Beispiel #1
0
 def test_ABD(self):
     grader = grading.Grader()
     taskResponse = Mock()
     taskResponse.graded_response = True
     self.models.TaskResponse.query.filter_by.return_value.first.return_value = taskResponse
     ret = grader.grade_automatic_questions(1)
     self.assertEqual(ret, None)
Beispiel #2
0
def submit_mountain_car(generate_session, email, token):
    sessions = [generate_session() for _ in range(100)]
    _, _, session_rewards = zip(*sessions)
    session_rewards = np.array(session_rewards)
    grader = grading.Grader("EyYJW9bUEeeXyQ5ZPWKHGg")
    grader.set_answer("mXDUE", np.mean(session_rewards))
    grader.submit(email, token)
Beispiel #3
0
    def get(self, responseID):
        grader = grading.Grader()
        grader.grade_automatic_questions(responseID)
        grader.grade_supplementary_material(responseID)
        task_response = models.TaskResponse.query.filter_by(
            id=responseID).first()
        course = task_response.task.course
        courses_where_ta = current_user.get_courses_where_ta()
        if task_response.student_id != current_user.id and \
                course not in current_user.get_courses_where_teacher_or_ta():
            return "Permission Denied", 401
        if task_response.student_id == current_user.id and \
                task_response.task.status != "grades published":
            return "Task Not Yet Released"
        formatted_time = task_response.datetime.strftime("%a %b %d %H:%M:%S")
        response = json.loads(task_response.graded_response)
        supplementary = json.loads(task_response.graded_supplementary)
        supplementary_order = json.loads(task_response.supplementary_order)

        return render_template("grading/response.html",
                               response=response,
                               student=task_response.user,
                               task=task_response.task,
                               task_response=task_response,
                               time=formatted_time,
                               supplementary=supplementary,
                               permissions=current_user.permissions,
                               supplementaryOrder=supplementary_order)
Beispiel #4
0
def submit_kungfu(agent, env, evaluate, email, token):
    with tqdm.trange(10, desc='Evaluating your agent') as t:
        sessions = [evaluate(agent=agent, env=env, n_games=1) for _ in t]
    session_rewards = np.array(sessions)
    grader = grading.Grader("6sPnVCn6EeieSRL7rCBNJA")
    grader.set_answer("HhNVX", int(np.mean(session_rewards)))
    grader.submit(email, token)
Beispiel #5
0
    def test_has_questions(self):
        trquestion1 = {
            'questionID': 1,
            'correctOption': "A",
            'correctOptionText': "text"
        }
        question1 = {
            'questionID': 1,
            'selectedOption': "A",
        }
        taskResponse = Mock()
        taskResponse.graded_response = False
        taskResponse.response = json.dumps({
            'automatic_questions': [question1],
            'manual_questions': []
        })
        taskResponse.correctness_grade = None
        taskResponse.task = Mock()
        taskResponse.task.questions = json.dumps([trquestion1])
        self.models.TaskResponse.query.filter_by.return_value.first.return_value = taskResponse
        grader = grading.Grader()
        grader.calculate_correctness = Mock()
        grader.calculate_correctness.return_value = "grade"

        ret = grader.grade_automatic_questions(1)
        self.assertEqual(taskResponse.correctness_grade, "grade")
        exp = {
            'questionID': 1,
            'selectedOption': "A",
            'correctOption': "A",
            'correct': True,
            'correctOptionText': "text"
        }
        self.assertEqual(ret, [exp])
Beispiel #6
0
def submit_qlearning2(rewards, email, token):
    flag1 = np.mean(rewards[-10:])

    grader = grading.Grader("XbjcGd7xEeeDzRKutDCmyA")
    grader.set_answer("CkyJ4", flag1)

    grader.submit(email, token)
Beispiel #7
0
def submit_kungfu(session_rewards, email, token):
    grader = grading.Grader("6sPnVCn6EeieSRL7rCBNJA")
    # NOTE: Bug, so multiplied with 100, see
    #       https://www.coursera.org/learn/practical-rl/programming/95h2n/grader-a3c/discussions/threads/Q1XYCe08EeigTgpIFoGjKg
    #       https://www.coursera.org/learn/practical-rl/programming/95h2n/grader-a3c/discussions/threads/F1JHgGRmEei8iRK3RpIYPA/replies/vILx4WchEeimAgoMPemTPA
    grader.set_answer("HhNVX", 100 * int(np.mean(session_rewards)))
    grader.submit(email, token)
Beispiel #8
0
def submit_cartpole(generate_session, email, token):
    sessions = [generate_session() for _ in range(100)]
    # session_rewards, _, _ = map(np.array, zip(*sessions))
    session_rewards = np.array(sessions)
    grader = grading.Grader("RDofv-QXEeeaGw6kpIOf3g")
    grader.set_answer("NRNkl", int(np.mean(session_rewards)))
    grader.submit(email, token)
Beispiel #9
0
def submit_taxi(generate_session, policy, email, token):
    sessions = [generate_session(policy) for _ in range(100)]
    _, _, session_rewards = zip(*sessions)
    session_rewards = np.array(session_rewards)
    grader = grading.Grader("s4pTlNbTEeeQvQ7N1-Sa3A")
    grader.set_answer("GsMSL", np.mean(session_rewards))
    grader.submit(email, token)
Beispiel #10
0
def submit_autoencoder(submission, score, email, token):
    grader = grading.Grader("9TShnp1JEeeGGAoCUnhvuA")
    encoder, decoder = submission
    grader.set_answer("FtBSK", encoder.output_shape[1])
    grader.set_answer("83Glu", decoder.output_shape[1:])
    grader.set_answer("fnM1K", score)
    grader.submit(email, token)
Beispiel #11
0
def submit_char_rnn(submission, score, email, token):
    grader = grading.Grader("cULEpp2NEeemQBKZKgu93A")
    history, samples = submission
    assert len(samples) == 25
    grader.set_answer("pttMO", int(np.mean(history[:10]) > np.mean(history[-10:])))
    grader.set_answer("uly0D", len(set(samples)))
    grader.submit(email, token)
Beispiel #12
0
def submit_seq2seq(test_scores, email, token):
    mean_reward = np.mean(test_scores)
    print('Your average reward is {}'.format(mean_reward))

    grader = grading.Grader("Xz763cqoEemssQpwd3-dGA")
    grader.set_answer("GzE7v", mean_reward)
    grader.submit(email, token)
Beispiel #13
0
def submit_breakout(agent, env, evaluate, email, token):
    session_rewards = [evaluate(env, agent, n_games=1) for _ in range(100)]
    mean_reward = np.mean(session_rewards)
    print('Your average reward is {} over 100 episodes'.format(mean_reward))

    grader = grading.Grader("WTOZHCn1EeiNwAoZNi-Hrg")
    grader.set_answer("VFM7Z", mean_reward)
    grader.submit(email, token)
Beispiel #14
0
def submit_mountain_car(generate_session, agent, email, token):
    with gym.make("MountainCar-v0").env as env:
        sessions = [generate_session(env, agent) for _ in range(100)]
    _, _, session_rewards = zip(*sessions)
    session_rewards = np.array(session_rewards)
    grader = grading.Grader("EyYJW9bUEeeXyQ5ZPWKHGg")
    grader.set_answer("mXDUE", np.mean(session_rewards))
    grader.submit(email, token)
def submit_cartpole(generate_session, email, token):
    sessions = [generate_session() for _ in range(100)]
    # Bug: See https://www.coursera.org/learn/practical-rl/programming/L47Fs/approximate-qlearning-cartpole/discussions/threads/K9-K8lblEeiw7g60zbwcSA
    # session_rewards, _, _ = map(np.array, zip(*sessions))
    session_rewards = np.array(sessions)
    grader = grading.Grader("RDofv-QXEeeaGw6kpIOf3g")
    grader.set_answer("NRNkl", int(np.mean(session_rewards)))
    grader.submit(email, token)
Beispiel #16
0
def submit_cartpole(generate_session, email, token):
    with gym.make("CartPole-v0").env as env:
        session_rewards = [generate_session(env) for _ in range(100)]
    mean_reward = np.mean(session_rewards)
    print('Your average reward is {} over 100 episodes'.format(mean_reward))

    grader = grading.Grader("RDofv-QXEeeaGw6kpIOf3g")
    grader.set_answer("NRNkl", mean_reward)
    grader.submit(email, token)
Beispiel #17
0
def submit_breakout(agent, env, evaluate, email, token):
    sessions = [evaluate(env, agent, n_games=1) for _ in range(100)]
    session_rewards = np.array(sessions)
    grader = grading.Grader("WTOZHCn1EeiNwAoZNi-Hrg")
    grader.set_answer("VFM7Z", int(np.mean(session_rewards)))
    grader.submit(email, token)


####session_rewards, _, _ = map(np.array, zip(*sessions))
def submit_qlearning_all(rewards_q1, rewards_q2, email, token):
    grader = grading.Grader("XbjcGd7xEeeDzRKutDCmyA")
    flag1 = np.mean(rewards_q1[-10:])
    grader.set_answer("5NB4z", flag1)

    flag2 = np.mean(rewards_q2[-10:])
    grader.set_answer("CkyJ4", flag2)

    grader.submit(email, token)
Beispiel #19
0
def submit_cartpole_pytorch(generate_session, email, token):
    env = gym.make("CartPole-v0")
    if hasattr(env, '_max_episode_steps'):
        env = env.env

    sessions = [np.sum(generate_session(env)[2]) for _ in range(100)]
    session_rewards = np.array(sessions)
    grader = grading.Grader("oyT3Bt7yEeeQvhJmhysb5g")
    grader.set_answer("7QKmA", int(np.mean(session_rewards)))
    grader.submit(email, token)
Beispiel #20
0
def submit_cartpole(generate_session, email, token):
    with gym.make("CartPole-v0").env as env:
        session_rewards = [
            np.sum(generate_session(env)[2]) for _ in range(100)
        ]
    mean_reward = np.mean(session_rewards)
    print('Your average reward is {} over 100 episodes'.format(mean_reward))

    grader = grading.Grader("oyT3Bt7yEeeQvhJmhysb5g")
    grader.set_answer("7QKmA", mean_reward)
    grader.submit(email, token)
Beispiel #21
0
def submit_kungfu(agent, env, evaluate, email, token):
    with tqdm.trange(10, desc='Evaluating your agent') as progress_bar:
        session_rewards = [
            evaluate(agent=agent, env=env, n_games=1) for _ in progress_bar
        ]
    mean_reward = np.mean(session_rewards)
    print('Your average reward is {} over 10 episodes'.format(mean_reward))

    grader = grading.Grader("6sPnVCn6EeieSRL7rCBNJA")
    grader.set_answer("HhNVX", mean_reward)
    grader.submit(email, token)
Beispiel #22
0
def submit_experience_replay(rewards_replay, rewards_baseline, email, token):
    flag1 = np.mean(rewards_replay[:100]) - np.mean(rewards_baseline[:100])
    flag2 = np.mean(rewards_replay[-100:])
    flag3 = np.mean(rewards_baseline[-100:])

    grader = grading.Grader("XUt-8d7yEee8nwq8KJgXXg")
    grader.set_answer("iEQwT", flag1)
    grader.set_answer("8N1Wm", flag2)
    grader.set_answer("F0Am8", flag3)

    grader.submit(email, token)
Beispiel #23
0
def submit_sarsa(rewards_ql, rewards_sarsa, email, token):
    flag1 = np.mean(rewards_ql[-100:])
    flag2 = np.mean(rewards_sarsa[-100:])
    flag3 = np.mean(rewards_sarsa[-100:]) - np.mean(rewards_ql[-100:])

    grader = grading.Grader("pazQX97xEee_JA6t1Myltg")
    grader.set_answer("ZarWJ", flag1)
    grader.set_answer("izJi4", flag2)
    grader.set_answer("frgbU", flag3)

    grader.submit(email, token)
Beispiel #24
0
 def post(self):
     data = flask.request.get_json()
     response_id = data['response_id'].split('?')[0]
     response = models.TaskResponse.query.filter_by(id=response_id).first()
     course = response.task.course
     if course not in current_user.get_courses_where_teacher_or_ta():
         return "Permission Denied", 401
     grader = grading.Grader()
     correctness = grader.grade_manual_question(response_id,
                                                data['question_id'],
                                                data['correct'])
     return json.dumps(correctness)
Beispiel #25
0
 def test_allWrong_inDB_none_none(self):
     grader = grading.Grader()
     taskResponse = Mock()
     self.models.TaskResponse.query.filter_by.return_value.first.return_value = taskResponse
     taskResponse.graded_response = json.dumps({
         'automatic_questions': [],
         'manual_questions': [],
     })
     taskResponse.graded = None
     ret = grader.calculate_correctness(1)
     self.assertEqual(taskResponse.graded, True)
     self.assertEqual(ret, 0)
Beispiel #26
0
 def test_ABHIJKMNHIJKMNHPQS(self):
     grader = grading.Grader()
     taskResponse = Mock()
     self.models.TaskResponse.query.filter_by.return_value.first.return_value = taskResponse
     taskResponse.graded_response = json.dumps({
         'automatic_questions': [],
         'manual_questions': [{}]
     })
     taskResponse.graded = None
     ret = grader.calculate_correctness(1)
     self.assertEqual(taskResponse.graded, False)
     self.assertEqual(ret, 0)
Beispiel #27
0
 def post(self):
     data = flask.request.get_json()
     response_id = data['response_id'].split('?')[0]
     response = models.TaskResponse.query.filter_by(id=response_id).first()
     course = response.task.course
     if course not in current_user.get_courses_where_teacher_or_ta():
         return "Permission Denied", 401
     grader = grading.Grader()
     grader.grade_manual_question(response_id,
                                  data['question_id'],
                                  data['critical'],
                                  category="critical")
     models.db.session.commit()
     return ""
Beispiel #28
0
 def test_mixed_false_none_positive(self):
     grader = grading.Grader()
     taskResponse = Mock()
     self.models.TaskResponse.query.filter_by.return_value.first.return_value = None
     taskResponse.graded_response = json.dumps({
         'automatic_questions': [],
         'manual_questions': [{
             'correctness': 50
         }],
     })
     taskResponse.graded = None
     ret = grader.calculate_correctness(1)
     self.assertEqual(taskResponse.graded, None)
     self.assertEqual(ret, 0)
Beispiel #29
0
 def test_ABCEFMPSUV(self):
     grader = grading.Grader()
     taskResponse = Mock()
     taskResponse.graded_response = False
     taskResponse.response = json.dumps({
         'automatic_questions': [],
         'manual_questions': []
     })
     taskResponse.correctness_grade = None
     taskResponse.task = Mock()
     taskResponse.task.questions = json.dumps([])
     self.models.TaskResponse.query.filter_by.return_value.first.return_value = taskResponse
     ret = grader.grade_automatic_questions(1)
     self.assertEqual(taskResponse.correctness_grade, 0)
     self.assertEqual(ret, [])
Beispiel #30
0
 def test_correctness(self):
     grader = grading.Grader()
     grader.calculate_correctness = Mock()
     grader.calculate_correctness.return_value = "grade"
     grader.grade_manual_question("notused", 2, False)
     exp = {
         'manual_questions': [{
             'questionID': 1
         }, {
             'questionID': 2,
             'correctness': False
         }]
     }
     self.assertEqual(self.response.correctness_grade, "grade")
     self.assertEqual(self.response.graded_response, json.dumps(exp))