Beispiel #1
0
def test5():
    """The tests checks if the simulation process works even if the covariance between
    U1 and V and U0 and V is equal. Further the test ensures that the mte_information
    function returns the same value for each quantile.
    """
    for _ in range(10):
        generate_random_dict()
        init_dict = read("test.grmpy.yml")

        # We impose that the covariance between the random components of the potential
        # outcomes and the random component determining choice is identical.
        init_dict["DIST"]["params"][2] = init_dict["DIST"]["params"][4]

        # Distribute information
        coeffs_untreated = init_dict["UNTREATED"]["params"]
        coeffs_treated = init_dict["TREATED"]["params"]

        # Construct auxiliary information
        cov = construct_covariance_matrix(init_dict)

        df = simulate("test.grmpy.yml")

        x = df[list(
            set(init_dict["TREATED"]["order"] +
                init_dict["UNTREATED"]["order"]))]

        q = [0.01] + list(np.arange(0.05, 1, 0.05)) + [0.99]
        mte = mte_information(coeffs_treated, coeffs_untreated, cov, q, x,
                              init_dict)

        # We simply test that there is a single unique value for the marginal treatment
        #  effect.
        np.testing.assert_equal(len(set(mte)), 1)
Beispiel #2
0
def test5():
    """The tests checks if the simulation process works even if the covariance between U1 and V
    and U0 and V is equal. Further the test ensures that the mte_information function returns
    the same value for each quantile.
    """
    for _ in range(10):
        generate_random_dict()
        init_dict = read('test.grmpy.ini')

        # We impose that the covariance between the random components of the potential
        # outcomes and the random component determining choice is identical.
        init_dict['DIST']['all'][2] = init_dict['DIST']['all'][4]

        # Distribute information
        coeffs_untreated = init_dict['UNTREATED']['all']
        coeffs_treated = init_dict['TREATED']['all']

        # Construct auxiliary information
        cov = construct_covariance_matrix(init_dict)

        df = simulate('test.grmpy.ini')
        x = df.filter(regex=r'^X\_', axis=1)
        q = [0.01] + list(np.arange(0.05, 1, 0.05)) + [0.99]
        mte = mte_information(coeffs_treated, coeffs_untreated, cov, q, x)

        # We simply test that there is a single unique value for the marginal treatment effect.
        np.testing.assert_equal(len(set(mte)), 1)
Beispiel #3
0
def weights_treatment_parameters(init_dict, GRID):
    """This function calculates the weights for the special case in
    Heckman & Vytlacil (2005) Figure 1B.

    """
    GRID = np.linspace(0.01, 0.99, num=99, endpoint=True)

    coeffs_untreated = init_dict['UNTREATED']['all']
    coeffs_treated = init_dict['TREATED']['all']
    cov = construct_covariance_matrix(init_dict)

    x = simulate_covariates(init_dict)
    x = x[:, :2]

    # We take the specified distribution for the cost shifters from the paper.
    cost_mean, cost_sd = -0.0026, np.sqrt(0.270)
    v_mean, v_sd = 0.00, np.sqrt(cov[2, 2])

    eval_points = norm.ppf(GRID, loc=v_mean, scale=v_sd)

    ate_weights = np.tile(1.0, 99)
    tut_weights = norm.cdf(eval_points, loc=cost_mean, scale=cost_sd)

    tt_weights = 1 - tut_weights

    def tut_integrand(point):
        eval_point = norm.ppf(point, loc=v_mean, scale=v_sd)
        return norm.cdf(eval_point, loc=cost_mean, scale=cost_sd)

    def tt_integrand(point):
        eval_point = norm.ppf(point, loc=v_mean, scale=v_sd)
        return norm.cdf(eval_point, loc=cost_mean, scale=cost_sd)

    # Scaling so that the weights integrate to one.
    tut_scaling = quad(tut_integrand, 0.01, 0.99)[0]
    tut_weights /= tut_scaling

    tt_scaling = quad(tt_integrand, 0.01, 0.99)[0]
    tt_weights /= tt_scaling

    mte = mte_information(coeffs_treated, coeffs_untreated, cov, GRID, x,
                          init_dict)

    return ate_weights, tt_weights, tut_weights, mte
Beispiel #4
0
def calculate_mte(rslt, init_dict, data_frame, quant=None):
    coeffs_treated = rslt['TREATED']['all']
    coeffs_untreated = rslt['UNTREATED']['all']

    if quant is None:
        quantiles = [1] + np.arange(2.5, 100, 2.5).tolist() + [99]
        args = [str(i) + '%' for i in quantiles]
        quantiles = [i * 0.01 for i in quantiles]
    else:
        quantiles = quant

    cov = np.zeros((3, 3))
    cov[2, 0] = rslt['AUX']['x_internal'][-3] * rslt['AUX']['x_internal'][-4]
    cov[2, 1] = rslt['AUX']['x_internal'][-1] * rslt['AUX']['x_internal'][-2]
    cov[2, 2] = 1.0
    help_ = list(set(init_dict['TREATED']['order'] + init_dict['UNTREATED']['order']))
    x = data_frame[[init_dict['varnames'][i - 1] for i in help_]]

    value = mte_information(coeffs_treated, coeffs_untreated, cov, quantiles, x, rslt)
    if quant is None:
        return value, args
    else:
        return value
Beispiel #5
0
def calculate_mte(rslt, data_frame, quant=None):

    coeffs_treated = rslt["TREATED"]["params"]
    coeffs_untreated = rslt["UNTREATED"]["params"]

    if quant is None:
        quantiles = [1] + np.arange(5, 100, 5).tolist() + [99]
        args = [str(i) + "%" for i in quantiles]
        quantiles = [i * 0.01 for i in quantiles]
    else:
        quantiles = quant

    cov = np.zeros((3, 3))
    cov[2, 0] = rslt["AUX"]["x_internal"][-3] * rslt["AUX"]["x_internal"][-4]
    cov[2, 1] = rslt["AUX"]["x_internal"][-1] * rslt["AUX"]["x_internal"][-2]
    cov[2, 2] = 1.0

    value = mte_information(coeffs_treated, coeffs_untreated, cov, quantiles,
                            data_frame, rslt)
    if quant is None:
        return value, args
    else:
        return value
        index = GRID.index(round(xtick, 2))
        height = mte[index]
        ax.text(x=xtick - 0.002, y=height - 0.1, s='[', fontsize=30)
    for xtick in [0.39, 0.79]:
        index = GRID.index(round(xtick, 2))
        height = mte[index]
        ax.text(x=xtick - 0.01, y=height - 0.1, s=']', fontsize=30)

    ax.set_xlabel('$u_S$')
    ax.set_ylabel(r'$B^{MTE}$')

    ax.set_xticks([0, 0.2, 0.4, 0.6, 0.8, 1])
    ax.set_xticklabels([0, '$p_1$', '$p_2$', '$p_3$', '$p_4$', 1])
    ax.tick_params(axis='x', which='major')
    ax.set_ylim([1.5, 4.5])

    plt.tight_layout()
    plt.savefig(ppj("OUT_FIGURES", 'fig-local-average-treatment.png'))


if __name__ == '__main__':

    coeffs_untreated = init_dict['UNTREATED']['all']
    coeffs_treated = init_dict['TREATED']['all']
    cov = construct_covariance_matrix(init_dict)
    x = np.loadtxt(ppj("OUT_DATA", "X.csv"), delimiter=",")
    x = x.reshape(165, 2)

    mte = mte_information(coeffs_treated, coeffs_untreated, cov, GRID, x)

    plot_local_average_treatment(mte)
Beispiel #7
0
    ax.plot(GRID, abs_, label="Absence", linestyle="--")

    ax.set_ylim([1.5, 4.5])

    plt.legend()

    plt.tight_layout()
    plt.savefig(OUTPUT_DIR + "/fig-eh-marginal-effect.png", dpi=300)


if __name__ == "__main__":
    coeffs_untreated = init_dict["UNTREATED"]["params"]
    coeffs_treated = init_dict["TREATED"]["params"]
    cov = construct_covariance_matrix(init_dict)
    df = simulate(RESOURCE_DIR + filename)
    x = df[init_dict["TREATED"]["order"]]
    MTE_pres = mte_information(coeffs_treated, coeffs_untreated, cov, GRID, x,
                               init_dict)

    para_diff = coeffs_treated - coeffs_untreated

    MTE_abs = []
    for i in GRID:
        if cov[2, 2] == 0.00:
            MTE_abs += ["---"]
        else:
            MTE_abs += [np.mean(np.dot(para_diff, x.T))]

    plot_marginal_treatment_effect(MTE_pres, MTE_abs)
    cleanup()