Beispiel #1
0
    [35, 138, 10, 60],
    [85, 175, -20, 27],
    [-130, -25, -50, 25],
]

t0 = time.time()

i = 0

map, mapTitle = draw_map(region_groups[i], extents[i], geojson, country_shapes,
                         df, labels[i])

cr = (dfid_topics[dfid_topics["DFID region"] == labels[i]].sort_values(
    'ldev').reset_index())

bar = draw_bar(cr)

header = dbc.Row(
    [
        dbc.Col(html.Div(), ),
        dbc.Col(html.Div(html.H1("Climate and Health", className="mt-4")), ),
        dbc.Col(html.Div(), )
    ],
    id="header",
)

bar_buttons = []
for j, meta_topic in enumerate(meta_topics):
    bar_buttons.append(
        html.Button(meta_topic,
                    id=f"barfilter-{j}",
Beispiel #2
0
def region_interaction(i, selectedData, clickData, relThreshold, bf_0, bf_1,
                       bf_2, bf_3, bf_4, relayoutData, clearTopics, storeData):

    rel_ids = doc_df.loc[doc_df['prediction'] >= 1 - relThreshold, "id"]

    ctx = dash.callback_context

    if "region-select" in ctx.triggered[0]['prop_id']:
        relayoutData = None
        selectedData = None

    topic_selection = "No topics selected"
    place_ids = []
    rel_df = None

    # did we just, or have we cleared topics without since clicking on them?
    if "clear-topics" in ctx.triggered[0]['prop_id']:
        storeData["topics"] = []
        storeData["cleared"] = True

    # have we just clicked on a topic bar
    if "bar.clickData" in ctx.triggered[0]['prop_id']:
        storeData["cleared"] = False
        if clickData is not None:
            cd = clickData["points"][0]["label"]
            if cd in storeData["topics"]:
                storeData["topics"] = [
                    x for x in storeData["topics"] if x != cd
                ]
            else:
                storeData["topics"] += [cd]

    # Filter topics to just include those in the metacategories selected
    sub_topics = dfid_topics[dfid_topics["DFID region"] == labels[i]]

    topicids = set([])
    for j, bf in enumerate([bf_0, bf_1, bf_2, bf_3, bf_4]):
        if bf is None:
            continue
        elif bf % 2 == 1:
            topicids = topicids | set(topic_df.loc[
                topic_df['Aggregated meta-topic'] == meta_topics[j], "id"])

    if len(topicids) > 0:
        sub_topics = sub_topics[sub_topics.topic_id.isin(topicids)]

    cr = (sub_topics.sort_values('ldev').reset_index())

    if selectedData is not None:
        place_ids = [x["id"] for x in selectedData["points"] if "id" in x]
        if len(place_ids) == 1:
            place = df.loc[df['place_doc_id'] == place_ids[0]]
            place_ids = df.loc[(df['lat'] == place.lat.values[0]) &
                               (df['lon'] == place.lon.values[0]),
                               "place_doc_id"]
        docids = df.loc[df['place_doc_id'].isin(place_ids), "doc_id"]
        rel_df = table_df[(table_df['id'].isin(docids))
                          & (table_df['id'].isin(rel_ids))]

    else:
        docids = df.loc[df['DFID region'] == labels[i], "doc_id"]
        rel_df = table_df[(table_df["id"].isin(docids))
                          & (table_df['id'].isin(rel_ids))]

    sel_df = df
    sel_df["subset"] = 0
    sel_df.loc[sel_df["id"].isin(rel_df["id"]), "subset"] = 1

    gdt = (sel_df[["id", "subset"]].merge(dts, left_on="id",
                                          right_on="doc_id").groupby([
                                              'topic_id', 'subset'
                                          ])['score'].sum().reset_index())

    # How many documents are there in each topic
    tns = (rel_df[["id"]].merge(dts, left_on="id", right_on="doc_id").query(
        'score>0.01').groupby('topic_id')['score'].count().to_frame(
            name="count").sort_values('count').reset_index())

    gdt['share'] = gdt['score'] / gdt.groupby('subset')['score'].transform(
        'sum')
    gdt = gdt.merge(dt_sum)
    gdt['deviation'] = gdt['share'] / gdt['total_share']
    gdt['ldev'] = np.log(gdt['deviation'])
    gdt = gdt[gdt['subset'] == 1]
    if len(topicids) > 0:
        gdt = gdt[gdt.topic_id.isin(topicids)]

    cr = (gdt.merge(topic_df, left_on="topic_id",
                    right_on="id").merge(tns, how="left").sort_values('ldev'))

    if len(storeData["topics"]) > 0:
        topics = topic_df[topic_df["short_title"].isin(
            storeData["topics"])]["id"].values
        topic_selection = ", ".join(storeData["topics"])
        for top in topics:
            rel_df = rel_df[(rel_df[top] > 0.01)]
        rel_df["topics"] = rel_df[topics].sum()
        rel_df = rel_df.sort_values("topics", ascending=False)
        if len(place_ids) > 0:
            place_ids = set(place_ids) & set(
                df.loc[df["doc_id"].isin(rel_df["id"]), "place_doc_id"])
        else:
            place_ids = set(df.loc[df["doc_id"].isin(rel_df["id"]),
                                   "place_doc_id"])

    cr = cr.reset_index(drop=True)
    sbar = cr.loc[cr["short_title"].isin(storeData["topics"])].index

    bar = draw_bar(cr, sbar)

    if "barfilter" not in ctx.triggered[0]['prop_id']:
        if relayoutData is not None:
            if "autosize" not in relayoutData:
                if "xaxis.range[0]" in relayoutData:
                    bar.update_xaxes(range=[
                        relayoutData["xaxis.range[0]"],
                        relayoutData["xaxis.range[1]"]
                    ])
                if "yaxis.range[0]" in relayoutData:
                    bar.update_yaxes(range=[
                        relayoutData["yaxis.range[0]"],
                        relayoutData["yaxis.range[1]"]
                    ])

    map, mapTitle = draw_map(region_groups[i], extents[i], geojson,
                             country_shapes, df[df['id'].isin(rel_ids)],
                             labels[i], place_ids)

    if rel_df is not None:
        rel_df = rel_df.to_dict('records')

    return bar, map, rel_df, topic_selection, storeData
Beispiel #3
0
'''How to install matplotlib ?'''
from graphs import draw_multiline, draw_bar
from CsvReader import CsvReader
# draw_multiline()
# csv_reader = CsvReader("movies.csv")
# csv_reader.read_csv()
#csv_reader.draw_films_by_years()
# csv_reader.draw_films_by_profits()
draw_bar()