Beispiel #1
0
def vmapcalc2(vmap, vlayer, cname, ctype, expr, overwrite=False):
    v.db_addcolumn(
        map=vmap, layer=vlayer, columns=[(cname, ctype)], overwrite=overwrite
    )
    v.db_update(
        map=vmap, layer=vlayer, column=cname, query_column=expr, overwrite=overwrite
    )
Beispiel #2
0
def main():
    """
    Build gravity reservoirs in GSFLOW: combines MODFLOW grid and HRU sub-basins
    These define the PRMS soil zone that connects to MODFLOW cells
    """

    ##################
    # OPTION PARSING #
    ##################

    # I/O
    options, flags = gscript.parser()
    
    # I/O
    HRUs = options['hru_input']
    grid = options['grid_input']
    segments = options['output']
    #col = options['col']
    gravity_reservoirs = options['output']

    ############
    # ANALYSIS #
    ############

    """
    # Basin areas
    v.db_addcolumn(map=basins, columns=col)
    v.to_db(map=basins, option='area', units='meters', columns=col)
    """

    # Create gravity reservoirs -- overlay cells=grid and HRUs
    v.overlay(ainput=HRUs, binput=grid, atype='area', btype='area', operator='and', output=gravity_reservoirs, overwrite=gscript.overwrite())
    v.db_dropcolumn(map=gravity_reservoirs, columns='a_cat,a_label,b_cat', quiet=True)
    # Cell and HRU ID's
    v.db_renamecolumn(map=gravity_reservoirs, column=('a_id', 'gvr_hru_id'), quiet=True)
    v.db_renamecolumn(map=gravity_reservoirs, column=('b_id', 'gvr_cell_id'), quiet=True)
    # Percent areas
    v.db_renamecolumn(map=gravity_reservoirs, column=('a_hru_area_m2', 'hru_area_m2'), quiet=True)
    v.db_renamecolumn(map=gravity_reservoirs, column=('b_area_m2', 'cell_area_m2'), quiet=True)
    v.db_addcolumn(map=gravity_reservoirs, columns='area_m2 double precision', quiet=True)
    v.to_db(map=gravity_reservoirs, option='area', units='meters', columns='area_m2', quiet=True)
    v.db_addcolumn(map=gravity_reservoirs, columns='gvr_cell_pct double precision, gvr_hru_pct double precision', quiet=True)
    v.db_update(map=gravity_reservoirs, column='gvr_cell_pct', query_column='100*area_m2/cell_area_m2', quiet=True)
    v.db_update(map=gravity_reservoirs, column='gvr_hru_pct', query_column='100*area_m2/hru_area_m2', quiet=True)
    v.extract(input=gravity_reservoirs, output='tmp_', where="gvr_cell_pct > 0.001", overwrite=True, quiet=True)
    g.rename(vector=('tmp_',gravity_reservoirs), overwrite=True, quiet=True)
Beispiel #3
0
def raster_to_vector(raster, vector, type):
    """Converts a raster to a vector map

    Parameters
    ----------

    raster :
        Name of the input raster map

    vector :
        Name for the output vector map

    type :
        Type for the output vector map

    Returns
    -------

    Examples
    --------
    ..
    """
    r.to_vect(input=flow_in_category,
              output=flow_in_category,
              type="area",
              quiet=True)

    # Value is the ecosystem type
    v.db_renamecolumn(map=flow_in_category, column=("value", "ecosystem"))

    # New column for flow values
    addcolumn_string = flow_column_name + " double"
    v.db_addcolumn(map=flow_in_category, columns=addcolumn_string)

    # The raster category 'label' is the 'flow'
    v.db_update(map=flow_in_category, column="flow", query_column="label")
    v.db_dropcolumn(map=flow_in_category, columns="label")

    # Update the aggregation raster categories
    v.db_addcolumn(map=flow_in_category, columns="aggregation_id int")
    v.db_update(map=flow_in_category, column="aggregation_id", value=category)

    v.colors(map=flow_in_category, raster=flow_in_category, quiet=True)
Beispiel #4
0
def main():
    """
    Builds river reaches for input to the USGS hydrologic model, GSFLOW.
    These reaches link the PRMS stream segments to the MODFLOW grid cells.
    """

    ##################
    # OPTION PARSING #
    ##################

    options, flags = gscript.parser()
    segments = options["segment_input"]
    grid = options["grid_input"]
    reaches = options["output"]
    elevation = options["elevation"]
    Smin = options["s_min"]
    h_stream = options["h_stream"]
    x1 = options["upstream_easting_column_seg"]
    y1 = options["upstream_northing_column_seg"]
    x2 = options["downstream_easting_column_seg"]
    y2 = options["downstream_northing_column_seg"]
    tostream = options["tostream_cat_column_seg"]
    # Hydraulic paramters
    STRTHICK = options["strthick"]
    STRHC1 = options["strhc1"]
    THTS = options["thts"]
    THTI = options["thti"]
    EPS = options["eps"]
    UHC = options["uhc"]
    # Build reach maps by overlaying segments on grid
    if len(gscript.find_file(segments, element="vector")["name"]) > 0:
        v.extract(
            input=segments,
            output="GSFLOW_TEMP__",
            type="line",
            quiet=True,
            overwrite=True,
        )
        v.overlay(
            ainput="GSFLOW_TEMP__",
            atype="line",
            binput=grid,
            output=reaches,
            operator="and",
            overwrite=gscript.overwrite(),
            quiet=True,
        )
        g.remove(type="vector", name="GSFLOW_TEMP__", quiet=True, flags="f")
    else:
        gscript.fatal('No vector file "' + segments + '" found.')

    # Start editing database table
    reachesTopo = VectorTopo(reaches)
    reachesTopo.open("rw")

    # Rename a,b columns
    reachesTopo.table.columns.rename("a_" + x1, "x1")
    reachesTopo.table.columns.rename("a_" + x2, "x2")
    reachesTopo.table.columns.rename("a_" + y1, "y1")
    reachesTopo.table.columns.rename("a_" + y2, "y2")
    reachesTopo.table.columns.rename("a_NSEG", "NSEG")
    reachesTopo.table.columns.rename("a_ISEG", "ISEG")
    reachesTopo.table.columns.rename("a_stream_type", "stream_type")
    reachesTopo.table.columns.rename("a_type_code", "type_code")
    reachesTopo.table.columns.rename("a_cat", "rnum_cat")
    reachesTopo.table.columns.rename("a_" + tostream, "tostream")
    reachesTopo.table.columns.rename("a_id", "segment_id")
    reachesTopo.table.columns.rename("a_OUTSEG", "OUTSEG")
    reachesTopo.table.columns.rename("b_row", "row")
    reachesTopo.table.columns.rename("b_col", "col")
    reachesTopo.table.columns.rename("b_id", "cell_id")

    # Drop unnecessary columns
    cols = reachesTopo.table.columns.names()
    for col in cols:
        if (col[:2] == "a_") or (col[:2] == "b_"):
            reachesTopo.table.columns.drop(col)

    # Add new columns to 'reaches'
    reachesTopo.table.columns.add("KRCH", "integer")
    reachesTopo.table.columns.add("IRCH", "integer")
    reachesTopo.table.columns.add("JRCH", "integer")
    reachesTopo.table.columns.add("IREACH", "integer")
    reachesTopo.table.columns.add("RCHLEN", "double precision")
    reachesTopo.table.columns.add("STRTOP", "double precision")
    reachesTopo.table.columns.add("SLOPE", "double precision")
    reachesTopo.table.columns.add("STRTHICK", "double precision")
    reachesTopo.table.columns.add("STRHC1", "double precision")
    reachesTopo.table.columns.add("THTS", "double precision")
    reachesTopo.table.columns.add("THTI", "double precision")
    reachesTopo.table.columns.add("EPS", "double precision")
    reachesTopo.table.columns.add("UHC", "double precision")
    reachesTopo.table.columns.add("xr1", "double precision")
    reachesTopo.table.columns.add("xr2", "double precision")
    reachesTopo.table.columns.add("yr1", "double precision")
    reachesTopo.table.columns.add("yr2", "double precision")

    # Commit columns before editing (necessary?)
    reachesTopo.table.conn.commit()
    reachesTopo.close()

    # Update some columns that can be done now
    reachesTopo.open("rw")
    colNames = np.array(gscript.vector_db_select(reaches, layer=1)["columns"])
    colValues = np.array(gscript.vector_db_select(reaches, layer=1)["values"].values())
    cats = colValues[:, colNames == "cat"].astype(int).squeeze()
    nseg = np.arange(1, len(cats) + 1)
    nseg_cats = []
    for i in range(len(cats)):
        nseg_cats.append((nseg[i], cats[i]))
    cur = reachesTopo.table.conn.cursor()
    # Hydrogeologic properties
    cur.execute("update " + reaches + " set STRTHICK=" + str(STRTHICK))
    cur.execute("update " + reaches + " set STRHC1=" + str(STRHC1))
    cur.execute("update " + reaches + " set THTS=" + str(THTS))
    cur.execute("update " + reaches + " set THTI=" + str(THTI))
    cur.execute("update " + reaches + " set EPS=" + str(EPS))
    cur.execute("update " + reaches + " set UHC=" + str(UHC))
    # Grid properties
    cur.execute("update " + reaches + " set KRCH=1")  # Top layer: unchangable
    cur.executemany("update " + reaches + " set IRCH=? where row=?", nseg_cats)
    cur.executemany("update " + reaches + " set JRCH=? where col=?", nseg_cats)
    reachesTopo.table.conn.commit()
    reachesTopo.close()
    v.to_db(map=reaches, columns="RCHLEN", option="length", quiet=True)

    # Still to go after these:
    # STRTOP (added with slope)
    # IREACH (whole next section dedicated to this)
    # SLOPE (need z_start and z_end)

    # Now, the light stuff is over: time to build the reach order
    v.to_db(map=reaches, option="start", columns="xr1,yr1")
    v.to_db(map=reaches, option="end", columns="xr2,yr2")

    # Now just sort by category, find which stream has the same xr1 and yr1 as
    # x1 and y1 (or a_x1, a_y1) and then find where its endpoint matches another
    # starting point and move down the line.
    # v.db.select reaches col=cat,a_id,xr1,xr2 where="a_x1 = xr1"

    # First, get the starting coordinates of each stream segment
    # and a set of river ID's (ordered from 1...N)
    colNames = np.array(gscript.vector_db_select(segments, layer=1)["columns"])
    colValues = np.array(gscript.vector_db_select(segments, layer=1)["values"].values())
    number_of_segments = colValues.shape[0]
    segment_x1s = colValues[:, colNames == "x1"].astype(float).squeeze()
    segment_y1s = colValues[:, colNames == "y1"].astype(float).squeeze()
    segment_ids = colValues[:, colNames == "id"].astype(float).squeeze()

    # Then move back to the reaches map to produce the ordering
    colNames = np.array(gscript.vector_db_select(reaches, layer=1)["columns"])
    colValues = np.array(gscript.vector_db_select(reaches, layer=1)["values"].values())
    reach_cats = colValues[:, colNames == "cat"].astype(int).squeeze()
    reach_x1s = colValues[:, colNames == "xr1"].astype(float).squeeze()
    reach_y1s = colValues[:, colNames == "yr1"].astype(float).squeeze()
    reach_x2s = colValues[:, colNames == "xr2"].astype(float).squeeze()
    reach_y2s = colValues[:, colNames == "yr2"].astype(float).squeeze()
    segment_ids__reach = colValues[:, colNames == "segment_id"].astype(float).squeeze()

    for segment_id in segment_ids:
        reach_order_cats = []
        downstream_directed = []
        ssel = segment_ids == segment_id
        rsel = segment_ids__reach == segment_id  # selector
        # Find first segment: x1y1 first here, but not necessarily later
        downstream_directed.append(1)
        _x_match = reach_x1s[rsel] == segment_x1s[ssel]
        _y_match = reach_y1s[rsel] == segment_y1s[ssel]
        _i_match = _x_match * _y_match
        x1y1 = True  # false if x2y2
        # Find cat
        _cat = int(reach_cats[rsel][_x_match * _y_match])
        reach_order_cats.append(_cat)
        # Get end of reach = start of next one
        reach_x_end = float(reach_x2s[reach_cats == _cat])
        reach_y_end = float(reach_y2s[reach_cats == _cat])
        while _i_match.any():
            _x_match = reach_x1s[rsel] == reach_x_end
            _y_match = reach_y1s[rsel] == reach_y_end
            _i_match = _x_match * _y_match
            if _i_match.any():
                _cat = int(reach_cats[rsel][_x_match * _y_match])
                reach_x_end = float(reach_x2s[reach_cats == _cat])
                reach_y_end = float(reach_y2s[reach_cats == _cat])
                reach_order_cats.append(_cat)
        _message = str(len(reach_order_cats)) + " " + str(len(reach_cats[rsel]))
        gscript.message(_message)

        # Reach order to database table
        reach_number__reach_order_cats = []
        for i in range(len(reach_order_cats)):
            reach_number__reach_order_cats.append((i + 1, reach_order_cats[i]))
        reachesTopo = VectorTopo(reaches)
        reachesTopo.open("rw")
        cur = reachesTopo.table.conn.cursor()
        cur.executemany(
            "update " + reaches + " set IREACH=? where cat=?",
            reach_number__reach_order_cats,
        )
        reachesTopo.table.conn.commit()
        reachesTopo.close()

    # TOP AND BOTTOM ARE OUT OF ORDER: SOME SEGS ARE BACKWARDS. UGH!!!!
    # NEED TO GET THEM IN ORDER TO GET THE Z VALUES AT START AND END

    # 2018.10.01: Updating this to use the computational region for the DEM
    g.region(raster=elevation)

    # Compute slope and starting elevations from the elevations at the start and
    # end of the reaches and the length of each reach]

    gscript.message("Obtaining elevation values from raster: may take time.")
    v.db_addcolumn(map=reaches, columns="zr1 double precision, zr2 double precision")
    zr1 = []
    zr2 = []
    for i in range(len(reach_cats)):
        _x = reach_x1s[i]
        _y = reach_y1s[i]
        # print _x, _y
        _z = float(
            gscript.parse_command(
                "r.what", map=elevation, coordinates=str(_x) + "," + str(_y)
            )
            .keys()[0]
            .split("|")[-1]
        )
        zr1.append(_z)
        _x = reach_x2s[i]
        _y = reach_y2s[i]
        _z = float(
            gscript.parse_command(
                "r.what", map=elevation, coordinates=str(_x) + "," + str(_y)
            )
            .keys()[0]
            .split("|")[-1]
        )
        zr2.append(_z)

    zr1_cats = []
    zr2_cats = []
    for i in range(len(reach_cats)):
        zr1_cats.append((zr1[i], reach_cats[i]))
        zr2_cats.append((zr2[i], reach_cats[i]))

    reachesTopo = VectorTopo(reaches)
    reachesTopo.open("rw")
    cur = reachesTopo.table.conn.cursor()
    cur.executemany("update " + reaches + " set zr1=? where cat=?", zr1_cats)
    cur.executemany("update " + reaches + " set zr2=? where cat=?", zr2_cats)
    reachesTopo.table.conn.commit()
    reachesTopo.close()

    # Use these to create slope -- backwards possible on DEM!
    v.db_update(map=reaches, column="SLOPE", value="(zr1 - zr2)/RCHLEN")
    v.db_update(map=reaches, column="SLOPE", value=Smin, where="SLOPE <= " + str(Smin))

    # srtm_local_filled_grid = srtm_local_filled @ 200m (i.e. current grid)
    #  resolution
    # r.to.vect in=srtm_local_filled_grid out=srtm_local_filled_grid col=z type=area --o#
    # NOT SURE IF IT IS BEST TO USE MEAN ELEVATION OR TOP ELEVATION!!!!!!!!!!!!!!!!!!!!!!!
    v.db_addcolumn(map=reaches, columns="z_topo_mean double precision")
    v.what_rast(
        map=reaches, raster=elevation, column="z_topo_mean"
    )  # , query_column='z')
    v.db_update(
        map=reaches, column="STRTOP", value="z_topo_mean -" + str(h_stream), quiet=True
    )
Beispiel #5
0
def main():
    """
    Builds river reaches for input to the USGS hydrologic model, GSFLOW.
    These reaches link the PRMS stream segments to the MODFLOW grid cells.
    """

    ##################
    # OPTION PARSING #
    ##################

    options, flags = gscript.parser()
    segments = options['segment_input']
    grid = options['grid_input']
    reaches = options['output']
    elevation = options['elevation']
    Smin = options['s_min']
    h_stream = options['h_stream']
    x1 = options['upstream_easting_column_seg']
    y1 = options['upstream_northing_column_seg']
    x2 = options['downstream_easting_column_seg']
    y2 = options['downstream_northing_column_seg']
    tostream = options['tostream_cat_column_seg']
    # Hydraulic paramters
    STRTHICK = options['strthick']
    STRHC1 = options['strhc1']
    THTS = options['thts']
    THTI = options['thti']
    EPS = options['eps']
    UHC = options['uhc']
    # Build reach maps by overlaying segments on grid
    if len(gscript.find_file(segments, element='vector')['name']) > 0:
        v.extract(input=segments,
                  output='GSFLOW_TEMP__',
                  type='line',
                  quiet=True,
                  overwrite=True)
        v.overlay(ainput='GSFLOW_TEMP__',
                  atype='line',
                  binput=grid,
                  output=reaches,
                  operator='and',
                  overwrite=gscript.overwrite(),
                  quiet=True)
        g.remove(type='vector', name='GSFLOW_TEMP__', quiet=True, flags='f')
    else:
        gscript.fatal('No vector file "' + segments + '" found.')

    # Start editing database table
    reachesTopo = VectorTopo(reaches)
    reachesTopo.open('rw')

    # Rename a,b columns
    reachesTopo.table.columns.rename('a_' + x1, 'x1')
    reachesTopo.table.columns.rename('a_' + x2, 'x2')
    reachesTopo.table.columns.rename('a_' + y1, 'y1')
    reachesTopo.table.columns.rename('a_' + y2, 'y2')
    reachesTopo.table.columns.rename('a_NSEG', 'NSEG')
    reachesTopo.table.columns.rename('a_ISEG', 'ISEG')
    reachesTopo.table.columns.rename('a_stream_type', 'stream_type')
    reachesTopo.table.columns.rename('a_type_code', 'type_code')
    reachesTopo.table.columns.rename('a_cat', 'rnum_cat')
    reachesTopo.table.columns.rename('a_' + tostream, 'tostream')
    reachesTopo.table.columns.rename('a_id', 'segment_id')
    reachesTopo.table.columns.rename('a_OUTSEG', 'OUTSEG')
    reachesTopo.table.columns.rename('b_row', 'row')
    reachesTopo.table.columns.rename('b_col', 'col')
    reachesTopo.table.columns.rename('b_id', 'cell_id')

    # Drop unnecessary columns
    cols = reachesTopo.table.columns.names()
    for col in cols:
        if (col[:2] == 'a_') or (col[:2] == 'b_'):
            reachesTopo.table.columns.drop(col)

    # Add new columns to 'reaches'
    reachesTopo.table.columns.add('KRCH', 'integer')
    reachesTopo.table.columns.add('IRCH', 'integer')
    reachesTopo.table.columns.add('JRCH', 'integer')
    reachesTopo.table.columns.add('IREACH', 'integer')
    reachesTopo.table.columns.add('RCHLEN', 'double precision')
    reachesTopo.table.columns.add('STRTOP', 'double precision')
    reachesTopo.table.columns.add('SLOPE', 'double precision')
    reachesTopo.table.columns.add('STRTHICK', 'double precision')
    reachesTopo.table.columns.add('STRHC1', 'double precision')
    reachesTopo.table.columns.add('THTS', 'double precision')
    reachesTopo.table.columns.add('THTI', 'double precision')
    reachesTopo.table.columns.add('EPS', 'double precision')
    reachesTopo.table.columns.add('UHC', 'double precision')
    reachesTopo.table.columns.add('xr1', 'double precision')
    reachesTopo.table.columns.add('xr2', 'double precision')
    reachesTopo.table.columns.add('yr1', 'double precision')
    reachesTopo.table.columns.add('yr2', 'double precision')

    # Commit columns before editing (necessary?)
    reachesTopo.table.conn.commit()
    reachesTopo.close()

    # Update some columns that can be done now
    reachesTopo.open('rw')
    colNames = np.array(gscript.vector_db_select(reaches, layer=1)['columns'])
    colValues = np.array(
        gscript.vector_db_select(reaches, layer=1)['values'].values())
    cats = colValues[:, colNames == 'cat'].astype(int).squeeze()
    nseg = np.arange(1, len(cats) + 1)
    nseg_cats = []
    for i in range(len(cats)):
        nseg_cats.append((nseg[i], cats[i]))
    cur = reachesTopo.table.conn.cursor()
    # Hydrogeologic properties
    cur.execute("update " + reaches + " set STRTHICK=" + str(STRTHICK))
    cur.execute("update " + reaches + " set STRHC1=" + str(STRHC1))
    cur.execute("update " + reaches + " set THTS=" + str(THTS))
    cur.execute("update " + reaches + " set THTI=" + str(THTI))
    cur.execute("update " + reaches + " set EPS=" + str(EPS))
    cur.execute("update " + reaches + " set UHC=" + str(UHC))
    # Grid properties
    cur.execute("update " + reaches + " set KRCH=1")  # Top layer: unchangable
    cur.executemany("update " + reaches + " set IRCH=? where row=?", nseg_cats)
    cur.executemany("update " + reaches + " set JRCH=? where col=?", nseg_cats)
    reachesTopo.table.conn.commit()
    reachesTopo.close()
    v.to_db(map=reaches, columns='RCHLEN', option='length', quiet=True)

    # Still to go after these:
    # STRTOP (added with slope)
    # IREACH (whole next section dedicated to this)
    # SLOPE (need z_start and z_end)

    # Now, the light stuff is over: time to build the reach order
    v.to_db(map=reaches, option='start', columns='xr1,yr1')
    v.to_db(map=reaches, option='end', columns='xr2,yr2')

    # Now just sort by category, find which stream has the same xr1 and yr1 as
    # x1 and y1 (or a_x1, a_y1) and then find where its endpoint matches another
    # starting point and move down the line.
    # v.db.select reaches col=cat,a_id,xr1,xr2 where="a_x1 = xr1"

    # First, get the starting coordinates of each stream segment
    # and a set of river ID's (ordered from 1...N)
    colNames = np.array(gscript.vector_db_select(segments, layer=1)['columns'])
    colValues = np.array(
        gscript.vector_db_select(segments, layer=1)['values'].values())
    number_of_segments = colValues.shape[0]
    segment_x1s = colValues[:, colNames == 'x1'].astype(float).squeeze()
    segment_y1s = colValues[:, colNames == 'y1'].astype(float).squeeze()
    segment_ids = colValues[:, colNames == 'id'].astype(float).squeeze()

    # Then move back to the reaches map to produce the ordering
    colNames = np.array(gscript.vector_db_select(reaches, layer=1)['columns'])
    colValues = np.array(
        gscript.vector_db_select(reaches, layer=1)['values'].values())
    reach_cats = colValues[:, colNames == 'cat'].astype(int).squeeze()
    reach_x1s = colValues[:, colNames == 'xr1'].astype(float).squeeze()
    reach_y1s = colValues[:, colNames == 'yr1'].astype(float).squeeze()
    reach_x2s = colValues[:, colNames == 'xr2'].astype(float).squeeze()
    reach_y2s = colValues[:, colNames == 'yr2'].astype(float).squeeze()
    segment_ids__reach = colValues[:, colNames == 'segment_id'].astype(
        float).squeeze()

    for segment_id in segment_ids:
        reach_order_cats = []
        downstream_directed = []
        ssel = segment_ids == segment_id
        rsel = segment_ids__reach == segment_id  # selector
        # Find first segment: x1y1 first here, but not necessarily later
        downstream_directed.append(1)
        _x_match = reach_x1s[rsel] == segment_x1s[ssel]
        _y_match = reach_y1s[rsel] == segment_y1s[ssel]
        _i_match = _x_match * _y_match
        x1y1 = True  # false if x2y2
        # Find cat
        _cat = int(reach_cats[rsel][_x_match * _y_match])
        reach_order_cats.append(_cat)
        # Get end of reach = start of next one
        reach_x_end = float(reach_x2s[reach_cats == _cat])
        reach_y_end = float(reach_y2s[reach_cats == _cat])
        while _i_match.any():
            _x_match = reach_x1s[rsel] == reach_x_end
            _y_match = reach_y1s[rsel] == reach_y_end
            _i_match = _x_match * _y_match
            if _i_match.any():
                _cat = int(reach_cats[rsel][_x_match * _y_match])
                reach_x_end = float(reach_x2s[reach_cats == _cat])
                reach_y_end = float(reach_y2s[reach_cats == _cat])
                reach_order_cats.append(_cat)
        print len(reach_order_cats), len(reach_cats[rsel])

        # Reach order to database table
        reach_number__reach_order_cats = []
        for i in range(len(reach_order_cats)):
            reach_number__reach_order_cats.append((i + 1, reach_order_cats[i]))
        reachesTopo = VectorTopo(reaches)
        reachesTopo.open('rw')
        cur = reachesTopo.table.conn.cursor()
        cur.executemany("update " + reaches + " set IREACH=? where cat=?",
                        reach_number__reach_order_cats)
        reachesTopo.table.conn.commit()
        reachesTopo.close()

    # TOP AND BOTTOM ARE OUT OF ORDER: SOME SEGS ARE BACKWARDS. UGH!!!!
    # NEED TO GET THEM IN ORDER TO GET THE Z VALUES AT START AND END

    # 2018.10.01: Updating this to use the computational region for the DEM
    g.region(raster=elevation)

    # Compute slope and starting elevations from the elevations at the start and
    # end of the reaches and the length of each reach]

    gscript.message('Obtaining elevation values from raster: may take time.')
    v.db_addcolumn(map=reaches,
                   columns='zr1 double precision, zr2 double precision')
    zr1 = []
    zr2 = []
    for i in range(len(reach_cats)):
        _x = reach_x1s[i]
        _y = reach_y1s[i]
        #print _x, _y
        _z = float(
            gscript.parse_command('r.what',
                                  map=elevation,
                                  coordinates=str(_x) + ',' +
                                  str(_y)).keys()[0].split('|')[-1])
        zr1.append(_z)
        _x = reach_x2s[i]
        _y = reach_y2s[i]
        _z = float(
            gscript.parse_command('r.what',
                                  map=elevation,
                                  coordinates=str(_x) + ',' +
                                  str(_y)).keys()[0].split('|')[-1])
        zr2.append(_z)

    zr1_cats = []
    zr2_cats = []
    for i in range(len(reach_cats)):
        zr1_cats.append((zr1[i], reach_cats[i]))
        zr2_cats.append((zr2[i], reach_cats[i]))

    reachesTopo = VectorTopo(reaches)
    reachesTopo.open('rw')
    cur = reachesTopo.table.conn.cursor()
    cur.executemany("update " + reaches + " set zr1=? where cat=?", zr1_cats)
    cur.executemany("update " + reaches + " set zr2=? where cat=?", zr2_cats)
    reachesTopo.table.conn.commit()
    reachesTopo.close()

    # Use these to create slope -- backwards possible on DEM!
    v.db_update(map=reaches, column='SLOPE', value='(zr1 - zr2)/RCHLEN')
    v.db_update(map=reaches,
                column='SLOPE',
                value=Smin,
                where='SLOPE <= ' + str(Smin))

    # srtm_local_filled_grid = srtm_local_filled @ 200m (i.e. current grid)
    #  resolution
    # r.to.vect in=srtm_local_filled_grid out=srtm_local_filled_grid col=z type=area --o#
    # NOT SURE IF IT IS BEST TO USE MEAN ELEVATION OR TOP ELEVATION!!!!!!!!!!!!!!!!!!!!!!!
    v.db_addcolumn(map=reaches, columns='z_topo_mean double precision')
    v.what_rast(map=reaches, raster=elevation,
                column='z_topo_mean')  #, query_column='z')
    v.db_update(map=reaches,
                column='STRTOP',
                value='z_topo_mean -' + str(h_stream),
                quiet=True)
Beispiel #6
0
def main():
    """
    Adds GSFLOW parameters to a set of HRU sub-basins
    """

    ##################
    # OPTION PARSING #
    ##################

    options, flags = gscript.parser()
    basins = options['input']
    HRU = options['output']
    slope = options['slope']
    aspect = options['aspect']
    elevation = options['elevation']
    land_cover = options['cov_type']
    soil = options['soil_type']

    ################################
    # CREATE HRUs FROM SUB-BASINS  #
    ################################

    g.copy(vector=(basins,HRU), overwrite=gscript.overwrite())

    ############################################
    # ATTRIBUTE COLUMNS (IN ORDER FROM MANUAL) #
    ############################################

    # HRU
    hru_columns = []
    # Self ID
    hru_columns.append('id integer') # nhru
    # Basic Physical Attributes (Geometry)
    hru_columns.append('hru_area double precision') # acres (!!!!)
    hru_columns.append('hru_area_m2 double precision') # [not for GSFLOW: for me!]
    hru_columns.append('hru_aspect double precision') # Mean aspect [degrees]
    hru_columns.append('hru_elev double precision') # Mean elevation
    hru_columns.append('hru_lat double precision') # Latitude of centroid
    hru_columns.append('hru_lon double precision') # Longitude of centroid
                                                   # unnecessary but why not?
    hru_columns.append('hru_slope double precision') # Mean slope [percent]
    # Basic Physical Attributes (Other)
    #hru_columns.append('hru_type integer') # 0=inactive; 1=land; 2=lake; 3=swale; almost all will be 1
    #hru_columns.append('elev_units integer') # 0=feet; 1=meters. 0=default. I think I will set this to 1 by default.
    # Measured input
    hru_columns.append('outlet_sta integer') # Index of streamflow station at basin outlet:
                                             # station number if it has one, 0 if not
    # Note that the below specify projections and note lat/lon; they really seem
    # to work for any projected coordinates, with _x, _y, in meters, and _xlong, 
    # _ylat, in feet (i.e. they are just northing and easting). The meters and feet
    # are not just simple conversions, but actually are required for different
    # modules in the code, and are hence redundant but intentional.
    hru_columns.append('hru_x double precision') # Easting [m]
    hru_columns.append('hru_xlong double precision') # Easting [feet]
    hru_columns.append('hru_y double precision') # Northing [m]
    hru_columns.append('hru_ylat double precision') # Northing [feet]
    # Streamflow and lake routing
    hru_columns.append('K_coef double precision') # Travel time of flood wave to next downstream segment;
                                                  # this is the Muskingum storage coefficient
                                                  # 1.0 for reservoirs, diversions, and segments flowing
                                                  # out of the basin
    hru_columns.append('x_coef double precision') # Amount of attenuation of flow wave;
                                                  # this is the Muskingum routing weighting factor
                                                  # range: 0.0--0.5; default 0.2
                                                  # 0 for all segments flowing out of the basin
    hru_columns.append('hru_segment integer') # ID of stream segment to which flow will be routed
                                              # this is for non-cascade routing (flow goes directly
                                              # from HRU to stream segment)
    hru_columns.append('obsin_segment integer') # Index of measured streamflow station that replaces
                                                # inflow to a segment
    hru_columns.append('cov_type integer') # 0=bare soil;1=grasses; 2=shrubs; 3=trees; 4=coniferous
    hru_columns.append('soil_type integer') # 1=sand; 2=loam; 3=clay

    # Create strings
    hru_columns = ",".join(hru_columns)

    # Add columns to tables
    v.db_addcolumn(map=HRU, columns=hru_columns, quiet=True)


    ###########################
    # UPDATE DATABASE ENTRIES #
    ###########################

    colNames = np.array(gscript.vector_db_select(HRU, layer=1)['columns'])
    colValues = np.array(gscript.vector_db_select(HRU, layer=1)['values'].values())
    number_of_hrus = colValues.shape[0]
    cats = colValues[:,colNames == 'cat'].astype(int).squeeze()
    rnums = colValues[:,colNames == 'rnum'].astype(int).squeeze()

    nhru = np.arange(1, number_of_hrus + 1)
    nhrut = []
    for i in range(len(nhru)):
      nhrut.append( (nhru[i], cats[i]) )
    # Access the HRUs 
    hru = VectorTopo(HRU)
    # Open the map with topology:
    hru.open('rw')
    # Create a cursor
    cur = hru.table.conn.cursor()
    # Use it to loop across the table
    cur.executemany("update "+HRU+" set id=? where cat=?", nhrut)
    # Commit changes to the table
    hru.table.conn.commit()
    # Close the table
    hru.close()

    """
    # Do the same for basins <-------------- DO THIS OR SIMPLY HAVE HRUs OVERLAIN WITH GRID CELLS? IN THIS CASE, RMV AREA ADDITION TO GRAVRES
    v.db_addcolumn(map=basins, columns='id int', quiet=True)
    basins = VectorTopo(basins)
    basins.open('rw')
    cur = basins.table.conn.cursor()
    cur.executemany("update basins set id=? where cat=?", nhrut)
    basins.table.conn.commit()
    basins.close()
    """

    # if you want to append to table
    # cur.executemany("update HRU(id) values(?)", nhrut) # "insert into" will add rows

    #hru_columns.append('hru_area double precision')
    # Acres b/c USGS
    v.to_db(map=HRU, option='area', columns='hru_area', units='acres', quiet=True)
    v.to_db(map=HRU, option='area', columns='hru_area_m2', units='meters', quiet=True)

    # GET MEAN VALUES FOR THESE NEXT ONES, ACROSS THE BASIN

    # SLOPE (and aspect) 
    #####################
    v.rast_stats(map=HRU, raster=slope, method='average', column_prefix='tmp', flags='c', quiet=True)
    v.db_update(map=HRU, column='hru_slope', query_column='tmp_average', quiet=True)

    # ASPECT
    #########
    v.db_dropcolumn(map=HRU, columns='tmp_average', quiet=True)
    # Dealing with conversion from degrees (no good average) to something I can
    # average -- x- and y-vectors
    # Geographic coordinates, so sin=x, cos=y.... not that it matters so long 
    # as I am consistent in how I return to degrees
    r.mapcalc('aspect_x = sin(' + aspect + ')', overwrite=gscript.overwrite(), quiet=True)
    r.mapcalc('aspect_y = cos(' + aspect + ')', overwrite=gscript.overwrite(), quiet=True)
    #grass.run_command('v.db.addcolumn', map=HRU, columns='aspect_x_sum double precision, aspect_y_sum double precision, ncells_in_hru integer')
    v.rast_stats(map=HRU, raster='aspect_x', method='sum', column_prefix='aspect_x', flags='c', quiet=True)
    v.rast_stats(map=HRU, raster='aspect_y', method='sum', column_prefix='aspect_y', flags='c', quiet=True)
    hru = VectorTopo(HRU)
    hru.open('rw')
    cur = hru.table.conn.cursor()
    cur.execute("SELECT cat,aspect_x_sum,aspect_y_sum FROM %s" %hru.name)
    _arr = np.array(cur.fetchall()).astype(float)
    _cat = _arr[:,0]
    _aspect_x_sum = _arr[:,1]
    _aspect_y_sum = _arr[:,2]
    aspect_angle = np.arctan2(_aspect_y_sum, _aspect_x_sum) * 180. / np.pi
    aspect_angle[aspect_angle < 0] += 360 # all positive
    aspect_angle_cat = np.vstack((aspect_angle, _cat)).transpose()
    cur.executemany("update "+ HRU +" set hru_aspect=? where cat=?", aspect_angle_cat)
    hru.table.conn.commit()
    hru.close()

    # ELEVATION
    ############
    v.rast_stats(map=HRU, raster=elevation, method='average', column_prefix='tmp', flags='c', quiet=True)
    v.db_update(map=HRU, column='hru_elev', query_column='tmp_average', quiet=True)
    v.db_dropcolumn(map=HRU, columns='tmp_average', quiet=True)

    # CENTROIDS 
    ############

    # get x,y of centroid -- but have areas not in database table, that do have
    # centroids, and having a hard time finding a good way to get rid of them!
    # They have duplicate category values!
    # Perhaps these are little dangles on the edges of the vectorization where
    # the raster value was the same but pinched out into 1-a few cells?
    # From looking at map, lots of extra centroids on area boundaries, and removing
    # small areas (though threshold hard to guess) gets rid of these

    hru = VectorTopo(HRU)
    hru.open('rw')
    hru_cats = []
    hru_coords = []
    for hru_i in hru:
        if type(hru_i) is vector.geometry.Centroid:
            hru_cats.append(hru_i.cat)
            hru_coords.append(hru_i.coords())
    hru_cats = np.array(hru_cats)
    hru_coords = np.array(hru_coords)
    hru.rewind()
    
    hru_area_ids = []
    for coor in hru_coords:
        _area = hru.find_by_point.area(Point(coor[0], coor[1]))
        hru_area_ids.append(_area)
    hru_area_ids = np.array(hru_area_ids)
    hru.rewind()

    hru_areas = []
    for _area_id in hru_area_ids:
        hru_areas.append(_area_id.area())
    hru_areas = np.array(hru_areas)
    hru.rewind()
      
    allcats = sorted(list(set(list(hru_cats))))
    
    # Now create weighted mean
    hru_centroid_locations = []
    for cat in allcats:
        hrus_with_cat = hru_cats[hru_cats == cat]
        if len(hrus_with_cat) == 1:
            hru_centroid_locations.append((hru_coords[hru_cats == cat]).squeeze())
        else:
            _centroids = hru_coords[hru_cats == cat]
            #print _centroids
            _areas = hru_areas[hru_cats == cat]
            #print _areas
            _x = np.average(_centroids[:,0], weights=_areas)
            _y = np.average(_centroids[:,1], weights=_areas)
            #print _x, _y
            hru_centroid_locations.append(np.array([_x, _y]))
          
    # Now upload weighted mean to database table
    # allcats and hru_centroid_locations are co-indexed
    index__cats = create_iterator(HRU)
    cur = hru.table.conn.cursor()
    for i in range(len(allcats)):
        # meters
        cur.execute('update '+HRU
                    +' set hru_x='+str(hru_centroid_locations[i][0])
                    +' where cat='+str(allcats[i]))
        cur.execute('update '+HRU
                    +' set hru_y='+str(hru_centroid_locations[i][1])
                    +' where cat='+str(allcats[i]))
        # feet
        cur.execute('update '+HRU
                    +' set hru_xlong='+str(hru_centroid_locations[i][0]*3.28084)
                    +' where cat='+str(allcats[i]))
        cur.execute('update '+HRU
                    +' set hru_ylat='+str(hru_centroid_locations[i][1]*3.28084)
                    +' where cat='+str(allcats[i]))
        # (un)Project to lat/lon
        _centroid_ll = gscript.parse_command('m.proj',
                                             coordinates=
                                             list(hru_centroid_locations[i]),
                                             flags='od').keys()[0]
        _lon, _lat, _z = _centroid_ll.split('|')
        cur.execute('update '+HRU
                    +' set hru_lon='+_lon
                    +' where cat='+str(allcats[i]))
        cur.execute('update '+HRU
                    +' set hru_lat='+_lat
                    +' where cat='+str(allcats[i]))

    # feet -- not working.
    # Probably an issue with index__cats -- maybe fix later, if needed
    # But currently not a major speed issue
    """
    cur.executemany("update "+HRU+" set hru_xlong=?*3.28084 where hru_x=?", 
                    index__cats)
    cur.executemany("update "+HRU+" set hru_ylat=?*3.28084 where hru_y=?", 
                    index__cats)
    """                    

    cur.close()
    hru.table.conn.commit()
    hru.close()

    # ID NUMBER
    ############
    #cur.executemany("update "+HRU+" set hru_segment=? where id=?", 
    #                index__cats)
    # Segment number = HRU ID number
    v.db_update(map=HRU, column='hru_segment', query_column='id', quiet=True)

    # LAND USE/COVER
    ############
    try:
        land_cover = int(land_cover)
    except:
        pass
    if type(land_cover) is int:
        if land_cover <= 3:
            v.db_update(map=HRU, column='cov_type', value=land_cover, quiet=True)
        else:
            sys.exit("WARNING: INVALID LAND COVER TYPE. CHECK INTEGER VALUES.\n"
                     "EXITING TO ALLOW USER TO CHANGE BEFORE RUNNING GSFLOW")
    else:
        # NEED TO UPDATE THIS TO MODAL VALUE!!!!
        gscript.message("Warning: values taken from HRU centroids. Code should be updated to")
        gscript.message("acquire modal values")
        v.what_rast(map=HRU, type='centroid', raster=land_cover, column='cov_type', quiet=True)
        #v.rast_stats(map=HRU, raster=land_cover, method='average', column_prefix='tmp', flags='c', quiet=True)
        #v.db_update(map=HRU, column='cov_type', query_column='tmp_average', quiet=True)
        #v.db_dropcolumn(map=HRU, columns='tmp_average', quiet=True)

    # SOIL
    ############
    try:
        soil = int(soil)
    except:
        pass
    if type(soil) is int:
        if (soil > 0) and (soil <= 3):
            v.db_update(map=HRU, column='soil_type', value=soil, quiet=True)
        else:
            sys.exit("WARNING: INVALID SOIL TYPE. CHECK INTEGER VALUES.\n"
                     "EXITING TO ALLOW USER TO CHANGE BEFORE RUNNING GSFLOW")
    else:
        # NEED TO UPDATE THIS TO MODAL VALUE!!!!
        gscript.message("Warning: values taken from HRU centroids. Code should be updated to")
        gscript.message("acquire modal values")
        v.what_rast(map=HRU, type='centroid', raster=soil, column='soil_type', quiet=True)
Beispiel #7
0
def raster_to_vector(raster_category_flow, vector_category_flow,
                     flow_column_name, category, type):
    """Converts a raster to a vector map

    Parameters
    ----------

    raster_category_flow :
        Name of the input raster map 'flow in category'

    vector_category_flow :
        Name for the output vector map 'flow in category'

    type :
        Type for the output vector map

    Returns
    -------

    Examples
    --------
    ..
    """
    msg = " * Vectorising raster map '{r}'"
    grass.verbose(
        _(
            msg.format(
                c=category,
                r=raster_category_flow,
                v=vector_category_flow,
            )))
    r.to_vect(
        input=raster_category_flow,
        output=vector_category_flow,
        type="area",
        quiet=True,
    )

    msg = " * Updating the attribute table"
    grass.verbose(_(msg))

    # Value is the ecosystem type
    v.db_renamecolumn(
        map=vector_category_flow,
        column=("value", "ecosystem"),
        quiet=True,
    )

    # New column for flow values
    addcolumn_string = flow_column_name + " double"
    v.db_addcolumn(
        map=vector_category_flow,
        columns=addcolumn_string,
        quiet=True,
    )

    # The raster category 'label' is the 'flow'
    v.db_update(
        map=vector_category_flow,
        column="flow",
        query_column="label",
        quiet=True,
    )
    v.db_dropcolumn(
        map=vector_category_flow,
        columns="label",
        quiet=True,
    )

    # Update the aggregation raster categories
    v.db_addcolumn(
        map=vector_category_flow,
        columns="aggregation_id int",
        quiet=True,
    )
    v.db_update(
        map=vector_category_flow,
        column="aggregation_id",
        value=category,
        quiet=True,
    )
    v.colors(
        map=vector_category_flow,
        raster=raster_category_flow,
        quiet=True,
    )
def main():
    """
    Builds river segments for input to the USGS hydrologic models
    PRMS and GSFLOW.
    """

    ##################
    # OPTION PARSING #
    ##################

    options, flags = gscript.parser()

    # I/O
    streams = options["input"]
    segments = options["output"]

    # Hydraulic geometry
    ICALC = int(options["icalc"])

    # ICALC=0: Constant depth
    WIDTH1 = options["width1"]
    WIDTH2 = options["width2"]

    # ICALC=1,2: Manning (in channel and overbank): below

    # ICALC=3: Power-law relationships (following Leopold and others)
    # The at-a-station default exponents are from Rhodes (1977)
    CDPTH = str(float(options["cdpth"]) / 35.3146667)  # cfs to m^3/s
    FDPTH = options["fdpth"]
    AWDTH = str(float(options["awdth"]) / 35.3146667)  # cfs to m^3/s
    BWDTH = options["bwdth"]

    ##################################################
    # CHECKING DEPENDENCIES WITH OPTIONAL PARAMETERS #
    ##################################################

    if ICALC == 3:
        if CDPTH and FDPTH and AWDTH and BWDTH:
            pass
        else:
            gscript.fatal("Missing CDPTH, FDPTH, AWDTH, and/or BWDTH. \
                         These are required when ICALC = 3.")

    ###########
    # RUNNING #
    ###########

    # New Columns for Segments
    segment_columns = []
    # Self ID
    segment_columns.append("id integer")  # segment number
    segment_columns.append("ISEG integer")  # segment number
    segment_columns.append("NSEG integer")  # segment number
    # for GSFLOW
    segment_columns.append(
        "ICALC integer"
    )  # 1 for channel, 2 for channel+fp, 3 for power function
    segment_columns.append(
        "OUTSEG integer")  # downstream segment -- tostream, renumbered
    segment_columns.append("ROUGHCH double precision")  # overbank roughness
    segment_columns.append("ROUGHBK double precision")  # in-channel roughness
    segment_columns.append("WIDTH1 double precision")  # overbank roughness
    segment_columns.append("WIDTH2 double precision")  # in-channel roughness
    segment_columns.append("CDPTH double precision")  # depth coeff
    segment_columns.append("FDPTH double precision")  # depth exp
    segment_columns.append("AWDTH double precision")  # width coeff
    segment_columns.append("BWDTH double precision")  # width exp
    segment_columns.append(
        "floodplain_width double precision"
    )  # floodplain width (8-pt approx channel + flat fp)
    # The below will be all 0
    segment_columns.append(
        "IUPSEG varchar")  # upstream segment ID number, for diversions
    segment_columns.append("FLOW varchar")
    segment_columns.append("RUNOFF varchar")
    segment_columns.append("ETSW varchar")
    segment_columns.append("PPTSW varchar")

    segment_columns = ",".join(segment_columns)

    # CONSIDER THE EFFECT OF OVERWRITING COLUMNS -- WARN FOR THIS
    # IF MAP EXISTS ALREADY?

    # Create a map to work with
    g.copy(vector=(streams, segments), overwrite=gscript.overwrite())
    # and add its columns
    v.db_addcolumn(map=segments, columns=segment_columns)

    # Produce the data table entries
    ##################################
    colNames = np.array(gscript.vector_db_select(segments, layer=1)["columns"])
    colValues = np.array(
        gscript.vector_db_select(segments, layer=1)["values"].values())
    number_of_segments = colValues.shape[0]
    cats = colValues[:, colNames == "cat"].astype(int).squeeze()

    nseg = np.arange(1, len(cats) + 1)
    nseg_cats = []
    for i in range(len(cats)):
        nseg_cats.append((nseg[i], cats[i]))

    segmentsTopo = VectorTopo(segments)
    segmentsTopo.open("rw")
    cur = segmentsTopo.table.conn.cursor()

    # id = cat (as does ISEG and NSEG)
    cur.executemany("update " + segments + " set id=? where cat=?", nseg_cats)
    cur.executemany("update " + segments + " set ISEG=? where cat=?",
                    nseg_cats)
    cur.executemany("update " + segments + " set NSEG=? where cat=?",
                    nseg_cats)

    # outseg = tostream: default is 0 if "tostream" is off-map
    cur.execute("update " + segments + " set OUTSEG=0")
    cur.executemany("update " + segments + " set OUTSEG=? where tostream=?",
                    nseg_cats)

    # Hydraulic geometry selection
    cur.execute("update " + segments + " set ICALC=" + str(ICALC))
    segmentsTopo.table.conn.commit()
    segmentsTopo.close()
    if ICALC == 0:
        gscript.message("")
        gscript.message("ICALC=0 (constant) not supported")
        gscript.message("Continuing nonetheless.")
        gscript.message("")
    if ICALC == 1:
        if options["width_points"] is not "":
            # Can add machinery here for separate upstream and downstream widths
            # But really should not vary all that much
            # v.to_db(map=segments, option='start', columns='xr1,yr1')
            # v.to_db(map=segments, option='end', columns='xr2,yr2')
            gscript.run_command(
                "v.distance",
                from_=segments,
                to=options["width_points"],
                upload="to_attr",
                to_column=options["width_points_col"],
                column="WIDTH1",
            )
            v.db_update(map=segments, column="WIDTH2", query_column="WIDTH1")
        else:
            segmentsTopo = VectorTopo(segments)
            segmentsTopo.open("rw")
            cur = segmentsTopo.table.conn.cursor()
            cur.execute("update " + segments + " set WIDTH1=" + str(WIDTH1))
            cur.execute("update " + segments + " set WIDTH2=" + str(WIDTH2))
            segmentsTopo.table.conn.commit()
            segmentsTopo.close()
    if ICALC == 2:
        # REMOVE THIS MESSAGE ONCE THIS IS INCLUDED IN INPUT-FILE BUILDER
        gscript.message("")
        gscript.message("ICALC=2 (8-point channel + floodplain) not supported")
        gscript.message("Continuing nonetheless.")
        gscript.message("")
        if options["fp_width_pts"] is not "":
            gscript.run_command(
                "v.distance",
                from_=segments,
                to=options["fp_width_pts"],
                upload="to_attr",
                to_column=options["fp_width_pts_col"],
                column="floodplain_width",
            )
        else:
            segmentsTopo = VectorTopo(segments)
            segmentsTopo.open("rw")
            cur = segmentsTopo.table.conn.cursor()
            cur.execute("update " + segments + " set floodplain_width=" +
                        str(options["fp_width_value"]))
            segmentsTopo.table.conn.commit()
            segmentsTopo.close()
    if ICALC == 3:
        segmentsTopo = VectorTopo(segments)
        segmentsTopo.open("rw")
        cur = segmentsTopo.table.conn.cursor()
        cur.execute("update " + segments + " set CDPTH=" + str(CDPTH))
        cur.execute("update " + segments + " set FDPTH=" + str(FDPTH))
        cur.execute("update " + segments + " set AWDTH=" + str(AWDTH))
        cur.execute("update " + segments + " set BWDTH=" + str(BWDTH))
        segmentsTopo.table.conn.commit()
        segmentsTopo.close()

    # values that are 0
    gscript.message("")
    gscript.message("NOTICE: not currently used:")
    gscript.message("IUPSEG, FLOW, RUNOFF, ETSW, and PPTSW.")
    gscript.message("All set to 0.")
    gscript.message("")

    segmentsTopo = VectorTopo(segments)
    segmentsTopo.open("rw")
    cur = segmentsTopo.table.conn.cursor()
    cur.execute("update " + segments + " set IUPSEG=" + str(0))
    cur.execute("update " + segments + " set FLOW=" + str(0))
    cur.execute("update " + segments + " set RUNOFF=" + str(0))
    cur.execute("update " + segments + " set ETSW=" + str(0))
    cur.execute("update " + segments + " set PPTSW=" + str(0))
    segmentsTopo.table.conn.commit()
    segmentsTopo.close()

    # Roughness
    # ICALC=1,2: Manning (in channel)
    if (options["roughch_raster"] is not "") and (options["roughch_points"]
                                                  is not ""):
        gscript.fatal(
            "Choose either a raster or vector or a value as Manning's n input."
        )
    if options["roughch_raster"] is not "":
        ROUGHCH = options["roughch_raster"]
        v.rast_stats(
            raster=ROUGHCH,
            method="average",
            column_prefix="tmp",
            map=segments,
            flags="c",
        )
        # v.db_renamecolumn(map=segments, column='tmp_average,ROUGHCH', quiet=True)
        v.db_update(map=segments,
                    column="ROUGHCH",
                    query_column="tmp_average",
                    quiet=True)
        v.db_dropcolumn(map=segments, columns="tmp_average", quiet=True)
    elif options["roughch_points"] is not "":
        ROUGHCH = options["roughch_points"]
        gscript.run_command(
            "v.distance",
            from_=segments,
            to=ROUGHCH,
            upload="to_attr",
            to_column=options["roughch_pt_col"],
            column="ROUGHCH",
        )
    else:
        segmentsTopo = VectorTopo(segments)
        segmentsTopo.open("rw")
        cur = segmentsTopo.table.conn.cursor()
        ROUGHCH = options["roughch_value"]
        cur.execute("update " + segments + " set ROUGHCH=" + str(ROUGHCH))
        segmentsTopo.table.conn.commit()
        segmentsTopo.close()

    # ICALC=2: Manning (overbank)
    if (options["roughbk_raster"] is not "") and (options["roughbk_points"]
                                                  is not ""):
        gscript.fatal(
            "Choose either a raster or vector or a value as Manning's n input."
        )
    if options["roughbk_raster"] is not "":
        ROUGHBK = options["roughbk_raster"]
        v.rast_stats(
            raster=ROUGHBK,
            method="average",
            column_prefix="tmp",
            map=segments,
            flags="c",
        )
        v.db_renamecolumn(map=segments,
                          column="tmp_average,ROUGHBK",
                          quiet=True)
    elif options["roughbk_points"] is not "":
        ROUGHBK = options["roughbk_points"]
        gscript.run_command(
            "v.distance",
            from_=segments,
            to=ROUGHBK,
            upload="to_attr",
            to_column=options["roughbk_pt_col"],
            column="ROUGHBK",
        )
    else:
        segmentsTopo = VectorTopo(segments)
        segmentsTopo.open("rw")
        cur = segmentsTopo.table.conn.cursor()
        ROUGHBK = options["roughbk_value"]
        cur.execute("update " + segments + " set ROUGHBK=" + str(ROUGHBK))
        segmentsTopo.table.conn.commit()
        segmentsTopo.close()
v.db_renamecolumn(map='reaches', column=('a_y2', 'y2'))
v.db_renamecolumn(map='reaches', column=('a_stream_type', 'stream_type'))
v.db_renamecolumn(map='reaches', column=('a_type_code', 'type_code'))
v.db_renamecolumn(map='reaches', column=('a_cat', 'rnum_cat'))
v.db_renamecolumn(map='reaches', column=('a_tostream', 'tostream'))
v.db_renamecolumn(map='reaches', column=('a_id', 'segment_id'))
v.db_renamecolumn(map='reaches', column=('a_OUTSEG', 'OUTSEG'))
v.db_renamecolumn(map='reaches', column=('b_row', 'row'))
v.db_renamecolumn(map='reaches', column=('b_col', 'col'))
v.db_renamecolumn(map='reaches', column=('b_id', 'cell_id'))

# Drop some unnecessary columns
v.db_dropcolumn(map='reaches', columns='b_area_m2')

# Update some columns that can be done now
v.db_update(map='reaches', column='KRCH', value=1)
v.db_update(map='reaches', column='IRCH', value='row')
v.db_update(map='reaches', column='JRCH', value='col')
v.db_update(map='reaches', column='ISEG', value='segment_id')
v.db_update(map='reaches', column='NSEG', value='segment_id')
v.to_db(map='reaches', columns='RCHLEN', option='length')
v.db_update(map='reaches', column='STRTHICK', value=0.1) # 10 cm, prescribed

# Still to go after these:
# STRTOP (added with slope)
# IREACH (whole next section dedicated to this)
# SLOPE (need z_start and z_end)

# Now, the light stuff is over: time to build the reach order
v.db_addcolumn(map='reaches', columns='xr1 double precision, yr1 double precision, xr2 double precision, yr2 double precision')
v.to_db(map='reaches', option='start', columns='xr1,yr1')
               )
    """
    """
    Method-2:
    This method will Join all the Tank Points using Triangulation method
    implemented in v.to.lines and the optimal distance is generated by using
    v.net.spawningtree. Creating a buffer for this route will give the pipe
    Layout for the given Pipe diameter.
    """
    v.to_lines(input='TankPoints', output='JoinedTankPoints', flags=O)
    v.net_spanningtree(input='JoinedTankPoints', output='Layout2', flags=O)
    v.buffer(input='Layout2', output='Layout2_Buffer', distance=dia, flags=O)

    # Prepare Map for the Layout
    v.db_addcolumn(map='Buildings', columns='color varchar(10)')
    v.db_addcolumn(map='TankPoints', columns='size double precision')
    for id, color in enumerate(Colors, start=1):
        whr = 'id like %s' % id
        v.db_update(map='Buildings', column='color', where=whr, value=color)
    v.db_update(map='TankPoints', column='size', value=10)
    v.db_update(map='TankPoints', column='size', value=20, where='id like 1')
    ps = Module('ps.map')
    ps(input=Join('Test1', '#ps_scripts', 'GenLayout.psmap'),
       output='PipeLayout.ps',
       flags=O)

    #Removing the GRASS Vectors
    #g.remove(type='vector', pattern='*', flags=['f'])

#EOF
Beispiel #11
0
def Generate(Qa):
    """
    This function is a recursive function that will call on its own unless
    both the Del values are less than or equal to 2.5
    """
    Dels = []
    global Iterations
    Iterations += 1
    for net in Network:

        Arcs = [net[i:i + 2] for i in range(3)]
        Hl, Hl_Qa = {}, {}  # Head Loss and Head Loss / Qa
        for arc in Arcs:
            Hl[arc] = (Qa[arc]**2) * k[arc] * Dir[arc]
            Hl_Qa[arc] = abs(Hl[arc] / Qa[arc])
        Del = -sum(Hl.values()) / (n * sum(Hl_Qa.values()))
        Dels.append(Del)

    # Append the Overall Dels to O_Del
    O_Del.append(Dels)

    # Adding attribute columns with the values
    v.db_addcolumn(map='myNet', columns='value double precision')
    for net in Network:
        Arcs = [net[i:i + 2] for i in range(3)]
        for arc in Arcs:
            whr = "name like '%s'" % arc.lower()
            v.db_update(map='myNet',
                        column='value',
                        where=whr,
                        value=round(abs(Qa[arc]), 3))

    v.label(map='myNet',
            type='line',
            column='value',
            labels='Line',
            size='5',
            opaque='no',
            color='red')

    v.label(map='TankPoints',
            type='point',
            column='name',
            labels='TankPoints',
            size='5',
            opaque='no',
            color='red')

    # Prepare Map
    ps = Module('ps.map')
    ps(input=Join('Test1', '#ps_scripts', 'GenNetwork.psmap'),
       output='Network-Iteration-%s.ps' % Iterations,
       flags=O)

    v.db_dropcolumn(map='myNet', columns='value')

    if not all(i >= con for i in Dels):
        New_Qa = {}
        for id, net in enumerate(Network):
            Arcs = [net[i:i + 2] for i in range(3)]
            for arc in Arcs:
                if arc == 'BD':
                    New_Qa[arc] = Qa[arc] * Dir[arc] + Dels[id] - Dels[int(
                        not id)]
                elif arc == 'DB':
                    New_Qa[arc] = Qa[arc] * Dir[arc] + Dels[id] - Dels[int(
                        not id)]
                else:
                    New_Qa[arc] = Qa[arc] * Dir[arc] + Dels[id]
        Generate(New_Qa)
    else:
        print("\n\n")
        print("Number of Iterations: %s\n" % Iterations)
        pprint(Qa)