Beispiel #1
0
    def __init__(self, train_X: Tensor, train_Y: Tensor, train_Yvar: Tensor) -> None:
        r"""A single-task exact GP model using a heteroskedastic noise model.

        Args:
            train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training
                features.
            train_Y: A `n x m` or `batch_shape x n x m` (batch mode) tensor of
                training observations.
            train_Yvar: A `batch_shape x n x m` or `batch_shape x n x m`
                (batch mode) tensor of observed measurement noise.

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> se = torch.norm(train_X, dim=1, keepdim=True)
            >>> train_Yvar = 0.1 + se * torch.rand_like(train_Y)
            >>> model = HeteroskedasticSingleTaskGP(train_X, train_Y, train_Yvar)
        """
        validate_input_scaling(train_X=train_X, train_Y=train_Y, train_Yvar=train_Yvar)
        self._validate_tensor_args(X=train_X, Y=train_Y, Yvar=train_Yvar)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        noise_likelihood = GaussianLikelihood(
            noise_prior=SmoothedBoxPrior(-3, 5, 0.5, transform=torch.log),
            batch_shape=self._aug_batch_shape,
            noise_constraint=GreaterThan(
                MIN_INFERRED_NOISE_LEVEL, transform=None, initial_value=1.0
            ),
        )
        noise_model = SingleTaskGP(
            train_X=train_X, train_Y=train_Yvar.log(), likelihood=noise_likelihood
        )

        likelihood = _GaussianLikelihoodBase(HeteroskedasticNoise(noise_model))
        super().__init__(train_X=train_X, train_Y=train_Y, likelihood=likelihood)
        self.to(train_X)
Beispiel #2
0
    def __init__(self, train_X: Tensor, train_Y: Tensor, train_Yvar: Tensor) -> None:
        r"""A single-task exact GP model using a heteroskedastic noise model.

        Args:
            train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training
                features.
            train_Y: A `n x (o)` or `batch_shape x n x (o)` (batch mode) tensor of
                training observations.
            train_Yvar: A `batch_shape x n x (o)` or `batch_shape x n x (o)`
                (batch mode) tensor of observed measurement noise..

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X[:, 0]]) + torch.cos(train_X[:, 1])
            >>> se = torch.norm(train_X - 0.5, dim=-1)
            >>> train_Yvar = 0.1 + se * torch.rand_like(train_Y)
            >>> model = HeteroskedasticSingleTaskGP(train_X, train_Y, train_Yvar)
        """
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        train_Y_log_var = torch.log(train_Yvar)
        noise_likelihood = GaussianLikelihood(
            noise_prior=SmoothedBoxPrior(-3, 5, 0.5, transform=torch.log),
            batch_shape=self._aug_batch_shape,
            noise_constraint=GreaterThan(MIN_INFERRED_NOISE_LEVEL, transform=None),
        )
        noise_model = SingleTaskGP(
            train_X=train_X, train_Y=train_Y_log_var, likelihood=noise_likelihood
        )

        likelihood = _GaussianLikelihoodBase(HeteroskedasticNoise(noise_model))
        super().__init__(train_X=train_X, train_Y=train_Y, likelihood=likelihood)
        self.to(train_X)
Beispiel #3
0
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        likelihood: Optional[Likelihood] = None,
        covar_module: Optional[Module] = None,
    ) -> None:
        r"""A single-task exact GP model.

        Args:
            train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training
                features.
            train_Y: A `n x m` or `batch_shape x n x m` (batch mode) tensor of
                training observations.
            likelihood: A likelihood. If omitted, use a standard
                GaussianLikelihood with inferred noise level.
            covar_module: The covariance (kernel) matrix. If omitted, use the
                MaternKernel.

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> model = SingleTaskGP(train_X, train_Y)
        """
        validate_input_scaling(train_X=train_X, train_Y=train_Y)
        self._validate_tensor_args(X=train_X, Y=train_Y)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        train_X, train_Y, _ = self._transform_tensor_args(X=train_X, Y=train_Y)
        if likelihood is None:
            noise_prior = GammaPrior(1.1, 0.05)
            noise_prior_mode = (noise_prior.concentration -
                                1) / noise_prior.rate
            likelihood = GaussianLikelihood(
                noise_prior=noise_prior,
                batch_shape=self._aug_batch_shape,
                noise_constraint=GreaterThan(
                    MIN_INFERRED_NOISE_LEVEL,
                    transform=None,
                    initial_value=noise_prior_mode,
                ),
            )
        else:
            self._is_custom_likelihood = True
        ExactGP.__init__(self, train_X, train_Y, likelihood)
        self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape)
        if covar_module is None:
            self.covar_module = ScaleKernel(
                MaternKernel(
                    nu=2.5,
                    ard_num_dims=train_X.shape[-1],
                    batch_shape=self._aug_batch_shape,
                    lengthscale_prior=GammaPrior(3.0, 6.0),
                ),
                batch_shape=self._aug_batch_shape,
                outputscale_prior=GammaPrior(2.0, 0.15),
            )
        else:
            self.covar_module = covar_module
        self.to(train_X)
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        train_Yvar: Tensor,
        outcome_transform: Optional[OutcomeTransform] = None,
    ) -> None:
        r"""A single-task exact GP model using a heteroskedastic noise model.

        Args:
            train_X: A `batch_shape x n x d` tensor of training features.
            train_Y: A `batch_shape x n x m` tensor of training observations.
            train_Yvar: A `batch_shape x n x m` tensor of observed measurement
                noise.
            outcome_transform: An outcome transform that is applied to the
                training data during instantiation and to the posterior during
                inference (that is, the `Posterior` obtained by calling
                `.posterior` on the model will be on the original scale).
                Note that the noise model internally log-transforms the
                variances, which will happen after this transform is applied.

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> se = torch.norm(train_X, dim=1, keepdim=True)
            >>> train_Yvar = 0.1 + se * torch.rand_like(train_Y)
            >>> model = HeteroskedasticSingleTaskGP(train_X, train_Y, train_Yvar)
        """
        if outcome_transform is not None:
            train_Y, train_Yvar = outcome_transform(train_Y, train_Yvar)
        validate_input_scaling(train_X=train_X,
                               train_Y=train_Y,
                               train_Yvar=train_Yvar)
        self._validate_tensor_args(X=train_X, Y=train_Y, Yvar=train_Yvar)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        noise_likelihood = GaussianLikelihood(
            noise_prior=SmoothedBoxPrior(-3, 5, 0.5, transform=torch.log),
            batch_shape=self._aug_batch_shape,
            noise_constraint=GreaterThan(MIN_INFERRED_NOISE_LEVEL,
                                         transform=None,
                                         initial_value=1.0),
        )
        noise_model = SingleTaskGP(
            train_X=train_X,
            train_Y=train_Yvar,
            likelihood=noise_likelihood,
            outcome_transform=Log(),
        )
        likelihood = _GaussianLikelihoodBase(HeteroskedasticNoise(noise_model))
        super().__init__(train_X=train_X,
                         train_Y=train_Y,
                         likelihood=likelihood)
        self.register_added_loss_term("noise_added_loss")
        self.update_added_loss_term("noise_added_loss",
                                    NoiseModelAddedLossTerm(noise_model))
        if outcome_transform is not None:
            self.outcome_transform = outcome_transform
        self.to(train_X)
Beispiel #5
0
    def __init__(self,
                 train_X: Tensor,
                 train_Y: Tensor,
                 likelihood: Optional[Likelihood] = None) -> None:
        r"""A single-task exact GP model.

        Args:
            train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training
                features.
            train_Y: A `n x (o)` or `batch_shape x n x (o)` (batch mode) tensor of
                training observations.
            likelihood: A likelihood. If omitted, use a standard
                GaussianLikelihood with inferred noise level.

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X[:, 0]) + torch.cos(train_X[:, 1])
            >>> model = SingleTaskGP(train_X, train_Y)
        """
        ard_num_dims = train_X.shape[-1]
        train_X, train_Y, _ = self._set_dimensions(train_X=train_X,
                                                   train_Y=train_Y)
        train_X, train_Y, _ = multioutput_to_batch_mode_transform(
            train_X=train_X, train_Y=train_Y, num_outputs=self._num_outputs)
        if likelihood is None:
            noise_prior = GammaPrior(1.1, 0.05)
            noise_prior_mode = (noise_prior.concentration -
                                1) / noise_prior.rate
            likelihood = GaussianLikelihood(
                noise_prior=noise_prior,
                batch_shape=self._aug_batch_shape,
                noise_constraint=GreaterThan(
                    MIN_INFERRED_NOISE_LEVEL,
                    transform=None,
                    initial_value=noise_prior_mode,
                ),
            )
        else:
            self._likelihood_state_dict = deepcopy(likelihood.state_dict())
        ExactGP.__init__(self, train_X, train_Y, likelihood)
        self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape)
        self.covar_module = ScaleKernel(
            MaternKernel(
                nu=2.5,
                ard_num_dims=ard_num_dims,
                batch_shape=self._aug_batch_shape,
                lengthscale_prior=GammaPrior(3.0, 6.0),
            ),
            batch_shape=self._aug_batch_shape,
            outputscale_prior=GammaPrior(2.0, 0.15),
        )
        self.to(train_X)
Beispiel #6
0
 def update(self, context, actions, rewards):
     self.x.append(context)
     self.y.append(actions if rewards > 0 else abs(actions-1))
     # if rewards > 0:
     #     self.y.append(actions)
     # elif rewards == 0:
     #     self.y.append(0.5)
     # elif rewards < 0:
     #     self.y.append(abs(actions-1))
     likelihood = GaussianLikelihood(
         noise_prior=noise_prior,
         noise_constraint=GreaterThan(
             MIN_INFERRED_NOISE_LEVEL,
             transform=None,
             initial_value=noise_prior_mode,
         ),
     )
     self.model = GPRegressionModel(torch.Tensor(self.x).to(device), torch.Tensor(self.y).to(device), likelihood).to(device)
     mll = ExactMarginalLogLikelihood(likelihood, self.model).to(device)
     fit_gpytorch_model(mll, optimizer=fit_gpytorch_torch)
Beispiel #7
0
    def fit_gp(self) -> None:
        """
        Re-fits the GP using the most up to date data.
        """
        noise_prior = GammaPrior(1.1, 0.5)
        noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate
        likelihood = GaussianLikelihood(
            noise_prior=noise_prior,
            batch_shape=[],
            noise_constraint=GreaterThan(
                # 0.000005,  # minimum observation noise assumed in the GP model
                0.0001,
                transform=None,
                initial_value=noise_prior_mode,
            ),
        )

        self.model = SingleTaskGP(
            self.X, self.Y, likelihood, outcome_transform=Standardize(m=1)
        )
        mll = ExactMarginalLogLikelihood(self.model.likelihood, self.model)
        fit_gpytorch_model(mll)

        # dummy computation to be safe with gp fit
        try:
            dummy = torch.rand(
                (1, self.q, self.dim), dtype=self.dtype, device=self.device
            )
            _ = self.model.posterior(dummy).mean
        except RuntimeError as err:
            if self.fit_count < 5:
                self.fit_count += 1
                self.Y = self.Y + torch.randn_like(self.Y) * 0.001
                self.fit_gp()
            else:
                raise err
        self.fit_count = 0
        self.passed = False
Beispiel #8
0
    def initialize_model(self, train_X, train_Y, state_dict=None):
        """Initialise model for BO."""
        # From: https://github.com/pytorch/botorch/issues/179
        noise_prior = GammaPrior(1.1, 0.05)
        noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate
        MIN_INFERRED_NOISE_LEVEL = 1e-3
        likelihood = GaussianLikelihood(
            noise_prior=noise_prior,
            noise_constraint=GreaterThan(
                MIN_INFERRED_NOISE_LEVEL,
                transform=None,
                initial_value=noise_prior_mode,
            ),
        )

        # train_x = self.scale_to_0_1_bounds(train_X)
        train_Y = standardize(train_Y)
        gp = SingleTaskGP(train_X, train_Y, likelihood=likelihood)
        mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
        # load state dict if it is passed
        if state_dict is not None:
            gp.load_state_dict(state_dict)
        return mll, gp
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        likelihood: Optional[Likelihood] = None,
        covar_module: Optional[Module] = None,
        outcome_transform: Optional[OutcomeTransform] = None,
    ) -> None:
        r"""A single-task exact GP model.

        Args:
            train_X: A `batch_shape x n x d` tensor of training features.
            train_Y: A `batch_shape x n x m` tensor of training observations.
            likelihood: A likelihood. If omitted, use a standard
                GaussianLikelihood with inferred noise level.
            covar_module: The module computing the covariance (Kernel) matrix.
                If omitted, use a `MaternKernel`.
            outcome_transform: An outcome transform that is applied to the
                training data during instantiation and to the posterior during
                inference (that is, the `Posterior` obtained by calling
                `.posterior` on the model will be on the original scale).

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> model = SingleTaskGP(train_X, train_Y)
        """
        if outcome_transform is not None:
            train_Y, _ = outcome_transform(train_Y)
        validate_input_scaling(train_X=train_X, train_Y=train_Y)
        self._validate_tensor_args(X=train_X, Y=train_Y)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        train_X, train_Y, _ = self._transform_tensor_args(X=train_X, Y=train_Y)
        if likelihood is None:
            noise_prior = GammaPrior(1.1, 0.05)
            noise_prior_mode = (noise_prior.concentration -
                                1) / noise_prior.rate
            likelihood = GaussianLikelihood(
                noise_prior=noise_prior,
                batch_shape=self._aug_batch_shape,
                noise_constraint=GreaterThan(
                    MIN_INFERRED_NOISE_LEVEL,
                    transform=None,
                    initial_value=noise_prior_mode,
                ),
            )
        else:
            self._is_custom_likelihood = True
        ExactGP.__init__(self, train_X, train_Y, likelihood)
        self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape)
        if covar_module is None:
            self.covar_module = ScaleKernel(
                MaternKernel(
                    nu=2.5,
                    ard_num_dims=train_X.shape[-1],
                    batch_shape=self._aug_batch_shape,
                    lengthscale_prior=GammaPrior(3.0, 6.0),
                ),
                batch_shape=self._aug_batch_shape,
                outputscale_prior=GammaPrior(2.0, 0.15),
            )
            self._subset_batch_dict = {
                "likelihood.noise_covar.raw_noise": -2,
                "mean_module.constant": -2,
                "covar_module.raw_outputscale": -1,
                "covar_module.base_kernel.raw_lengthscale": -3,
            }
        else:
            self.covar_module = covar_module
        # TODO: Allow subsetting of other covar modules
        if outcome_transform is not None:
            self.outcome_transform = outcome_transform
        self.to(train_X)