Beispiel #1
0
    def test_different_inits(self):
        np.random.seed(314)
        mean = np.ones(3) * 5
        cov = np.eye(3) * 0.1
        X = stats.multivariate_normal.rvs(mean, cov, 100)
        print(X.shape)
        Y = stats.multivariate_normal.rvs(mean, cov, 100)
        W = stats.ortho_group.rvs(3)
        Y = Y @ W

        aligner_1 = SeedlessProcrustes(init="2d")
        aligner_1.fit(X, Y)

        aligner_2 = SeedlessProcrustes(init="sign_flips")
        aligner_2.fit(X, Y)
        test_sign_flips = SignFlips()
        self.assertTrue(
            np.all(
                test_sign_flips.fit(X, Y).Q_ == aligner_2.selected_initial_Q_))

        aligner_3 = SeedlessProcrustes(init="custom")
        aligner_3.fit(X, Y)
        self.assertTrue(np.all(np.eye(3) == aligner_3.selected_initial_Q_))

        aligner_4 = SeedlessProcrustes(init="custom", initial_Q=-np.eye(3))
        aligner_4.fit(X, Y)
        self.assertTrue(np.all(-np.eye(3) == aligner_4.selected_initial_Q_))

        aligner_5 = SeedlessProcrustes(init="custom",
                                       initial_P=np.ones((100, 100)) / 10000)
        aligner_5.fit(X, Y)
Beispiel #2
0
 def test_max_criterion(self):
     X = np.arange(6).reshape(3, 2) * (-1)
     Y = np.arange(6).reshape(3, 2) @ np.diag([1, -1]) + 0.5
     # in this case, Y should be unchanged, and X matched to Y
     # so X flips sign in the first dimension
     Q_answer = np.array([[-1, 0], [0, 1]])
     X_answer = X.copy() @ Q_answer
     # set criterion to "max", see if that works
     aligner = SignFlips(criterion="max")
     aligner.fit(X, Y)
     Q_test = aligner.Q_
     X_test = aligner.transform(X)
     self.assertTrue(np.all(Q_test == Q_answer))
     self.assertTrue(np.all(X_test == X_answer))
Beispiel #3
0
    def test_sim(self):
        n = 150
        rho = 0.9
        n_per_block = int(n / 3)
        n_blocks = 3
        block_members = np.array(n_blocks * [n_per_block])
        block_probs = np.array([[0.2, 0.01, 0.01], [0.01, 0.1, 0.01],
                                [0.01, 0.01, 0.2]])
        directed = False
        loops = False
        A1, A2 = sbm_corr(block_members,
                          block_probs,
                          rho,
                          directed=directed,
                          loops=loops)
        ase = AdjacencySpectralEmbed(n_components=3, algorithm="truncated")
        x1 = ase.fit_transform(A1)
        x2 = ase.fit_transform(A2)
        xh1 = SignFlips().fit_transform(x1, x2)
        S = xh1 @ x2.T
        res = self.barygm.fit(A1, A2, S=S)

        self.assertTrue(0.7 <= (sum(res.perm_inds_ == np.arange(n)) / n))

        A1 = A1[:-1, :-1]
        xh1 = xh1[:-1, :]
        S = xh1 @ x2.T

        res = self.barygm.fit(A1, A2, S=S)

        self.assertTrue(0.6 <= (sum(res.perm_inds_ == np.arange(n)) / n))
Beispiel #4
0
 def test_bad_kwargs(self):
     with self.assertRaises(TypeError):
         SignFlips(criterion={"this is a": "dict"})
     with self.assertRaises(ValueError):
         SignFlips(criterion="cep")
     # check delayed ValueError
     with self.assertRaises(ValueError):
         aligner = SignFlips(criterion="median")
         X = np.arange(6).reshape(6, 1)
         Y = np.arange(6).reshape(6, 1)
         aligner.criterion = "something"
         aligner.fit(X, Y)
Beispiel #5
0
 def test_two_datasets(self):
     X = np.arange(6).reshape(3, 2) * (-1)
     Y = np.arange(6).reshape(3, 2) @ np.diag([1, -1]) + 0.5
     # X flips sign in the first dimension
     Q_answer = np.array([[-1, 0], [0, 1]])
     X_answer = X.copy() @ Q_answer
     # first, do fit and transform separately
     aligner_1 = SignFlips()
     aligner_1.fit(X, Y)
     Q_test = aligner_1.Q_
     X_test = aligner_1.transform(X)
     self.assertTrue(np.all(Q_test == Q_answer))
     self.assertTrue(np.all(X_test == X_answer))
     # now, do fit_transform
     aligner_2 = SignFlips()
     X_test = aligner_2.fit_transform(X, Y)
     Q_test = aligner_2.Q_
     self.assertTrue(np.all(Q_test == Q_answer))
     self.assertTrue(np.all(X_test == X_answer))
     # try giving a different matrix as the sole input (I)
     I_test = aligner_2.transform(np.eye(2))
     I_answer = np.diag([-1, 1])
     self.assertTrue(np.all(I_test == I_answer))
Beispiel #6
0
 def test_bad_datasets(self):
     X = np.arange(6).reshape(6, 1)
     Y = np.arange(6).reshape(6, 1)
     Y_wrong_d = np.arange(12).reshape(6, 2)
     # check passing weird stuff as input (caught by us)
     with self.assertRaises(TypeError):
         aligner = SignFlips()
         aligner.fit("hello there", Y)
     with self.assertRaises(TypeError):
         aligner = SignFlips()
         aligner.fit(X, "hello there")
     with self.assertRaises(TypeError):
         aligner = SignFlips()
         aligner.fit({"hello": "there"}, Y)
     with self.assertRaises(TypeError):
         aligner = SignFlips()
         aligner.fit(X, {"hello": "there"})
     # check passing arrays of weird ndims (caught by check_array)
     with self.assertRaises(ValueError):
         aligner = SignFlips()
         aligner.fit(X, Y.reshape(3, 2, 1))
     with self.assertRaises(ValueError):
         aligner = SignFlips()
         aligner.fit(X.reshape(3, 2, 1), Y)
     # check passing arrays with different dimensions (caught by us)
     with self.assertRaises(ValueError):
         aligner = SignFlips()
         aligner.fit(X, Y_wrong_d)
     # check passing array with wrong dimensions to transform (caught by us)
     with self.assertRaises(ValueError):
         aligner = SignFlips()
         aligner.fit(X, Y)
         aligner.transform(Y_wrong_d)