error',
                        'close':
                        True,
                        'data':
                        obj['data'],
                        'message':
                        'Failed to extract %s, reason: %s. \r\n%s' %
                        (str(filename_path), str(e), traceback.format_exc())
                    })
                    break

        elif obj_op == 'init':
            try:
                type = obj['type']
                image_size = obj['image_size']
                face_type = obj['face_type']
                device_idx = obj['device_idx']
                output_path = Path(
                    obj['output_dir']) if 'output_dir' in obj.keys() else None
                debug = obj['debug']
                detector = obj['detector']

                if type == 'rects':
                    if detector is not None:
                        if detector == 'mt':
                            tf = gpufmkmgr.import_tf([device_idx],
                                                     allow_growth=True)
                            tf_session = gpufmkmgr.get_tf_session()
                            keras = gpufmkmgr.import_keras()
                            e = facelib.MTCExtractor(keras, tf, tf_session)
                        elif detector == 'dlib':
                            dlib = gpufmkmgr.import_dlib(device_idx)
                            e = facelib.DLIBExtractor(dlib)
                        e.__enter__()

                elif type == 'landmarks':
                    gpufmkmgr.import_tf([device_idx], allow_growth=True)
                    keras = gpufmkmgr.import_keras()
                    e = facelib.LandmarksExtractor(keras)
                    e.__enter__()
                elif type == 'final':
                    pass

                cq.put({'op': 'init_ok'})
            except Exception as e:
                cq.put({
                    'op':
                    'error',
                    'close':
                    True,
                    'message':
                    'Exception while initialization: %s' %
                    (traceback.format_exc())
                })
                break

    if detector is not None and (type == 'rects' or type == 'landmarks'):
        e.__exit__()