Beispiel #1
0
 def test_all_simple_edge_paths_corner_cases(self):
     assert list(nx.builtin.all_simple_edge_paths(nx.empty_graph(2), 0,
                                                  0)) == []
     assert list(nx.builtin.all_simple_edge_paths(nx.empty_graph(2), 0,
                                                  1)) == []
     assert list(nx.builtin.all_simple_edge_paths(nx.path_graph(9), 0, 8,
                                                  0)) == []
Beispiel #2
0
    def test_small_graph_centrality(self):
        G = nx.empty_graph(create_using=nx.DiGraph)
        assert {} == nx.degree_centrality(G)
        assert {} == nx.out_degree_centrality(G)
        assert {} == nx.in_degree_centrality(G)

        G = nx.empty_graph(1, create_using=nx.DiGraph)
        assert {0: 1} == nx.degree_centrality(G)
        assert {0: 1} == nx.out_degree_centrality(G)
        assert {0: 1} == nx.in_degree_centrality(G)
Beispiel #3
0
def binomial_tree(n, create_using=None):
    G = nx.empty_graph(1, create_using)
    N = 1
    for i in range(n):
        # Use G.edges() to ensure 2-tuples. G.edges is 3-tuple for MultiGraph
        edges = [(u + N, v + N) for (u, v) in G.edges()]
        G.add_edges_from(edges)
        G.add_edge(0, N)
        N *= 2
    return G
Beispiel #4
0
def random_cograph(n, seed=None):
    R = nx.empty_graph(1)

    for i in range(n):
        RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R))

        if seed.randint(0, 1) == 0:
            R = full_join(R, RR)
        else:
            R = disjoint_union(R, RR)

    return R
Beispiel #5
0
    def test_ladder_graph(self):
        for i, G in [
            (0, nx.empty_graph(0)),
            (1, nx.path_graph(2)),
        ]:
            assert is_isomorphic(nx.ladder_graph(i), G)

        pytest.raises(nx.NetworkXError,
                      nx.ladder_graph,
                      2,
                      create_using=nx.DiGraph)

        g = nx.ladder_graph(2)
        mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
        assert_edges_equal(mg.edges(), g.edges())
Beispiel #6
0
def random_k_out_graph(n, k, alpha, self_loops=True, seed=None):
    if alpha < 0:
        raise ValueError("alpha must be positive")
    G = nx.empty_graph(n, create_using=nx.MultiDiGraph)
    weights = Counter({v: alpha for v in G})
    for i in range(k * n):
        u = seed.choice([v for v, d in G.out_degree() if d < k])
        # If self-loops are not allowed, make the source node `u` have
        # weight zero.
        if not self_loops:
            adjustment = Counter({u: weights[u]})
        else:
            adjustment = Counter()
        v = weighted_choice(weights - adjustment, seed=seed)
        G.add_edge(u, v)
        weights[v] += 1
    return G
Beispiel #7
0
def parse_adjlist(lines,
                  comments="#",
                  delimiter=None,
                  create_using=None,
                  nodetype=None):
    G = nx.empty_graph(0, create_using)
    edges = []
    nodes = []  # nodes that has not any adjacency
    for line in lines:
        p = line.find(comments)
        if p >= 0:
            line = line[:p]
        if not line:
            continue
        vlist = line.strip().split(delimiter)
        u = vlist.pop(0)
        # convert types
        if nodetype is not None:
            try:
                u = nodetype(u)
            except Exception as e:
                raise TypeError(
                    "Failed to convert node ({}) to type {}".format(
                        u, nodetype)) from e
        if len(vlist) == 0:
            nodes.append(u)
        if nodetype is not None:
            try:
                vlist = map(nodetype, vlist)
            except Exception as e:
                raise TypeError(
                    "Failed to convert nodes ({}) to type {}".format(
                        ",".join(vlist), nodetype)) from e
        edges.extend([u, v] for v in vlist)
    # N.B: batch add edges to graph.
    if nodes:
        G.add_nodes_from(nodes)
    G.add_edges_from(edges)
    return G
Beispiel #8
0
def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None):
    """Returns a random `k`-out graph with uniform attachment.

    A random `k`-out graph with uniform attachment is a multidigraph
    generated by the following algorithm. For each node *u*, choose
    `k` nodes *v* uniformly at random (with replacement). Add a
    directed edge joining *u* to *v*.

    Parameters
    ----------
    n : int
        The number of nodes in the returned graph.

    k : int
        The out-degree of each node in the returned graph.

    self_loops : bool
        If True, self-loops are allowed when generating the graph.

    with_replacement : bool
        If True, neighbors are chosen with replacement and the
        returned graph will be a directed multigraph. Otherwise,
        neighbors are chosen without replacement and the returned graph
        will be a directed graph.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    NetworkX graph
        A `k`-out-regular directed graph generated according to the
        above algorithm. It will be a multigraph if and only if
        `with_replacement` is True.

    Raises
    ------
    ValueError
        If `with_replacement` is False and `k` is greater than
        `n`.

    See also
    --------
    random_k_out_graph

    Notes
    -----
    The return digraph or multidigraph may not be strongly connected, or
    even weakly connected.

    If `with_replacement` is True, this function is similar to
    :func:`random_k_out_graph`, if that function had parameter `alpha`
    set to positive infinity.

    """
    if with_replacement:
        create_using = nx.MultiDiGraph()

        def sample(v, nodes):
            if not self_loops:
                nodes = nodes - {v}
            return (seed.choice(list(nodes)) for i in range(k))

    else:
        create_using = nx.DiGraph()

        def sample(v, nodes):
            if not self_loops:
                nodes = nodes - {v}
            return seed.sample(nodes, k)

    G = nx.empty_graph(n, create_using)
    nodes = set(G)
    for u in G:
        G.add_edges_from((u, v) for v in sample(u, nodes))
    return G
Beispiel #9
0
def scale_free_graph(
    n,
    alpha=0.41,
    beta=0.54,
    gamma=0.05,
    delta_in=0.2,
    delta_out=0,
    create_using=None,
    seed=None,
):
    def _choose_node(G, distribution, delta, psum):
        cumsum = 0.0
        # normalization
        r = seed.random()
        for n, d in distribution:
            cumsum += (d + delta) / psum
            if r < cumsum:
                break
        return n

    if create_using is None or not hasattr(create_using, "_adj"):
        # start with 3-cycle
        G = nx.empty_graph(3, create_using, default=nx.MultiDiGraph)
        G.add_edges_from([(0, 1), (1, 2), (2, 0)])
    else:
        G = create_using
    if not (G.is_directed() and G.is_multigraph()):
        raise nx.NetworkXError("MultiDiGraph required in create_using")

    if alpha <= 0:
        raise ValueError("alpha must be > 0.")
    if beta <= 0:
        raise ValueError("beta must be > 0.")
    if gamma <= 0:
        raise ValueError("gamma must be > 0.")

    if abs(alpha + beta + gamma - 1.0) >= 1e-9:
        raise ValueError("alpha+beta+gamma must equal 1.")

    number_of_edges = G.number_of_edges()
    while len(G) < n:
        psum_in = number_of_edges + delta_in * len(G)
        psum_out = number_of_edges + delta_out * len(G)
        r = seed.random()
        # random choice in alpha,beta,gamma ranges
        if r < alpha:
            # alpha
            # add new node v
            v = len(G)
            # choose w according to in-degree and delta_in
            w = _choose_node(G, G.in_degree(), delta_in, psum_in)
        elif r < alpha + beta:
            # beta
            # choose v according to out-degree and delta_out
            v = _choose_node(G, G.out_degree(), delta_out, psum_out)
            # choose w according to in-degree and delta_in
            w = _choose_node(G, G.in_degree(), delta_in, psum_in)
        else:
            # gamma
            # choose v according to out-degree and delta_out
            v = _choose_node(G, G.out_degree(), delta_out, psum_out)
            # add new node w
            w = len(G)
        G.add_edge(v, w)
        number_of_edges += 1
    return G
Beispiel #10
0
def parse_edgelist(
    lines,
    comments="#",
    delimiter=None,
    create_using=None,
    nodetype=None,
    data=True,
):
    from ast import literal_eval

    G = nx.empty_graph(0, create_using)
    edges = []
    for line in lines:
        p = line.find(comments)
        if p >= 0:
            line = line[:p]
        if not line:
            continue
        # split line, should have 2 or more
        s = line.strip().split(delimiter)
        if len(s) < 2:
            continue
        u = s.pop(0)
        v = s.pop(0)
        d = s
        if nodetype is not None:
            try:
                u = nodetype(u)
                v = nodetype(v)
            except Exception as e:
                raise TypeError(
                    f"Failed to convert nodes {u},{v} to type {nodetype}."
                ) from e

        if len(d) == 0 or data is False:
            # no data or data type specified
            edgedata = {}
        elif data is True:
            # no edge types specified
            try:  # try to evaluate as dictionary
                if delimiter == ",":
                    edgedata_str = ",".join(d)
                else:
                    edgedata_str = " ".join(d)
                edgedata = dict(literal_eval(edgedata_str.strip()))
            except Exception as e:
                raise TypeError(
                    f"Failed to convert edge data ({d}) to dictionary.") from e
        else:
            # convert edge data to dictionary with specified keys and type
            if len(d) != len(data):
                raise IndexError(
                    f"Edge data {d} and data_keys {data} are not the same length"
                )
            edgedata = {}
            for (edge_key, edge_type), edge_value in zip(data, d):
                try:
                    edge_value = edge_type(edge_value)
                except Exception as e:
                    raise TypeError(
                        f"Failed to convert {edge_key} data {edge_value} "
                        f"to type {edge_type}.") from e
                edgedata.update({edge_key: edge_value})
        edges.append((u, v, edgedata))
    G.add_edges_from(edges)
    return G
Beispiel #11
0
def from_pandas_edgelist(
    df,
    source="source",
    target="target",
    edge_attr=None,
    create_using=None,
    edge_key=None,
):
    g = nx.empty_graph(0, create_using)

    if edge_attr is None:
        g.add_edges_from(zip(df[source], df[target]))
        return g

    reserved_columns = [source, target]

    # Additional columns requested
    attr_col_headings = []
    attribute_data = []
    if edge_attr is True:
        attr_col_headings = [
            c for c in df.columns if c not in reserved_columns
        ]
    elif isinstance(edge_attr, (list, tuple)):
        attr_col_headings = edge_attr
    else:
        attr_col_headings = [edge_attr]
    if len(attr_col_headings) == 0:
        raise nx.NetworkXError(
            f"Invalid edge_attr argument: No columns found with name: {attr_col_headings}"
        )

    try:
        attribute_data = zip(*[df[col] for col in attr_col_headings])
    except (KeyError, TypeError) as e:
        msg = f"Invalid edge_attr argument: {edge_attr}"
        raise nx.NetworkXError(msg) from e

    if g.is_multigraph():
        # => append the edge keys from the df to the bundled data
        if edge_key is not None:
            try:
                multigraph_edge_keys = df[edge_key]
                attribute_data = zip(attribute_data, multigraph_edge_keys)
            except (KeyError, TypeError) as e:
                msg = f"Invalid edge_key argument: {edge_key}"
                raise nx.NetworkXError(msg) from e

        for s, t, attrs in zip(df[source], df[target], attribute_data):
            if edge_key is not None:
                attrs, multigraph_edge_key = attrs
                key = g.add_edge(s, t, key=multigraph_edge_key)
            else:
                key = g.add_edge(s, t)

            g[s][t][key].update(zip(attr_col_headings, attrs))
    else:
        edges = []
        for s, t, attrs in zip(df[source], df[target], attribute_data):
            edges.append((s, t, zip(attr_col_headings, attrs)))
        g.add_edges_from(edges)

    return g