Beispiel #1
0
 def test_extrapolation(self):
     """ Check that extrapolation filter works """
     N = 5
     y = np.linspace(0, 1000, N)
     x = np.zeros(N)
     grid = gridpp.Points(y, x, x, x, gridpp.Cartesian)
     points = gridpp.Points([0, 100, 900, 1000], [0, 0, 0, 0], [0, 0, 0, 0],
                            [0, 0, 0, 0], gridpp.Cartesian)
     Y = points.size()
     pratios = 0.1 * np.ones(Y)
     structure = gridpp.BarnesStructure(500)
     pobs = [0, 1, 1, 0]
     background = np.zeros(grid.size())
     pbackground = np.zeros(Y)
     max_points = 10
     output0 = gridpp.optimal_interpolation(grid, background, points, pobs,
                                            pratios, pbackground, structure,
                                            max_points, False)
     output1 = gridpp.optimal_interpolation(grid, background, points, pobs,
                                            pratios, pbackground, structure,
                                            max_points, True)
     # Turning off extrapolation should mean we don't get increments greater than 1
     self.assertTrue(np.max(output0) == 1)
     self.assertTrue(np.max(output1) > 1)
     I = np.where(output1 < 1)[0]
     np.testing.assert_array_almost_equal(output0[I], output1[I])
Beispiel #2
0
    def test_basic(self):
        x = [0, 1000, 2000, 3000, np.nan]
        structure_corr = dict()
        barnes = gridpp.BarnesStructure(2000)
        structure_corr[barnes] = [1, 0.8824968934059143, 0.6065306663513184, 0.32465246319770813, 0]
        structure_corr[gridpp.CressmanStructure(2000)] = [1, 0.6, 0, 0, 0]
        structure_corr[gridpp.CrossValidation(barnes, 1000)] = [0, 0, 0.6065306663513184, 0.32465246319770813, 0]
        N = len(x)
        for structure, corr in structure_corr.items():
            is_cv = isinstance(structure, gridpp.CrossValidation)
            for i in range(N):
                with self.subTest(structure=type(structure), i=i):
                    p1 = gridpp.Point(0, 0, 0, 0, gridpp.Cartesian)
                    p2 = gridpp.Point(x[i], 0, 0, 0, gridpp.Cartesian)
                    funcs = [structure.corr, structure.corr_background]
                    if is_cv:
                        funcs = [structure.corr_background]
                    for func in funcs:
                        self.assertAlmostEqual(corr[i], func(p1, p2))

                        # Check that changing the order does not change the results
                        self.assertAlmostEqual(corr[i], func(p2, p1))

                        # Check identical points
                        if not is_cv and not np.isnan(x[i]):
                            self.assertAlmostEqual(1, func(p2, p2))
Beispiel #3
0
    def test_invalid_arguments(self):
        """ Check that exception is thrown on invalid input values """

        # Set up struct with valid input arguments
        ok_args = collections.OrderedDict({
            'grid':
            gridpp.Grid([[0, 0, 0]], [[0, 2500, 10000]], [[0, 0, 0]],
                        [[0, 0, 0]], gridpp.Cartesian),
            'background':
            np.zeros([1, 3]),
            'points':
            gridpp.Points([0], [2500], [0], [0], gridpp.Cartesian),
            'pobs': [1],
            'pratios': [0.1],
            'pbackground': [0],
            'structure':
            gridpp.BarnesStructure(2500),
            'max_points':
            10
        })

        # Set up struct with invalid input arguments that will be substituted into ok_args one at a
        # time in order to look for an exception being raised. Use an array of different invalid
        # arguments for each key.
        x = np.zeros([3, 2])
        invalid_args = {
            # Grid size mismatch, and coordinate-type mismatch
            'grid': [
                gridpp.Grid(x, x, x, x, gridpp.Cartesian),
                gridpp.Grid([[0, 0, 0]], [[0, 2500, 10000]])
            ],
            # Points size mismatch, and coordinate-type mismatch
            'points': [
                gridpp.Points([0, 1], [0, 2500], [0, 0], [0, 0],
                              gridpp.Cartesian),
                gridpp.Points([0], [2500])
            ],
            'pratios': [np.zeros(11)],
            'pobs': [np.zeros([11])],
            'background': [np.zeros([2, 11])],
            'pbackground': [np.zeros(21)],
            'max_points': [-1]
        }

        for key in invalid_args.keys():
            for arg in invalid_args[key]:
                args0 = ok_args.copy()
                args0[key] = arg
                q = [args0[f] for f in args0]
                with self.subTest(key=key, arg=arg):
                    with self.assertRaises(ValueError) as e:
                        output = gridpp.optimal_interpolation(*q)
Beispiel #4
0
 def test_barnes_hmax(self):
     hmaxs = [0, 1000, 2000, 10000]
     p0 = gridpp.Point(0, 0, 0, 0, gridpp.Cartesian)
     dist_ans = {0:1, 1000:0.8824968934059143, 2000:0.6065306663513184, 3000:0.32465246319770813}
     for hmax in hmaxs:
         for dist, ans in dist_ans.items():
             with self.subTest(hmax=hmax, dist=dist):
                 structure = gridpp.BarnesStructure(2000, 0, 0, hmax)
                 corr = structure.corr(p0, gridpp.Point(dist, 0, 0, 0, gridpp.Cartesian))
                 if dist > hmax:
                     self.assertEqual(0, corr)
                 else:
                     self.assertEqual(ans, corr)
Beispiel #5
0
 def test_simple_1d(self):
     N = 3
     y = [[0, 0, 0]]
     x = [[0, 2500, 10000]]
     grid = gridpp.Grid(y, x, y, y, gridpp.Cartesian)
     points = gridpp.Points([0], [2500], [0], [0], gridpp.Cartesian)
     pratios = [0.1]
     structure = gridpp.BarnesStructure(2500)
     pobs = [1]
     background = np.zeros([1, N])
     pbackground = [0]
     max_points = 10
     output = gridpp.optimal_interpolation(grid, background, points, pobs,
                                           pratios, pbackground, structure,
                                           max_points)
     np.testing.assert_array_almost_equal(
         output,
         np.array([[np.exp(-0.5) / 1.1, 1 / 1.1,
                    np.exp(-0.5 * 9) / 1.1]]))
Beispiel #6
0
 def test_simple_1d_full(self):
     N = 3
     y = [[0, 0, 0]]
     x = [[0, 2500, 10000]]
     grid = gridpp.Grid(y, x, y, y, gridpp.Cartesian)
     points = gridpp.Points([0], [2500], [0], [0], gridpp.Cartesian)
     bvariance = np.ones([1, N])
     obs_variance = [0.1]
     bvariance_at_points = [1]
     structure = gridpp.BarnesStructure(2500)
     pobs = [1]
     background = np.zeros([1, N])
     background_at_points = [0]
     max_points = 10
     output, sigma = gridpp.optimal_interpolation_full(
         grid, background, bvariance, points, pobs, obs_variance,
         background_at_points, bvariance_at_points, structure, max_points)
     # np.testing.assert_array_almost_equal(output, np.array([[np.exp(-0.5)/1.1, 1/1.1, np.exp(-0.5*9)/1.1]]))
     # np.testing.assert_array_almost_equal(sigma, np.array([[0, np.sqrt(0.1/1.1), 1]]))
     self.assertAlmostEqual(sigma[0, 1], 0.1 / 1.1)
Beispiel #7
0
    def test_missing_values(self):
        """Check that missing values are not used in OI"""
        obs = np.array([1, np.nan, 2, 3, np.nan, np.nan, 4, np.nan])
        N = len(obs)
        y = np.arange(0, N * 1000, 1000)
        background = np.zeros(N)
        points = gridpp.Points(y, np.zeros(N), np.zeros(N), np.zeros(N),
                               gridpp.Cartesian)
        ratios = np.ones(N)
        structure = gridpp.BarnesStructure(1000, 0)
        analysis = gridpp.optimal_interpolation(points, background, points,
                                                obs, ratios, background,
                                                structure, 100)

        I = np.where(np.isnan(y) == 0)[0]
        points1 = gridpp.Points(y[I], np.zeros(len(I)), np.zeros(len(I)),
                                np.zeros(len(I)), gridpp.Cartesian)
        analysis1 = gridpp.optimal_interpolation(points, background, points1,
                                                 obs[I], ratios[I],
                                                 background[I], structure, 100)
        np.testing.assert_array_almost_equal(analysis, analysis1)
Beispiel #8
0
    def test_cross_validation(self):
        y = np.array([0, 1000, 2000, 3000])
        N = len(y)
        obs = np.array([0, 1, 2, 3])
        background = np.zeros(N)
        points = gridpp.Points(y, np.zeros(N), np.zeros(N), np.zeros(N),
                               gridpp.Cartesian)
        ratios = np.ones(N)
        Icv = [0, 2, 3]
        points_cv = gridpp.Points(y[Icv], np.zeros(N - 1), np.zeros(N - 1),
                                  np.zeros(N - 1), gridpp.Cartesian)
        structure = gridpp.BarnesStructure(1000, 0)
        structure_cv = gridpp.CrossValidation(structure, 750)

        analysis = gridpp.optimal_interpolation(points, background, points_cv,
                                                obs[Icv], ratios[Icv],
                                                background[Icv], structure,
                                                100)
        analysis_cv = gridpp.optimal_interpolation(points, background, points,
                                                   obs, ratios, background,
                                                   structure_cv, 100)
Beispiel #9
0
    def test_cross_validation_grid(self):
        """ Check that the CV structure function works """
        np.random.seed(1000)
        y, x = np.meshgrid(np.arange(0, 3500, 500), np.arange(0, 3500, 500))
        Y = y.shape[0]
        X = y.shape[1]
        grid = gridpp.Grid(y, x, np.zeros(x.shape), np.zeros(x.shape),
                           gridpp.Cartesian)
        background = np.random.rand(Y, X) * 0

        obs = np.array([10, 20, 30])
        x_o = np.array([1000, 2000, 3000])
        y_o = np.array([1000, 2000, 3000])
        N = len(obs)
        points = gridpp.Points(y_o, x_o, np.zeros(N), np.zeros(N),
                               gridpp.Cartesian)

        background_o = gridpp.nearest(grid, points, background)

        ratios = np.ones(N)
        k = 0
        ii = np.arange(N).astype('int') != k
        points_cv = gridpp.Points(y_o[ii], x_o[ii], np.zeros(N - 1),
                                  np.zeros(N - 1), gridpp.Cartesian)
        structure = gridpp.BarnesStructure(1000, 0)
        structure_cv = gridpp.CrossValidation(structure, 750)

        analysis = gridpp.optimal_interpolation(grid, background, points_cv,
                                                obs[ii], ratios[ii],
                                                background_o[ii], structure,
                                                100)
        analysis_cv = gridpp.optimal_interpolation(points, background_o,
                                                   points, obs, ratios,
                                                   background_o, structure_cv,
                                                   100)

        self.assertAlmostEqual(
            gridpp.nearest(grid, points, analysis)[k], analysis_cv[k])
Beispiel #10
0
 def test_invalid_hmax(self):
     with self.assertRaises(Exception) as e:
         structure = gridpp.BarnesStructure(2000, 100, 0, -1)
Beispiel #11
0
 def test_barnes_h(self):
     hs = [-1, np.nan]
     for h in hs:
         with self.subTest(h=h):
             with self.assertRaises(Exception) as e:
                 structure = gridpp.BarnesStructure(h)
Beispiel #12
0
 def test_invalid_cv(self):
     barnes = gridpp.BarnesStructure(2000)
     for dist in [-1, np.nan]:
         with self.assertRaises(Exception) as e:
             structure = gridpp.CrossValidation(barnes, dist)
Beispiel #13
0
def main():
    parser = argparse.ArgumentParser(
        description='Runs gridpp benchmarks for processing performance')
    parser.add_argument('-j',
                        type=int,
                        help='Run multiple cores',
                        dest='num_cores')
    parser.add_argument(
        '-s',
        type=int,
        default=1,
        help='Enlarge the inputs by this scaling factor to run a bigger test',
        dest='scaling')
    parser.add_argument('-n',
                        type=int,
                        default=1,
                        help='Number of iterations to average over',
                        dest='iterations')
    parser.add_argument('-t', help='Run only this function', dest="function")

    # if len(sys.argv) == 1:
    #     parser.print_help()
    #     sys.exit(1)

    args = parser.parse_args()

    input = dict()
    grids = dict()
    points = dict()
    np.random.seed(1000)

    for i in [10, 50, 100, 200, 500, 1000, 2000, 10000]:
        input[i] = np.random.rand(i * args.scaling, i) * 10
    for i in [10, 50, 100, 200, 500, 1000]:
        grids[i] = gridpp.Grid(*np.meshgrid(
            np.linspace(0, 1, i), np.linspace(0, 1, i * args.scaling)))
    for i in [1000, 100000]:
        # points[i] = gridpp.Points(np.linspace(0, 1, i), np.zeros(i))
        points[i] = gridpp.Points(
            np.random.rand(i) * 10,
            np.random.rand(i) * 10)
    structure = gridpp.BarnesStructure(10000)
    radius = 7
    quantile = 0.5
    thresholds = np.linspace(0, 1, 11)
    run = collections.OrderedDict()
    run[(gridpp.Grid, "1000²")] = {
        "expected":
        0.74,
        "args":
        np.meshgrid(np.linspace(0, 1, 1000 * args.scaling),
                    np.linspace(0, 1, 1000))
    }
    run[(gridpp.neighbourhood, "10000²")] = {
        "expected": 2.05,
        "args": (np.zeros([10000, 10000]), radius, gridpp.Mean)
    }
    run[(gridpp.neighbourhood, "2000² max")] = {
        "expected": 0.99,
        "args": (input[2000], radius, gridpp.Max)
    }
    run[(gridpp.neighbourhood_quantile_fast, "2000²")] = {
        "expected": 1.23,
        "args": (input[2000], quantile, radius, thresholds)
    }
    run[(gridpp.neighbourhood_quantile, "500²")] = {
        "expected": 1.70,
        "args": (input[500], quantile, radius)
    }
    run[(gridpp.bilinear, "1000²")] = {
        "expected": 1.68,
        "args": (grids[1000], grids[1000], input[1000])
    }
    run[(gridpp.bilinear, "1000² x 50")] = {
        "expected":
        4.42,
        "args": (grids[1000], grids[1000],
                 np.repeat(np.expand_dims(input[1000], 0), 50, axis=0))
    }
    run[(gridpp.nearest, "1000²")] = {
        "expected": 1.52,
        "args": (grids[1000], grids[1000], input[1000])
    }
    run[(gridpp.nearest, "1000² x 50")] = {
        "expected":
        2.30,
        "args": (grids[1000], grids[1000],
                 np.repeat(np.expand_dims(input[1000], 0), 50, axis=0))
    }
    run[(gridpp.optimal_interpolation, "1000² 1000")] = {
        "expected":
        1.57,
        "args": (grids[1000], input[1000], points[1000], np.zeros(1000),
                 np.ones(1000), np.ones(1000), structure, 20)
    }
    run[(gridpp.dewpoint, "1e7")] = {
        "expected": 0.53,
        "args": (np.zeros(10000000) + 273.15, np.zeros(10000000))
    }
    run[(gridpp.fill, "1e5")] = {
        "expected":
        0.52,
        "args": (grids[1000], np.zeros([1000, 1000]), points[100000],
                 np.ones(100000) * 5000, 1, False)
    }
    run[(gridpp.doping_square, "1e5")] = {
        "expected":
        0.16,
        "args": (grids[1000], np.zeros([1000, 1000]), points[100000],
                 np.ones(100000) * 1, np.ones(100000, 'int') * 5, False)
    }
    run[(gridpp.doping_circle, "1e5")] = {
        "expected":
        0.52,
        "args": (grids[1000], np.zeros([1000, 1000]), points[100000],
                 np.ones(100000) * 1, np.ones(100000) * 5000, False)
    }

    print("Gridpp version %s" % gridpp.version())
    if args.num_cores is not None:
        print(
            "Function                             Expected     Time     Diff    Scaling"
        )
    else:
        print(
            "Function                             Expected     Time     Diff")
    num_cores = [1]
    if args.num_cores is not None and args.num_cores != 1:
        num_cores += [args.num_cores]
    for key in run.keys():
        timings = dict()
        for num_core in num_cores:
            timings[num_core] = 0

        if isinstance(key, tuple):
            name = key[0].__name__ + " " + str(key[1])
            func = key[0]
        else:
            name = key.__name__
            func = key
        if args.function is not None:
            if func.__name__ != args.function:
                continue

        # Allow functions to fail (useful when benchmarking older versions of gridpp
        # where functions may not be defined).
        try:
            for num_core in num_cores:
                gridpp.set_omp_threads(num_core)
                for it in range(args.iterations):
                    s_time = time.time()
                    func(*run[key]["args"])
                    e_time = time.time()
                    curr_time = e_time - s_time
                    timings[num_core] += curr_time
        except Exception as e:
            print("Could not run %s" % key)
            continue

            # print("%s() Expected: %.2f s Time: %.2f s" % (func.__name__, run[key]["expected"], e_time - s_time))
        for num_core in num_cores:
            timings[num_core] /= args.iterations

        diff = (timings[1] - run[key]["expected"] * args.scaling) / (
            run[key]["expected"] * args.scaling) * 100
        string = "%-36s %8.2f %8.2f %8.2f %%" % (
            name, run[key]["expected"] * args.scaling, timings[1], diff)
        if args.num_cores is not None:
            scaling = timings[1] / timings[args.num_cores] / args.num_cores
            expected = timings[1] / args.num_cores
            scaling = 1 - (timings[args.num_cores] - expected) / (timings[1] -
                                                                  expected)
            # scaling = (1 - timings[args.num_cores] / timings[1]) * (args.num_cores + 1)

            string += " %8.2f %%" % (scaling * 100)
        print(string)
Beispiel #14
0
def horizontal_oi(geo,
                  background,
                  observations,
                  gelevs,
                  glafs,
                  hlength=10000.,
                  vlength=10000.,
                  wlength=0.5,
                  elev_gradient=0,
                  structure_function="Barnes",
                  land_only=False,
                  max_locations=50,
                  epsilon=0.5,
                  minvalue=None,
                  maxvalue=None,
                  interpol="bilinear"):

    if gridpp is None:
        raise Exception("You need gridpp to perform OI")

    glats = geo.lats
    glons = geo.lons

    def obs2vectors(my_obs):
        return my_obs.lons, my_obs.lats, my_obs.stids, my_obs.elevs, \
               my_obs.values, my_obs.cis, my_obs.lafs

    vectors = np.vectorize(obs2vectors)
    lons, lats, stids, elevs, values, pci, lafs = vectors(observations)

    glats = np.transpose(glats)
    glons = np.transpose(glons)
    background = np.transpose(background)
    gelevs = np.transpose(gelevs)
    glafs = np.transpose(glafs)

    bgrid = gridpp.Grid(glats, glons, gelevs)
    points = gridpp.Points(lats, lons, elevs)
    if interpol == "bilinear":
        pbackground = gridpp.bilinear(bgrid, points, background)
    elif interpol == "nearest":
        pbackground = gridpp.nearest(bgrid, points, background, elev_gradient)
    else:
        raise NotImplementedError
    variance_ratios = np.full(points.size(), epsilon)

    if structure_function == "Barnes":
        # No land/sea weight when land_only = True
        if land_only:
            wlength = 0.
        structure = gridpp.BarnesStructure(hlength, vlength, wlength)
    else:
        raise NotImplementedError

    field = gridpp.optimal_interpolation(bgrid, background, points, values,
                                         variance_ratios, pbackground,
                                         structure, max_locations)
    field = np.asarray(field)
    if minvalue is not None:
        field[field < minvalue] = minvalue
    if maxvalue is not None:
        field[field > maxvalue] = maxvalue
    if land_only:
        no_land = np.where(glafs == 0)
        field[no_land] = background[no_land]
    return np.transpose(field)
    blons = file.variables['longitude'][:]
    belevs = file.variables['altitude'][:]
    bgrid = gridpp.Grid(blats, blons, belevs)

# Downscaling
gradient = -0.0065
background = gridpp.simple_gradient(bgrid_2500m, bgrid, background_2500m, gradient)

points = gridpp.Points(obs_lats[index_valid_obs], obs_lons[index_valid_obs], obs_elevs[index_valid_obs])
pbackground = gridpp.bilinear(bgrid, points, background)

variance_ratios = np.full(points.size(), 0.1)

h = 100000
v = 200
structure = gridpp.BarnesStructure(h, v)

max_points = 50

analysis = gridpp.optimal_interpolation(bgrid, background, points,
        obs[index_valid_obs], variance_ratios, pbackground, structure, max_points)


# Plotting the increments
diff = analysis - background
mpl.pcolormesh(blons, blats, diff, cmap="RdBu_r", vmin=-2, vmax=2)
mpl.xlim(0, 35)
mpl.ylim(55, 75)
mpl.gca().set_aspect(2)
cb = mpl.colorbar()
cb.set_label(r"Increment ($\degree C$)")