Beispiel #1
0
    def pr_bin_dist(self):
        st = Stat()
        final_pr = st.user_pagerank()[self.log.end_date]
        log_pr = self.cal_log_pr(final_pr.values())
        per = self.get_bins(70, log_pr)
        rep = self.get_rep(log_pr, per)
        count = np.zeros(len(rep))
        cdf = np.zeros(len(rep))
        for pr in final_pr.values():
            g = self.get_bin_group(self.cal_log_pr(pr), per)
            count[g] += 1
        for i in range(len(count)):
            if i == 0:
                cdf[i] = count[i]
            cdf[i] = count[i] + cdf[i - 1]

        print cdf
        count = self.cal_log_pr(count)
        cdf = self.cal_log_pr(cdf)
        count, rep_cleaned = self.clean_lists(count, rep)
        xp = np.linspace(np.min(rep_cleaned), np.max(rep_cleaned), 100)
        print np.polyfit(rep_cleaned, count, 1)
        cc = np.poly1d(np.polyfit(rep_cleaned, count, 1))
        plt.plot(rep_cleaned, count, '.', xp, cc(xp), '-')
        plt.show()

        cdf, rep_cleaned = self.clean_lists(cdf, rep)

        print np.polyfit(rep_cleaned, 1 - cdf, 1)
        cc = np.poly1d(np.polyfit(rep_cleaned, 1 - cdf, 1))
        plt.plot(rep_cleaned, 1 - cdf, '.', xp, cc(xp), '-')
        plt.show()
Beispiel #2
0
    def pr_distr(self):
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        pr_list = []
        for v in graph.vertices():
            pr_list.append(float("{0:.5f}".format(pr[v])))
        count = Counter(pr_list)
        x = []
        y = []
        for key in sorted(count.iterkeys()):
            x.append(key)
            y.append(count[key])
        plt.plot(x, y, 'r.')
        plt.ylim([0, 200])
        plt.show()

        plt.plot(np.log(x), np.log(y), 'r.')
        plt.ylim([0, np.log(200)])
        plt.show()

        cdf = [y[0]]
        for i in range(1, len(y)):
            cdf.append(cdf[i - 1] + y[i])

        plt.plot(x, cdf, 'r.')
        plt.show()

        plt.plot(np.log(x), np.log(cdf), 'r.')
        plt.show()

        plt.plot(np.log(x), 1 - np.log(np.array(cdf)), 'r.')
        plt.show()
Beispiel #3
0
    def join_date_final_pagerank(self):
        x = self.log.join_date_since_inception()
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        #print pr , graph
        id = graph.vertex_properties['id']
        join_since = []
        ult_pgr = []
        for v in graph.vertices():
            if v.out_degree() > 1:
                ult_pgr.append(pr[v])
                join_since.append(x[id[v]])

        #
        # join_since = join_since[1:]
        # ult_pgr = ult_pgr[1:]

        #plt.plot(join_since , ult_pgr , 'r.')
        #data = [join_since , ult_pgr]

        data = []
        for i in sorted(list(set(join_since))):
            d = []
            for j in range(len(join_since)):
                if join_since[j] == i:
                    d.append(ult_pgr[i])
            data.append(d)
        plt.boxplot(data)

        plt.xlabel('Day of joining ')
        plt.ylabel('Value of page rank')
        plt.show()

        # stat tests demo
        thr = max(ult_pgr) - min(ult_pgr)
        thr /= 2
        first = []
        second = []
        for i in range(len(ult_pgr)):
            if ult_pgr[i] > thr:
                first.append(join_since[i])
            else:
                second.append(join_since[i])

        # join = []
        # ult = []
        # for i in range(len(ult_pgr)):
        # 	#if ult_pgr[i] > 0.0001:
        # 	join.append(join_since[i])
        # 	ult.append(ult_pgr[i])

        # print len(join)
        # print len(join_since)
        # plt.plot(join, ult, 'r.')
        # plt.show()

        print(stats.ttest_ind(first, second, equal_var=False))
        print(stats.pearsonr(join_since, ult_pgr))
        print(stats.spearmanr(join_since, ult_pgr))
Beispiel #4
0
    def matthew_effect(self):
        st = Stat()
        final_pr = st.user_pagerank()[self.log.end_date]
        log_pr = self.cal_log_pr(final_pr.values())
        per = self.get_bins(70, log_pr)
        rep = self.get_rep(log_pr, per)
        print rep

        pr = st.user_pagerank()
        date = self.log.start_date
        pch = np.zeros(len(rep))
        pcount = np.zeros(len(rep))
        nch = np.zeros(len(rep))
        ncount = np.zeros(len(rep))
        change = np.zeros(len(rep))
        count = np.zeros(len(rep))
        rel_prob = np.zeros(len(rep))

        while date < self.log.end_date:
            for user in pr[date]:
                g = self.get_bin_group(self.cal_log_pr(pr[date][user]), per)
                if user not in pr[date + timedelta(7)]:
                    nch[g] += pr[date][user]
                    ncount[g] += 1
                    change[g] += pr[date][user]
                    count[g] += 1
                    continue
                ch = pr[date + timedelta(7)][user] - pr[date][user]
                if ch >= 0:
                    pch[g] += ch
                    pcount[g] += 1
                if ch < 0:
                    nch[g] += abs(ch)
                    ncount[g] += 1
                change[g] += pr[date][user]
                count[g] += 1
            date += timedelta(7)

        for i in range(len(pch)):
            pch[i] /= pcount[i]
            nch[i] /= ncount[i]
            change[i] /= count[i]
        nch = self.cal_log_pr(nch)
        pch = self.cal_log_pr(pch)
        change = self.cal_log_pr(change)

        print np.polyfit(rep, nch, 1)
        print np.polyfit(rep, pch, 1)
        print np.polyfit(rep, change, 1)
        pp = np.poly1d(np.polyfit(rep, pch, 1))
        nn = np.poly1d(np.polyfit(rep, nch, 1))
        changep = np.poly1d(np.polyfit(rep, change, 1))
        xp = np.linspace(np.min(rep), np.max(rep), 100)
        plt.plot(rep, pch, '.', xp, pp(xp), '-')
        plt.show()
        plt.plot(rep, nch, '.', xp, nn(xp), '-')
        plt.show()
        plt.plot(rep, change, '.', xp, changep(xp), '-')
        plt.show()
Beispiel #5
0
    def ten_top(self):
        x = self.log.join_date_since_inception()
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        id = graph.vertex_properties['id']
        id_invert = {}
        for v in graph.vertices():
            id_invert[id[v]] = int(v)
        print id_invert

        pr_dict = {}
        for v in graph.vertices():
            pr_dict[int(id[v])] = pr[v]

        sorted_pr = sorted(pr_dict.values())
        sorted_id = sorted(pr_dict, key=pr_dict.get)

        samples_pr = sorted_pr[20:30]
        samples_id = sorted_id[20:30]

        K = len(samples_id)

        samples_join = []
        for idx in samples_id:
            samples_join.append(x[str(idx)])

        print samples_pr
        print samples_join
        print samples_id

        pr = st.pagerank()
        date = self.log.start_date
        pr_ev = []
        date_idx = []
        for i in range(K):
            pr_ev.append([])
        while (date < self.log.end_date):
            p = pr[date]

            for i in range(K):
                try:
                    pr_ev[i].append(p[str(id_invert[str(samples_id[i])])])
                except Exception:
                    pr_ev[i].append(0)
            date += timedelta(14)
            date_idx.append((date - self.log.start_date).days)

        for i in range(K):
            plt.plot(date_idx, pr_ev[i])
        #print pr_ev[i]
        #plt.ylim([0,0.0002])
        plt.show()
Beispiel #6
0
	def __create_cumulative_design_matrix__(self , k = 5):
		kgram_list , kgram_count = self.create_k_grams(k)

		n = len(kgram_count.keys())
		X = np.zeros((n , len(kgram_list)))
		y = np.zeros(n)
		st = Stat()
		pr = st.user_pagerank()[self.log.end_date]
		sorted_ids = sorted(kgram_count.keys() , key = lambda x: int(x))
		for i , user in enumerate(sorted_ids):
			for j, gram in enumerate(kgram_list):
				if user not in pr:
					print user
					continue
				X[i,j] = kgram_count[user][gram]
				y[i]= pr[user]

		return X , y
Beispiel #7
0
    def join_final_date_avg_pagerank(self):
        x = self.log.join_date_since_inception()
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        id = graph.vertex_properties['id']
        join_since = []
        ult_pgr = []
        for v in graph.vertices():
            if v.out_degree() > 0:
                ult_pgr.append(pr[v])
                join_since.append(x[id[v]])

        avg_pr = []
        for i in range(1, 217):
            s = []
            for j in range(len(join_since)):
                if i == j: s.append(ult_pgr[j])
            avg_pr.append(np.average(s))

        print(stats.pearsonr([i for i in range(len(avg_pr))], avg_pr))
        print(stats.spearmanr([i for i in range(len(avg_pr))], avg_pr))

        plt.plot([i for i in range(1, 217)], avg_pr, 'r.')
        plt.show()

        avg_pr = []
        i = 0
        while i < 217:
            s = []
            for j in range(len(join_since)):
                if j >= i and j < i + 7:
                    s.append(ult_pgr[j])
            avg_pr.append(np.average(s))
            i += 7

        plt.plot([i for i in range(len(avg_pr))], avg_pr, 'r.')
        plt.show()

        print(stats.pearsonr([i for i in range(len(avg_pr))], avg_pr))
        print(stats.spearmanr([i for i in range(len(avg_pr))], avg_pr))
Beispiel #8
0
    def pr_msg_received(self, type='r'):
        spcorr = {}
        corr = {}
        st = Stat()
        rank = st.get_users_rank()
        seq = self.log.get_user_date_seq()
        for date in seq.iterkeys():
            weekly_rank = []
            weekly_r_count = []
            for user in seq[date].iterkeys():
                if date != self.log.end_date:
                    if user in rank[date]:
                        weekly_rank.append(rank[date].index(user) + 1)
                        weekly_r_count.append(
                            Counter(seq[date + timedelta(7)][user])[type])
            if weekly_r_count != [] and weekly_rank != []:
                corr[date] = stats.pearsonr(weekly_rank, weekly_r_count)
                spcorr[date] = stats.spearmanr(weekly_rank, weekly_r_count)

        # x = []
        # y = []
        # for date in sorted(corr.iterkeys()):
        # 	x.append((date - self.log.start_date).days)
        # 	y.append(corr[date][0])
        #
        # plt.plot(x,y , 'r.')
        # plt.show()

        x = []
        y = []
        for date in sorted(spcorr.iterkeys()):
            x.append((date - self.log.start_date).days)
            y.append(spcorr[date][0])

        # plt.plot(x, y, 'r.')
        # plt.show()

        return x, y
Beispiel #9
0
    def deck_pagerank(self):
        x = self.log.join_date_since_inception()
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        id = graph.vertex_properties['id']

        pr_dict = {}
        for v in graph.vertices():
            pr_dict[int(id[v])] = pr[v]

        sorted_pr = sorted(pr_dict.values())
        sorted_id = sorted(pr_dict, key=pr_dict.get)

        samples = []
        sample_day_joined = []
        samples_ids = []

        i = 0
        while (i < len(sorted_id)):

            idx = int(np.random.uniform() * 20)
            it = 0
            while (sorted_pr[idx + i] < 0.0001 and it < 20):
                idx = int(np.random.uniform() * 20)
                it += 1
            samples.append(sorted_pr[idx + i])
            sample_day_joined.append(x[str(sorted_id[idx + i])])
            samples_ids.append(idx + i)
            i += 20

        print(sample_day_joined)
        print(samples)
        print(samples_ids)

        plt.plot([i for i in range(len(samples))], sample_day_joined, 'r.')
        plt.show()
Beispiel #10
0
    def freq_pr_corr_weekly(self):
        st = Stat()
        rank = st.get_users_rank()

        seq = Sequence()
        kgram_list, kgram_count = seq.create_weekly_sequences()

        scorr = {}
        pcorr = {}
        for kgram in kgram_list:
            scorr[kgram] = {}
            pcorr[kgram] = {}
            date = self.log.start_date + timedelta(7)
            while date <= self.log.end_date:
                lrank = []
                lfreq = []
                for i, user in enumerate(rank[date]):
                    if user in kgram_count[date - timedelta(7)]:
                        if kgram in kgram_count[date - timedelta(7)][user]:
                            lfreq.append(
                                kgram_count[date - timedelta(7)][user][kgram])
                            if user in rank[date - timedelta(7)]:
                                prank = rank[date - timedelta(7)].index(user)
                                lrank.append(i - prank)
                            else:
                                lrank.append(i + 1)

                if lrank is not [] and lfreq is not []:
                    scorr[kgram][date] = stats.spearmanr(lfreq, lrank)
                    pcorr[kgram][date] = stats.pearsonr(lfreq, lrank)

                date += timedelta(7)

        print scorr
        print pcorr

        for kgram in kgram_list:
            score = []
            dates = []
            for date in scorr[kgram]:
                if type(scorr[kgram][date][0]) == np.float64 \
                  and scorr[kgram][date][0] is not np.nan and \
                    scorr[kgram][date][1] < 0.001:
                    dates.append((date - self.log.start_date).days)
                    score.append(scorr[kgram][date][0])
            if len(score) > 0:
                print(kgram)
                print score
                plt.plot(dates, score, '.')
                plt.show()

        for kgram in kgram_list:
            score = []
            dates = []
            for date in pcorr[kgram]:
                if type(pcorr[kgram][date][0]) == np.float64 \
                  and pcorr[kgram][date][0] is not np.nan and \
                    pcorr[kgram][date][1] < 0.001:
                    dates.append((date - self.log.start_date).days)
                    score.append(pcorr[kgram][date][0])
            if len(score) > 0:
                print(kgram)
                plt.plot(dates, score, '.')
                plt.show()
Beispiel #11
0
    def top_ten_change_in_pr(self):
        x = self.log.join_date_since_inception()
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        id = graph.vertex_properties['id']
        id_invert = {}
        for v in graph.vertices():
            id_invert[id[v]] = int(v)
        print id_invert

        pr_dict = {}
        for v in graph.vertices():
            pr_dict[int(id[v])] = pr[v]

        sorted_pr = sorted(pr_dict.values())
        sorted_id = sorted(pr_dict, key=pr_dict.get)

        K = 10

        samples_pr = sorted_pr[:]
        samples_id = sorted_id[:]
        # samples_pr = sorted_pr[-K:]
        # samples_id = sorted_id[-K:]
        # samples_pr = sorted_pr[1800 - K: 1800]
        # samples_id = sorted_id[1800 - K: 1800]
        # samples_pr = sorted_pr[1000 - K: 1000]
        # samples_id = sorted_id[1000 - K: 1000]
        # samples_pr = sorted_pr[800 - K: 800]
        # samples_id = sorted_id[800 - K: 800]

        K = len(samples_id)

        samples_join = []
        for idx in samples_id:
            samples_join.append(x[str(idx)])

        print samples_pr
        print samples_join
        print samples_id

        rank = st.get_users_rank()
        date_idx = []
        pr_ev = []
        pr_inc = []
        pr_dec = []
        for i in range(K):
            pr_ev.append([])
            pr_inc.append([])
            pr_dec.append([])
        date = self.log.start_date
        while date <= self.log.end_date - timedelta(7):
            date_idx.append((date - self.log.start_date).days)
            for i in range(K):
                try:
                    change = -rank[date].index(str(samples_id[i])) + \
                       rank[date + timedelta(7)].index(str(samples_id[i]))
                    pr_ev[i].append(change)
                    if change > 0:
                        pr_inc[i].append(change)
                        pr_dec[i].append(0)
                    else:
                        pr_dec[i].append(change)
                        pr_inc[i].append(0)
                except:
                    pr_ev[i].append(0)
                    pr_dec[i].append(0)
                    pr_inc[i].append(0)
            date += timedelta(7)
        for i in range(K):
            l = []
            date_idx_temp = []
            for j in range(len(pr_ev[i])):
                l.append(pr_ev[i][j])
                date_idx_temp.append(date_idx[j])
            plt.plot(date_idx_temp, l)
        plt.show()

        interval = timedelta(7)
        event_snapshot = self.log.get_event_snapshot('week', 'event')
        date = self.log.start_date
        data = []
        while date <= self.log.end_date - timedelta(7):
            data.append(len(event_snapshot[date]))
            date += interval

        freq = self.log.event_frequency('msg', 'week')

        prch = np.average(pr_ev, axis=0)
        prchp = np.average(pr_inc, axis=0)
        prchn = np.average(pr_dec, axis=0)
        print(stats.spearmanr(prch, data))
        print(stats.pearsonr(prch, data))
        print(stats.spearmanr(prchp, data))
        print(stats.pearsonr(prchp, data))
        print(stats.spearmanr(prchn, data))
        print(stats.pearsonr(prchn, data))
        prchp = prchp / np.array(freq[1:])
        prchn = prchn / np.array(freq[1:])
        plt.plot([i for i in range(len(prch))], prch)
        plt.show()
        plt.plot([i for i in range(len(prchp))], prchp)
        plt.show()
        plt.plot([i for i in range(len(prchp))], np.abs(prchn))
        plt.show()
Beispiel #12
0
    def pr_new_msgs_received(self):
        spcorr = {}
        corr = {}
        user_new_msg = {}
        new_weekly_msgs = self.log.get_new_messages_received()
        st = Stat()
        rank = st.get_users_rank()
        event_frequency = self.log.event_frequency('msg', 'week')
        for date in rank:
            wrank = []
            wnr = []
            for i, user in enumerate(rank[date]):
                if i + 1 not in user_new_msg:
                    user_new_msg[i + 1] = 0
                wrank.append(i + 1)
                if date in new_weekly_msgs:
                    if user in new_weekly_msgs[date]:
                        wnr.append(len(new_weekly_msgs[date][user]))
                        user_new_msg[i + 1] += len(new_weekly_msgs[date][user])
                    else:
                        wnr.append(0)
            if len(wnr) == len(wrank):
                spcorr[date] = stats.spearmanr(wnr, wrank)
                corr[date] = stats.pearsonr(wnr, wrank)

        #
        # x = []
        # y = []
        # for date in sorted(corr.iterkeys()):
        # 	x.append((date - self.log.start_date).days)
        # 	y.append(corr[date][0] )
        #
        # plt.plot(x, y, 'r.')
        # plt.show()

        x = []
        y = []
        for date in sorted(spcorr.iterkeys()):
            if spcorr[date][0] < 0.5:
                x.append((date - self.log.start_date).days)
                y.append(spcorr[date][0])

        new, = plt.plot(x, y, 'g')
        plt.xlabel('Day from inception')
        plt.ylabel('Spearman correlation')
        plt.title('Spearman correlation between page rank and number ' +\
            'of\n new messages received through out time')
        plt.margins(0.05)

        # x, y = self.pr_msg_received()
        # total, = plt.plot(x,y, 'r')

        plt.show()

        x, y = [], []
        for user in sorted(user_new_msg.keys(), key=lambda x: int(x)):
            x.append(user)
            y.append(user_new_msg[user])
        print np.max(y)

        plt.hist(y, x, normed=False)
        plt.title(
            'Total number of new messages received by each rank through out time'
        )
        plt.xlabel('Pagerank')
        plt.ylabel('Number of new messages received')
        plt.margins(0.05)
        plt.show()
Beispiel #13
0
    def ten_top_rank(self):
        x = self.log.join_date_since_inception()
        st = Stat()
        pr = st.pagerank()[self.log.end_date]
        graph = st.graphs[self.log.end_date]
        id = graph.vertex_properties['id']
        id_invert = {}
        for v in graph.vertices():
            id_invert[id[v]] = int(v)
        print id_invert

        pr_dict = {}
        for v in graph.vertices():
            pr_dict[int(id[v])] = pr[v]

        sorted_pr = sorted(pr_dict.values())
        sorted_id = sorted(pr_dict, key=pr_dict.get)

        K = 20

        # samples_pr = sorted_pr[:]
        # samples_id = sorted_id[:]
        # samples_pr = sorted_pr[-K:]
        # samples_id = sorted_id[-K:]
        samples_pr = sorted_pr[1000 - K:1000]
        samples_id = sorted_id[1000 - K:1000]
        # samples_pr = sorted_pr[800 - K: 800]
        # samples_id = sorted_id[800 - K: 800]

        K = len(samples_id)

        samples_join = []
        for idx in samples_id:
            samples_join.append(x[str(idx)])

        print samples_pr
        print samples_join
        print samples_id

        rank = st.get_users_rank()
        date_idx = []
        pr_ev = []
        for i in range(K):
            pr_ev.append([])
        date = self.log.start_date
        while date < self.log.end_date:
            date_idx.append((date - self.log.start_date).days)
            for i in range(K):
                try:
                    pr_ev[i].append(rank[date].index(str(samples_id[i])) + 1)
                except:
                    pr_ev[i].append(0)
            date += timedelta(1)

        for i in range(K):
            l = []
            date_idx_temp = []
            for j in range(len(pr_ev[i])):
                if pr_ev[i][j] != 0:
                    l.append(pr_ev[i][j])
                    date_idx_temp.append(date_idx[j])
            plt.plot(date_idx_temp, l)
        plt.show()