Beispiel #1
0
def demo(run_algorithm, input_nodes, input_edges, source, target, output_image_file):
    global token_id
    global tokens

    def read_entire_file(file_name):
        with open(file_name, 'r') as file:
            content = file.read()
        return content.split()

    tokens = read_entire_file(input_nodes)
    token_id = -1

    def next_token():
        global token_id
        global tokens

        token_id += 1
        if token_id < len(tokens):
            return tokens[token_id]
        else:
            return None

    graph = nx.Graph()

    id = {}
    names = []
    n_vertices = 0
    hf = []
    while token_id + 1 < len(tokens):
        node_name = next_token()
        names.append(node_name)
        id[node_name] = n_vertices
        hf.append(float(next_token()))
        n_vertices += 1

        graph.add_node(id[node_name], name=node_name)

    tokens = read_entire_file(input_edges)
    token_id = -1

    # add edges
    while token_id + 1 < len(tokens):
        u = id[next_token()]
        v = id[next_token()]
        c = float(next_token())

        graph.add_edge(u, v, len=c)
        graph.add_edge(v, u, len=c)

    source = id[source]
    target = id[target]

    attr_name = nx.get_node_attributes(graph, 'name')

    print 'Running {} algorithm'.format(run_algorithm)
    start_time = timeit.default_timer()

    if run_algorithm == 'Astar':
        def heuristic_hardcoded(cur_node, target):
            return hf[cur_node]

        algo = AstarAlgorithm(heuristic_func=heuristic_hardcoded)
    elif run_algorithm == 'UCS':
        algo = UCSAlgorithm()
    elif run_algorithm == 'BFS':
        algo = BFSAlgorithm()

    distance, path = algo.get_path(graph, source, target)
    finish_time = timeit.default_timer()

    print 'Finished in {}'.format(finish_time - start_time)
    if distance is None:
        print 'The path does not exist!'
    else:
        print 'Found distance: {}'.format(distance)
        print 'Path: '
        for edge in path:
            (u, v) = edge
            print '({} - {})'.format(names[u], names[v])
        if output_image_file:
            graph_drawer.plot(output_image_file, graph, source, target, path)
            print 'Visualization image was written to {}'.format(output_image_file)
Beispiel #2
0
def demo(run_algorithm, input_file, output_image_file):
    global token_id
    global tokens

    def read_entire_file(file_name):
        with open(file_name, 'r') as file:
            content = file.read()
        return content.split()

    tokens = read_entire_file(input_file)
    token_id = -1

    def next_token():
        global token_id
        global tokens

        token_id += 1
        if token_id < len(tokens):
            return tokens[token_id]
        else:
            return None

    graph = nx.Graph()

    # add nodes
    n_nodes = int(next_token())
    for i in range(n_nodes):
        node_id = int(next_token())
        node_name = next_token()
        node_lat = int(next_token())
        node_lng = int(next_token())

        graph.add_node(node_id, name=node_name, lat=node_lat, lng=node_lng)

    # add edges
    n_edges = int(next_token())
    for i in range(n_edges):
        u = int(next_token())
        v = int(next_token())
        c = float(next_token())

        graph.add_edge(u, v, len=c)
        #
        graph.add_edge(v, u, len=c)

    source = int(next_token())
    target = int(next_token())

    attr_lat = nx.get_node_attributes(graph, 'lat')
    attr_lng = nx.get_node_attributes(graph, 'lng')
    attr_name = nx.get_node_attributes(graph, 'name')

    print 'Running {} algorithm'.format(run_algorithm)
    start_time = timeit.default_timer()

    if run_algorithm == 'Astar':

        def heuristic_l2_func(cur_node, target):
            return math.sqrt((attr_lat[cur_node] - attr_lat[target])**2 +
                             (attr_lng[cur_node] - attr_lng[target])**2)

        def heuristic_l1_func(cur_node, target):
            return abs(attr_lat[cur_node] -
                       attr_lat[target]) + abs(attr_lng[cur_node] -
                                               attr_lng[target])

        #
        hf = [
            366, 0, 160, 242, 161, 176, 77, 151, 226, 244, 241, 234, 380, 100,
            193, 253, 329, 80, 199, 374
        ]

        def heuristic_hardcoded(cur_node, target):
            return hf[cur_node]

        algo = AstarAlgorithm(heuristic_func=heuristic_hardcoded)
    elif run_algorithm == 'UCS':
        algo = UCSAlgorithm()
    elif run_algorithm == 'BFS':
        algo = BFSAlgorithm()

    distance, path = algo.get_path(graph, source, target)
    finish_time = timeit.default_timer()

    print 'Finished in {}'.format(finish_time - start_time)
    if distance is None:
        print 'The path does not exist!'
    else:
        print 'Found distance: {}'.format(distance)
        print 'Path: {}'.format(path)
        if output_image_file:
            graph_drawer.plot(output_image_file, graph, source, target, path)
            print 'Visualization image was written to {}'.format(
                output_image_file)
Beispiel #3
0
def demo(run_algorithm, input_nodes, input_edges, source, target,
         output_image_file):
    global token_id
    global tokens

    def read_entire_file(file_name):
        with open(file_name, 'r') as file:
            content = file.read()
        return content.split()

    tokens = read_entire_file(input_nodes)
    token_id = -1

    def next_token():
        global token_id
        global tokens

        token_id += 1
        if token_id < len(tokens):
            return tokens[token_id]
        else:
            return None

    graph = nx.Graph()

    id = {}
    names = []
    n_vertices = 0
    hf = []
    while token_id + 1 < len(tokens):
        node_name = next_token()
        names.append(node_name)
        id[node_name] = n_vertices
        hf.append(float(next_token()))
        n_vertices += 1

        graph.add_node(id[node_name], name=node_name)

    tokens = read_entire_file(input_edges)
    token_id = -1

    # add edges
    while token_id + 1 < len(tokens):
        u = id[next_token()]
        v = id[next_token()]
        c = float(next_token())

        graph.add_edge(u, v, len=c)
        graph.add_edge(v, u, len=c)

    source = id[source]
    target = id[target]

    attr_name = nx.get_node_attributes(graph, 'name')

    print 'Running {} algorithm'.format(run_algorithm)
    start_time = timeit.default_timer()

    if run_algorithm == 'Astar':

        def heuristic_hardcoded(cur_node, target):
            return hf[cur_node]

        algo = AstarAlgorithm(heuristic_func=heuristic_hardcoded)
    elif run_algorithm == 'UCS':
        algo = UCSAlgorithm()
    elif run_algorithm == 'BFS':
        algo = BFSAlgorithm()

    distance, path = algo.get_path(graph, source, target)
    finish_time = timeit.default_timer()

    print 'Finished in {}'.format(finish_time - start_time)
    if distance is None:
        print 'The path does not exist!'
    else:
        print 'Found distance: {}'.format(distance)
        print 'Path: '
        for edge in path:
            (u, v) = edge
            print '({} - {})'.format(names[u], names[v])
        if output_image_file:
            graph_drawer.plot(output_image_file, graph, source, target, path)
            print 'Visualization image was written to {}'.format(
                output_image_file)
Beispiel #4
0
def demo(run_algorithm, input_file, output_image_file):
    global token_id
    global tokens

    def read_entire_file(file_name):
        with open(file_name, 'r') as file:
            content = file.read()
        return content.split()

    tokens = read_entire_file(input_file)
    token_id = -1

    def next_token():
        global token_id
        global tokens

        token_id += 1
        if token_id < len(tokens):
            return tokens[token_id]
        else:
            return None

    graph = nx.Graph()

    # add nodes
    n_nodes = int(next_token())
    for i in range(n_nodes):
        node_id = int(next_token())
        node_name = next_token()
        node_lat = int(next_token())
        node_lng = int(next_token())

        graph.add_node(node_id, name=node_name, lat=node_lat, lng=node_lng)

    # add edges
    n_edges = int(next_token())
    for i in range(n_edges):
        u = int(next_token())
        v = int(next_token())
        c = float(next_token())

        graph.add_edge(u, v, len=c)
        # 
        graph.add_edge(v, u, len=c)

    source = int(next_token())
    target = int(next_token())

    attr_lat = nx.get_node_attributes(graph, 'lat')
    attr_lng = nx.get_node_attributes(graph, 'lng')
    attr_name = nx.get_node_attributes(graph, 'name')

    print 'Running {} algorithm'.format(run_algorithm)
    start_time = timeit.default_timer()

    if run_algorithm == 'Astar':
        def heuristic_l2_func(cur_node, target):
            return math.sqrt((attr_lat[cur_node] - attr_lat[target]) ** 2 + (attr_lng[cur_node] - attr_lng[target]) ** 2)

        def heuristic_l1_func(cur_node, target):
            return abs(attr_lat[cur_node] - attr_lat[target]) + abs(attr_lng[cur_node] - attr_lng[target])

        algo = AstarAlgorithm(heuristic_func=heuristic_l2_func)
    elif run_algorithm == 'UCS':
        algo = UCSAlgorithm()
    elif run_algorithm == 'BFS':
        algo = BFSAlgorithm()

    distance, path = algo.get_path(graph, source, target, verbose=True)
    finish_time = timeit.default_timer()

    print 'Finished in {}'.format(finish_time - start_time)
    if distance is None:
        print 'The path does not exist!'
    else:
        print 'Found distance: {}'.format(distance)
        # print 'Path: {}'.format(path)
        if output_image_file:
            graph_drawer.plot(output_image_file, graph, source, target, path)
            print 'Visualization image was written to {}'.format(output_image_file)